3571: Introduce two filters to select documents with `null` and empty fields r=irevoire a=Kerollmops
# Pull Request
## Related issue
This PR implements the `X IS NULL`, `X IS NOT NULL`, `X IS EMPTY`, `X IS NOT EMPTY` filters that [this comment](https://github.com/meilisearch/product/discussions/539#discussioncomment-5115884) is describing in a very detailed manner.
## What does this PR do?
### `IS NULL` and `IS NOT NULL`
This PR will be exposed as a prototype for now. Below is the copy/pasted version of a spec that defines this filter.
- `IS NULL` matches fields that `EXISTS` AND `= IS NULL`
- `IS NOT NULL` matches fields that `NOT EXISTS` OR `!= IS NULL`
1. `{"name": "A", "price": null}`
2. `{"name": "A", "price": 10}`
3. `{"name": "A"}`
`price IS NULL` would match 1
`price IS NOT NULL` or `NOT price IS NULL` would match 2,3
`price EXISTS` would match 1, 2
`price NOT EXISTS` or `NOT price EXISTS` would match 3
common query : `(price EXISTS) AND (price IS NOT NULL)` would match 2
### `IS EMPTY` and `IS NOT EMPTY`
- `IS EMPTY` matches Array `[]`, Object `{}`, or String `""` fields that `EXISTS` and are empty
- `IS NOT EMPTY` matches fields that `NOT EXISTS` OR are not empty.
1. `{"name": "A", "tags": null}`
2. `{"name": "A", "tags": [null]}`
3. `{"name": "A", "tags": []}`
4. `{"name": "A", "tags": ["hello","world"]}`
5. `{"name": "A", "tags": [""]}`
6. `{"name": "A"}`
7. `{"name": "A", "tags": {}}`
8. `{"name": "A", "tags": {"t1":"v1"}}`
9. `{"name": "A", "tags": {"t1":""}}`
10. `{"name": "A", "tags": ""}`
`tags IS EMPTY` would match 3,7,10
`tags IS NOT EMPTY` or `NOT tags IS EMPTY` would match 1,2,4,5,6,8,9
`tags IS NULL` would match 1
`tags IS NOT NULL` or `NOT tags IS NULL` would match 2,3,4,5,6,7,8,9,10
`tags EXISTS` would match 1,2,3,4,5,7,8,9,10
`tags NOT EXISTS` or `NOT tags EXISTS` would match 6
common query : `(tags EXISTS) AND (tags IS NOT NULL) AND (tags IS NOT EMPTY)` would match 2,4,5,8,9
## What should the reviewer do?
- Check that I tested the filters
- Check that I deleted the ids of the documents when deleting documents
Co-authored-by: Clément Renault <clement@meilisearch.com>
Co-authored-by: Kerollmops <clement@meilisearch.com>
3641: Bring back changes from `release v1.1.0` into `main` after v1.1.0 release r=curquiza a=curquiza
Replace https://github.com/meilisearch/meilisearch/pull/3637 since we don't want to pull commits from `main` into `release-v1.1.0` when fixing git conflicts
Co-authored-by: ManyTheFish <many@meilisearch.com>
Co-authored-by: bors[bot] <26634292+bors[bot]@users.noreply.github.com>
Co-authored-by: Charlotte Vermandel <charlottevermandel@gmail.com>
Co-authored-by: Tamo <tamo@meilisearch.com>
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
Co-authored-by: curquiza <clementine@meilisearch.com>
Co-authored-by: Clément Renault <clement@meilisearch.com>
Co-authored-by: Many the fish <many@meilisearch.com>
3525: Fix phrase search containing stop words r=ManyTheFish a=ManyTheFish
# Summary
A search with a phrase containing only stop words was returning an HTTP error 500,
this PR filters the phrase containing only stop words dropping them before the search starts, a query with a phrase containing only stop words now behaves like a placeholder search.
fixes https://github.com/meilisearch/meilisearch/issues/3521
related v1.0.2 PR on milli: https://github.com/meilisearch/milli/pull/779
Co-authored-by: ManyTheFish <many@meilisearch.com>
3490: Fix attributes set candidates r=curquiza a=ManyTheFish
# Pull Request
Fix attributes set candidates for v1.1.0
## details
The attribute criterion was not returning the remaining candidates when its internal algorithm was been exhausted.
We had a loss of candidates by the attribute criterion leading to the bug reported in the issue linked below.
After some investigation, it seems that it was the only criterion that had this behavior.
We are now returning the remaining candidates instead of an empty bitmap.
## Related issue
Fixes#3483
PR on milli for v1.0.1: https://github.com/meilisearch/milli/pull/777
Co-authored-by: ManyTheFish <many@meilisearch.com>
3461: Bring v1 changes into main r=curquiza a=Kerollmops
Also bring back changes in milli (the remote repository) into main done during the pre-release
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
Co-authored-by: bors[bot] <26634292+bors[bot]@users.noreply.github.com>
Co-authored-by: curquiza <curquiza@users.noreply.github.com>
Co-authored-by: Tamo <tamo@meilisearch.com>
Co-authored-by: Philipp Ahlner <philipp@ahlner.com>
Co-authored-by: Kerollmops <clement@meilisearch.com>
733: Avoid a prefix-related worst-case scenario in the proximity criterion r=loiclec a=loiclec
# Pull Request
## Related issue
Somewhat fixes (until merged into meilisearch) https://github.com/meilisearch/meilisearch/issues/3118
## What does this PR do?
When a query ends with a word and a prefix, such as:
```
word pr
```
Then we first determine whether `pre` *could possibly* be in the proximity prefix database before querying it. There are then three possibilities:
1. `pr` is not in any prefix cache because it is not the prefix of many words. We don't query the proximity prefix database. Instead, we list all the word derivations of `pre` through the FST and query the regular proximity databases.
2. `pr` is in the prefix cache but cannot be found in the proximity prefix databases. **In this case, we partially disable the proximity ranking rule for the pair `word pre`.** This is done as follows:
1. Only find the documents where `word` is in proximity to `pre` **exactly** (no derivations)
2. Otherwise, assume that their proximity in all the documents in which they coexist is >= 8
3. `pr` is in the prefix cache and can be found in the proximity prefix databases. In this case we simply query the proximity prefix databases.
Note that if a prefix is longer than 2 bytes, then it cannot be in the proximity prefix databases. Also, proximities larger than 4 are not present in these databases either. Therefore, the impact on relevancy is:
1. For common prefixes of one or two letters: we no longer distinguish between proximities from 4 to 8
2. For common prefixes of more than two letters: we no longer distinguish between any proximities
3. For uncommon prefixes: nothing changes
Regarding (1), it means that these two documents would be considered equally relevant according to the proximity rule for the query `heard pr` (IF `pr` is the prefix of more than 200 words in the dataset):
```json
[
{ "text": "I heard there is a faster proximity criterion" },
{ "text": "I heard there is a faster but less relevant proximity criterion" }
]
```
Regarding (2), it means that two documents would be considered equally relevant according to the proximity rule for the query "faster pro":
```json
[
{ "text": "I heard there is a faster but less relevant proximity criterion" }
{ "text": "I heard there is a faster proximity criterion" },
]
```
But the following document would be considered more relevant than the two documents above:
```json
{ "text": "I heard there is a faster swimmer who is competing in the pro section of the competition " }
```
Note, however, that this change of behaviour only occurs when using the set-based version of the proximity criterion. In cases where there are fewer than 1000 candidate documents when the proximity criterion is called, this PR does not change anything.
---
## Performance
I couldn't use the existing search benchmarks to measure the impact of the PR, but I did some manual tests with the `songs` benchmark dataset.
```
1. 10x 'a':
- 640ms ⟹ 630ms = no significant difference
2. 10x 'b':
- set-based: 4.47s ⟹ 7.42 = bad, ~2x regression
- dynamic: 1s ⟹ 870 ms = no significant difference
3. 'Someone I l':
- set-based: 250ms ⟹ 12 ms = very good, x20 speedup
- dynamic: 21ms ⟹ 11 ms = good, x2 speedup
4. 'billie e':
- set-based: 623ms ⟹ 2ms = very good, x300 speedup
- dynamic: ~4ms ⟹ 4ms = no difference
5. 'billie ei':
- set-based: 57ms ⟹ 20ms = good, ~2x speedup
- dynamic: ~4ms ⟹ ~2ms. = no significant difference
6. 'i am getting o'
- set-based: 300ms ⟹ 60ms = very good, 5x speedup
- dynamic: 30ms ⟹ 6ms = very good, 5x speedup
7. 'prologue 1 a 1:
- set-based: 3.36s ⟹ 120ms = very good, 30x speedup
- dynamic: 200ms ⟹ 30ms = very good, 6x speedup
8. 'prologue 1 a 10':
- set-based: 590ms ⟹ 18ms = very good, 30x speedup
- dynamic: 82ms ⟹ 35ms = good, ~2x speedup
```
Performance is often significantly better, but there is also one regression in the set-based implementation with the query `b b b b b b b b b b`.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
732: Interpret synonyms as phrases r=loiclec a=loiclec
# Pull Request
## Related issue
Fixes (when merged into meilisearch) https://github.com/meilisearch/meilisearch/issues/3125
## What does this PR do?
We now map multi-word synonyms to phrases instead of loose words. Such that the request:
```
btw I am going to nyc soon
```
is interpreted as (when the synonym interpretation is chosen for both `btw` and `nyc`):
```
"by the way" I am going to "New York City" soon
```
instead of:
```
by the way I am going to New York City soon
```
This prevents queries containing multi-word synonyms to exceed to word length limit and degrade the search performance.
In terms of relevancy, there is a debate to have. I personally think this could be considered an improvement, since it would be strange for a user to search for:
```
good DIY project
```
and have a result such as:
```
{
"text": "whether it is a good project to do, you'll have to decide for yourself"
}
```
However, for synonyms such as `NYC -> New York City`, then we will stop matching documents where `New York` is separated from `City`. This is however solvable by adding an additional mapping: `NYC -> New York`.
## Performance
With the old behaviour, some long search requests making heavy uses of synonyms could take minutes to be executed. This is no longer the case, these search requests now take an average amount of time to be resolved.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
736: Update charabia r=curquiza a=ManyTheFish
Update Charabia to the last version.
> We are now Romanizing Chinese characters into Pinyin.
> Note that we keep the accent because they are in fact never typed directly by the end-user, moreover, changing an accent leads to a different Chinese character, and I don't have sufficient knowledge to forecast the impact of removing accents in this context.
Co-authored-by: ManyTheFish <many@meilisearch.com>
743: Fix finite pagination with placeholder search r=Kerollmops a=ManyTheFish
this bug is reproducible on real datasets and is hard to isolate in a simple test.
related to: https://github.com/meilisearch/meilisearch/issues/3200
poke `@curquiza`
Co-authored-by: ManyTheFish <many@meilisearch.com>
728: Add some integration tests on the sort criterion r=ManyTheFish a=loiclec
This is simply an integration test ensuring that the sort criterion works properly.
However, only one version of the algorithm is tested here (the iterative one). To test the version that uses the facet DB, one has to manually set the `CANDIDATES_THRESHOLD` constant to `0`. I have done that and ensured that the test still succeeds. However, in the future, we will probably want to have an option to force which algorithm is used at runtime, for testing purposes.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
By creating snapshots and updating the format of the existing
snapshots. The next commit will apply the fix, which will show
its effects cleanly on the old and new snapshot tests
689: Handle non-finite floats consistently in filters r=irevoire a=dureuill
# Pull Request
## Related issue
Related meilisearch/meilisearch#3000
## What does this PR do?
### User
- Filters using `field = inf`, (or `infinite`, `NaN`) now match the value as a string rather than returning an internal error.
- Filters using `field < inf` (or other comparison operators) now return an invalid_filter error rather than returning an internal error, much like when using `field < aaa`.
### Implementation
- Add new `NonFiniteFloat` error variants to the filter-parser errors
- Add `Token::parse_as_finite_float` that can fail both when the string is not a float and when the float is not finite
- Refactor `Filter::inner_evaluate` to always use `parse_as_finite_float` instead of just `parse`
- Add corresponding tests
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
659: Fix clippy error to add clippy job on Ci r=Kerollmops a=unvalley
## Related PR
This PR is for #673
## What does this PR do?
- ~~add `Run Clippy` job to CI (rust.yml)~~
- apply `cargo clippy --fix` command
- fix some `cargo clippy` error manually (but warnings still remain on tests)
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Co-authored-by: unvalley <kirohi.code@gmail.com>
Co-authored-by: unvalley <38400669+unvalley@users.noreply.github.com>
664: Fix phrase search containing stop words r=ManyTheFish a=Samyak2
# Pull Request
This a WIP draft PR I wanted to create to let other potential contributors know that I'm working on this issue. I'll be completing this in a few hours from opening this.
## Related issue
Fixes#661 and towards fixing meilisearch/meilisearch#2905
## What does this PR do?
- [x] Change Phrase Operation to use a `Vec<Option<String>>` instead of `Vec<String>` where `None` corresponds to a stop word
- [x] Update all other uses of phrase operation
- [x] Update `resolve_phrase`
- [x] Update `create_primitive_query`?
- [x] Add test
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Co-authored-by: Samyak S Sarnayak <samyak201@gmail.com>
Co-authored-by: Samyak Sarnayak <samyak201@gmail.com>