Introduce the proximity ranking rule as a graph-based ranking rule

This commit is contained in:
Loïc Lecrenier 2023-02-21 09:49:05 +01:00
parent c645853529
commit 89d696c1e3
3 changed files with 257 additions and 0 deletions

View File

@ -0,0 +1,165 @@
use std::collections::BTreeMap;
use super::ProximityEdge;
use crate::new::db_cache::DatabaseCache;
use crate::new::query_term::{LocatedQueryTerm, QueryTerm, WordDerivations};
use crate::new::ranking_rule_graph::proximity::WordPair;
use crate::new::ranking_rule_graph::{Edge, EdgeDetails};
use crate::new::QueryNode;
use crate::{Index, Result};
use heed::RoTxn;
use itertools::Itertools;
pub fn visit_from_node(from_node: &QueryNode) -> Result<Option<(WordDerivations, i8)>> {
Ok(Some(match from_node {
QueryNode::Term(LocatedQueryTerm { value: value1, positions: pos1 }) => {
match value1 {
QueryTerm::Word { derivations } => (derivations.clone(), *pos1.end()),
QueryTerm::Phrase(phrase1) => {
// TODO: remove second unwrap
let original = phrase1.last().unwrap().as_ref().unwrap().clone();
(
WordDerivations {
original: original.clone(),
zero_typo: vec![original],
one_typo: vec![],
two_typos: vec![],
use_prefix_db: false,
},
*pos1.end(),
)
}
}
}
QueryNode::Start => (
WordDerivations {
original: String::new(),
zero_typo: vec![],
one_typo: vec![],
two_typos: vec![],
use_prefix_db: false,
},
-100,
),
_ => return Ok(None),
}))
}
pub fn visit_to_node<'transaction, 'from_data>(
index: &Index,
txn: &'transaction RoTxn,
db_cache: &mut DatabaseCache<'transaction>,
to_node: &QueryNode,
from_node_data: &'from_data (WordDerivations, i8),
) -> Result<Option<Vec<(u8, EdgeDetails<ProximityEdge>)>>> {
let (derivations1, pos1) = from_node_data;
let term2 = match &to_node {
QueryNode::End => return Ok(Some(vec![(0, EdgeDetails::Unconditional)])),
QueryNode::Deleted | QueryNode::Start => return Ok(None),
QueryNode::Term(term) => term,
};
let LocatedQueryTerm { value: value2, positions: pos2 } = term2;
let (derivations2, pos2, ngram_len2) = match value2 {
QueryTerm::Word { derivations } => (derivations.clone(), *pos2.start(), pos2.len()),
QueryTerm::Phrase(phrase2) => {
// TODO: remove second unwrap
let original = phrase2.last().unwrap().as_ref().unwrap().clone();
(
WordDerivations {
original: original.clone(),
zero_typo: vec![original],
one_typo: vec![],
two_typos: vec![],
use_prefix_db: false,
},
*pos2.start(),
1,
)
}
};
// TODO: here we would actually do it for each combination of word1 and word2
// and take the union of them
if pos1 + 1 != pos2 {
// TODO: how should this actually be handled?
// We want to effectively ignore this pair of terms
// Unconditionally walk through the edge without computing the docids
// But also what should the cost be?
return Ok(Some(vec![(0, EdgeDetails::Unconditional)]));
}
let updb1 = derivations1.use_prefix_db;
let updb2 = derivations2.use_prefix_db;
// left term cannot be a prefix
assert!(!updb1);
let derivations1 = derivations1.all_derivations_except_prefix_db();
let original_word_2 = derivations2.original.clone();
let mut cost_proximity_word_pairs = BTreeMap::<u8, BTreeMap<u8, Vec<WordPair>>>::new();
if updb2 {
for word1 in derivations1.clone() {
for proximity in 0..(7 - ngram_len2) {
let cost = (proximity + ngram_len2 - 1) as u8;
if db_cache
.get_word_prefix_pair_proximity_docids(
index,
txn,
word1,
original_word_2.as_str(),
proximity as u8,
)?
.is_some()
{
cost_proximity_word_pairs
.entry(cost)
.or_default()
.entry(proximity as u8)
.or_default()
.push(WordPair::WordPrefix {
left: word1.to_owned(),
right_prefix: original_word_2.to_owned(),
});
}
}
}
}
let derivations2 = derivations2.all_derivations_except_prefix_db();
// TODO: safeguard in case the cartesian product is too large?
let product_derivations = derivations1.cartesian_product(derivations2);
for (word1, word2) in product_derivations {
for proximity in 0..(7 - ngram_len2) {
let cost = (proximity + ngram_len2 - 1) as u8;
// TODO: do the opposite way with a proximity penalty as well!
// search for (word2, word1, proximity-1), I guess?
if db_cache
.get_word_pair_proximity_docids(index, txn, word1, word2, proximity as u8)?
.is_some()
{
cost_proximity_word_pairs
.entry(cost)
.or_default()
.entry(proximity as u8)
.or_default()
.push(WordPair::Words { left: word1.to_owned(), right: word2.to_owned() });
}
}
}
let mut new_edges = cost_proximity_word_pairs
.into_iter()
.flat_map(|(cost, proximity_word_pairs)| {
let mut edges = vec![];
for (proximity, word_pairs) in proximity_word_pairs {
edges
.push((cost, EdgeDetails::Data(ProximityEdge { pairs: word_pairs, proximity })))
}
edges
})
.collect::<Vec<_>>();
new_edges.push((8 + (ngram_len2 - 1) as u8, EdgeDetails::Unconditional));
Ok(Some(new_edges))
}

View File

@ -0,0 +1,31 @@
use roaring::MultiOps;
use super::{ProximityEdge, WordPair};
use crate::new::db_cache::DatabaseCache;
use crate::CboRoaringBitmapCodec;
pub fn compute_docids<'transaction>(
index: &crate::Index,
txn: &'transaction heed::RoTxn,
db_cache: &mut DatabaseCache<'transaction>,
edge: &ProximityEdge,
) -> crate::Result<roaring::RoaringBitmap> {
let ProximityEdge { pairs, proximity } = edge;
// TODO: we should know already which pair of words to look for
let mut pair_docids = vec![];
for pair in pairs.iter() {
let bytes = match pair {
WordPair::Words { left, right } => {
db_cache.get_word_pair_proximity_docids(index, txn, left, right, *proximity)
}
WordPair::WordPrefix { left, right_prefix } => db_cache
.get_word_prefix_pair_proximity_docids(index, txn, left, right_prefix, *proximity),
}?;
let bitmap =
bytes.map(CboRoaringBitmapCodec::deserialize_from).transpose()?.unwrap_or_default();
pair_docids.push(bitmap);
}
pair_docids.sort_by_key(|rb| rb.len());
let docids = MultiOps::union(pair_docids);
Ok(docids)
}

View File

@ -0,0 +1,61 @@
pub mod build;
pub mod compute_docids;
use super::{Edge, EdgeDetails, RankingRuleGraphTrait};
use crate::new::db_cache::DatabaseCache;
use crate::new::query_term::WordDerivations;
use crate::new::QueryNode;
use crate::{Index, Result};
use heed::RoTxn;
#[derive(Debug, Clone)]
pub enum WordPair {
// TODO: add WordsSwapped and WordPrefixSwapped case
Words { left: String, right: String },
WordPrefix { left: String, right_prefix: String },
}
pub struct ProximityEdge {
pairs: Vec<WordPair>,
proximity: u8,
}
pub enum ProximityGraph {}
impl RankingRuleGraphTrait for ProximityGraph {
type EdgeDetails = ProximityEdge;
type BuildVisitedFromNode = (WordDerivations, i8);
fn edge_details_dot_label(edge: &Self::EdgeDetails) -> String {
let ProximityEdge { pairs, proximity } = edge;
format!(", prox {proximity}, {} pairs", pairs.len())
}
fn compute_docids<'db_cache, 'transaction>(
index: &Index,
txn: &'transaction RoTxn,
db_cache: &mut DatabaseCache<'transaction>,
edge: &Self::EdgeDetails,
) -> Result<roaring::RoaringBitmap> {
compute_docids::compute_docids(index, txn, db_cache, edge)
}
fn build_visit_from_node<'transaction>(
_index: &Index,
_txn: &'transaction RoTxn,
_db_cache: &mut DatabaseCache<'transaction>,
from_node: &QueryNode,
) -> Result<Option<Self::BuildVisitedFromNode>> {
build::visit_from_node(from_node)
}
fn build_visit_to_node<'from_data, 'transaction: 'from_data>(
index: &Index,
txn: &'transaction RoTxn,
db_cache: &mut DatabaseCache<'transaction>,
to_node: &QueryNode,
from_node_data: &'from_data Self::BuildVisitedFromNode,
) -> Result<Option<Vec<(u8, EdgeDetails<Self::EdgeDetails>)>>> {
build::visit_to_node(index, txn, db_cache, to_node, from_node_data)
}
}