mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-01-12 14:27:28 +01:00
Merge #3423
3423: Add min and max facet stats r=dureuill a=dureuill # Pull Request ## Related issue Fixes #3426 ## What does this PR do? ### User standpoint - When using a `facets` parameter in search, the facets that have numeric values are displayed in a new section of the response called `facetStats` that contains, per facet, the numeric min and max value of the hits returned by the search. <details> <summary> Sample request/response </summary> ```json ❯ curl \ -X POST 'http://localhost:7700/indexes/meteorites/search?facets=mass' \ -H 'Content-Type: application/json' \ --data-binary '{ "q": "LL6", "facets":["mass", "recclass"], "limit": 5 }' | jsonxf { "hits": [ { "name": "Niger (LL6)", "id": "16975", "nametype": "Valid", "recclass": "LL6", "mass": 3.3, "fall": "Fell" }, { "name": "Appley Bridge", "id": "2318", "nametype": "Valid", "recclass": "LL6", "mass": 15000, "fall": "Fell", "_geo": { "lat": 53.58333, "lng": -2.71667 } }, { "name": "Athens", "id": "4885", "nametype": "Valid", "recclass": "LL6", "mass": 265, "fall": "Fell", "_geo": { "lat": 34.75, "lng": -87.0 } }, { "name": "Bandong", "id": "4935", "nametype": "Valid", "recclass": "LL6", "mass": 11500, "fall": "Fell", "_geo": { "lat": -6.91667, "lng": 107.6 } }, { "name": "Benguerir", "id": "30443", "nametype": "Valid", "recclass": "LL6", "mass": 25000, "fall": "Fell", "_geo": { "lat": 32.25, "lng": -8.15 } } ], "query": "LL6", "processingTimeMs": 15, "limit": 5, "offset": 0, "estimatedTotalHits": 42, "facetDistribution": { "mass": { "110000": 1, "11500": 1, "1161": 1, "12000": 1, "1215.5": 1, "127000": 1, "15000": 1, "1676": 1, "1700": 1, "1710.5": 1, "18000": 1, "19000": 1, "220000": 1, "2220": 1, "22300": 1, "25000": 2, "265": 1, "271000": 1, "2840": 1, "3.3": 1, "3000": 1, "303": 1, "32000": 1, "34000": 1, "36.1": 1, "45000": 1, "460": 1, "478": 1, "483": 1, "5500": 2, "600": 1, "6000": 1, "67.8": 1, "678": 1, "680.5": 1, "6930": 1, "8": 1, "8300": 1, "840": 1, "8400": 1 }, "recclass": { "L/LL6": 3, "LL6": 39 } }, "facetStats": { "mass": { "min": 3.3, "max": 271000.0 } } } ``` </details> ## PR checklist Please check if your PR fulfills the following requirements: - [ ] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)? - [ ] Have you read the contributing guidelines? - [ ] Have you made sure that the title is accurate and descriptive of the changes? Thank you so much for contributing to Meilisearch! Co-authored-by: Louis Dureuil <louis@meilisearch.com>
This commit is contained in:
commit
ac5a1e4c4b
meilisearch/src
milli/src/search
@ -108,7 +108,7 @@ pub struct SearchHit {
|
||||
pub matches_position: Option<MatchesPosition>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Debug, Clone, PartialEq, Eq)]
|
||||
#[derive(Serialize, Debug, Clone, PartialEq)]
|
||||
#[serde(rename_all = "camelCase")]
|
||||
pub struct SearchResult {
|
||||
pub hits: Vec<SearchHit>,
|
||||
@ -118,6 +118,8 @@ pub struct SearchResult {
|
||||
pub hits_info: HitsInfo,
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub facet_distribution: Option<BTreeMap<String, BTreeMap<String, u64>>>,
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub facet_stats: Option<BTreeMap<String, FacetStats>>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Debug, Clone, PartialEq, Eq)]
|
||||
@ -129,6 +131,12 @@ pub enum HitsInfo {
|
||||
OffsetLimit { limit: usize, offset: usize, estimated_total_hits: usize },
|
||||
}
|
||||
|
||||
#[derive(Serialize, Debug, Clone, PartialEq)]
|
||||
pub struct FacetStats {
|
||||
pub min: f64,
|
||||
pub max: f64,
|
||||
}
|
||||
|
||||
pub fn perform_search(
|
||||
index: &Index,
|
||||
query: SearchQuery,
|
||||
@ -300,7 +308,7 @@ pub fn perform_search(
|
||||
HitsInfo::OffsetLimit { limit: query.limit, offset, estimated_total_hits: number_of_hits }
|
||||
};
|
||||
|
||||
let facet_distribution = match query.facets {
|
||||
let (facet_distribution, facet_stats) = match query.facets {
|
||||
Some(ref fields) => {
|
||||
let mut facet_distribution = index.facets_distribution(&rtxn);
|
||||
|
||||
@ -314,18 +322,23 @@ pub fn perform_search(
|
||||
facet_distribution.facets(fields);
|
||||
}
|
||||
let distribution = facet_distribution.candidates(candidates).execute()?;
|
||||
|
||||
Some(distribution)
|
||||
let stats = facet_distribution.compute_stats()?;
|
||||
(Some(distribution), Some(stats))
|
||||
}
|
||||
None => None,
|
||||
None => (None, None),
|
||||
};
|
||||
|
||||
let facet_stats = facet_stats.map(|stats| {
|
||||
stats.into_iter().map(|(k, (min, max))| (k, FacetStats { min, max })).collect()
|
||||
});
|
||||
|
||||
let result = SearchResult {
|
||||
hits: documents,
|
||||
hits_info,
|
||||
query: query.q.clone().unwrap_or_default(),
|
||||
processing_time_ms: before_search.elapsed().as_millis(),
|
||||
facet_distribution,
|
||||
facet_stats,
|
||||
};
|
||||
Ok(result)
|
||||
}
|
||||
|
@ -1,5 +1,6 @@
|
||||
use std::mem::take;
|
||||
|
||||
use heed::BytesDecode;
|
||||
use itertools::Itertools;
|
||||
use log::debug;
|
||||
use ordered_float::OrderedFloat;
|
||||
@ -7,7 +8,7 @@ use roaring::RoaringBitmap;
|
||||
|
||||
use super::{Criterion, CriterionParameters, CriterionResult};
|
||||
use crate::facet::FacetType;
|
||||
use crate::heed_codec::facet::FacetGroupKeyCodec;
|
||||
use crate::heed_codec::facet::{FacetGroupKeyCodec, OrderedF64Codec};
|
||||
use crate::heed_codec::ByteSliceRefCodec;
|
||||
use crate::search::criteria::{resolve_query_tree, CriteriaBuilder, InitialCandidates};
|
||||
use crate::search::facet::{ascending_facet_sort, descending_facet_sort};
|
||||
@ -196,6 +197,38 @@ fn facet_ordered_iterative<'t>(
|
||||
Ok(Box::new(number_iter.chain(string_iter).map(Ok)) as Box<dyn Iterator<Item = _>>)
|
||||
}
|
||||
|
||||
fn facet_extreme_value<'t>(
|
||||
mut extreme_it: impl Iterator<Item = heed::Result<(RoaringBitmap, &'t [u8])>> + 't,
|
||||
) -> Result<Option<f64>> {
|
||||
let extreme_value =
|
||||
if let Some(extreme_value) = extreme_it.next() { extreme_value } else { return Ok(None) };
|
||||
let (_, extreme_value) = extreme_value?;
|
||||
|
||||
Ok(OrderedF64Codec::bytes_decode(extreme_value))
|
||||
}
|
||||
|
||||
pub fn facet_min_value<'t>(
|
||||
index: &'t Index,
|
||||
rtxn: &'t heed::RoTxn,
|
||||
field_id: FieldId,
|
||||
candidates: RoaringBitmap,
|
||||
) -> Result<Option<f64>> {
|
||||
let db = index.facet_id_f64_docids.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>();
|
||||
let it = ascending_facet_sort(rtxn, db, field_id, candidates)?;
|
||||
facet_extreme_value(it)
|
||||
}
|
||||
|
||||
pub fn facet_max_value<'t>(
|
||||
index: &'t Index,
|
||||
rtxn: &'t heed::RoTxn,
|
||||
field_id: FieldId,
|
||||
candidates: RoaringBitmap,
|
||||
) -> Result<Option<f64>> {
|
||||
let db = index.facet_id_f64_docids.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>();
|
||||
let it = descending_facet_sort(rtxn, db, field_id, candidates)?;
|
||||
facet_extreme_value(it)
|
||||
}
|
||||
|
||||
fn facet_ordered_set_based<'t>(
|
||||
index: &'t Index,
|
||||
rtxn: &'t heed::RoTxn,
|
||||
@ -203,23 +236,24 @@ fn facet_ordered_set_based<'t>(
|
||||
is_ascending: bool,
|
||||
candidates: RoaringBitmap,
|
||||
) -> Result<Box<dyn Iterator<Item = heed::Result<RoaringBitmap>> + 't>> {
|
||||
let make_iter = if is_ascending { ascending_facet_sort } else { descending_facet_sort };
|
||||
let number_db =
|
||||
index.facet_id_f64_docids.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>();
|
||||
let string_db =
|
||||
index.facet_id_string_docids.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>();
|
||||
|
||||
let number_iter = make_iter(
|
||||
rtxn,
|
||||
index.facet_id_f64_docids.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>(),
|
||||
field_id,
|
||||
candidates.clone(),
|
||||
)?;
|
||||
let (number_iter, string_iter) = if is_ascending {
|
||||
let number_iter = ascending_facet_sort(rtxn, number_db, field_id, candidates.clone())?;
|
||||
let string_iter = ascending_facet_sort(rtxn, string_db, field_id, candidates)?;
|
||||
|
||||
let string_iter = make_iter(
|
||||
rtxn,
|
||||
index.facet_id_string_docids.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>(),
|
||||
field_id,
|
||||
candidates,
|
||||
)?;
|
||||
(itertools::Either::Left(number_iter), itertools::Either::Left(string_iter))
|
||||
} else {
|
||||
let number_iter = descending_facet_sort(rtxn, number_db, field_id, candidates.clone())?;
|
||||
let string_iter = descending_facet_sort(rtxn, string_db, field_id, candidates)?;
|
||||
|
||||
Ok(Box::new(number_iter.chain(string_iter)))
|
||||
(itertools::Either::Right(number_iter), itertools::Either::Right(string_iter))
|
||||
};
|
||||
|
||||
Ok(Box::new(number_iter.chain(string_iter).map(|res| res.map(|(doc_ids, _)| doc_ids))))
|
||||
}
|
||||
|
||||
/// Returns an iterator over groups of the given candidates in ascending or descending order.
|
||||
|
@ -21,6 +21,7 @@ use crate::update::{MAX_LENGTH_FOR_PREFIX_PROXIMITY_DB, MAX_PROXIMITY_FOR_PREFIX
|
||||
use crate::{AscDesc as AscDescName, DocumentId, FieldId, Index, Member, Result};
|
||||
|
||||
mod asc_desc;
|
||||
pub use asc_desc::{facet_max_value, facet_min_value};
|
||||
mod attribute;
|
||||
mod exactness;
|
||||
pub mod r#final;
|
||||
|
@ -278,6 +278,65 @@ impl<'a> FacetDistribution<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn compute_stats(&self) -> Result<BTreeMap<String, (f64, f64)>> {
|
||||
let fields_ids_map = self.index.fields_ids_map(self.rtxn)?;
|
||||
let filterable_fields = self.index.filterable_fields(self.rtxn)?;
|
||||
let candidates = if let Some(candidates) = self.candidates.clone() {
|
||||
candidates
|
||||
} else {
|
||||
return Ok(Default::default());
|
||||
};
|
||||
|
||||
let fields = match &self.facets {
|
||||
Some(facets) => {
|
||||
let invalid_fields: HashSet<_> = facets
|
||||
.iter()
|
||||
.filter(|facet| !crate::is_faceted(facet, &filterable_fields))
|
||||
.collect();
|
||||
if !invalid_fields.is_empty() {
|
||||
return Err(UserError::InvalidFacetsDistribution {
|
||||
invalid_facets_name: invalid_fields.into_iter().cloned().collect(),
|
||||
valid_facets_name: filterable_fields.into_iter().collect(),
|
||||
}
|
||||
.into());
|
||||
} else {
|
||||
facets.clone()
|
||||
}
|
||||
}
|
||||
None => filterable_fields,
|
||||
};
|
||||
|
||||
let mut distribution = BTreeMap::new();
|
||||
for (fid, name) in fields_ids_map.iter() {
|
||||
if crate::is_faceted(name, &fields) {
|
||||
let min_value = if let Some(min_value) = crate::search::criteria::facet_min_value(
|
||||
self.index,
|
||||
self.rtxn,
|
||||
fid,
|
||||
candidates.clone(),
|
||||
)? {
|
||||
min_value
|
||||
} else {
|
||||
continue;
|
||||
};
|
||||
let max_value = if let Some(max_value) = crate::search::criteria::facet_max_value(
|
||||
self.index,
|
||||
self.rtxn,
|
||||
fid,
|
||||
candidates.clone(),
|
||||
)? {
|
||||
max_value
|
||||
} else {
|
||||
continue;
|
||||
};
|
||||
|
||||
distribution.insert(name.to_string(), (min_value, max_value));
|
||||
}
|
||||
}
|
||||
|
||||
Ok(distribution)
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> Result<BTreeMap<String, BTreeMap<String, u64>>> {
|
||||
let fields_ids_map = self.index.fields_ids_map(self.rtxn)?;
|
||||
let filterable_fields = self.index.filterable_fields(self.rtxn)?;
|
||||
@ -537,4 +596,216 @@ mod tests {
|
||||
|
||||
milli_snap!(format!("{map:?}"), "candidates_0_5_000", @"825f23a4090d05756f46176987b7d992");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn facet_stats() {
|
||||
let mut index = TempIndex::new_with_map_size(4096 * 10_000);
|
||||
index.index_documents_config.autogenerate_docids = true;
|
||||
|
||||
index
|
||||
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
|
||||
.unwrap();
|
||||
|
||||
let facet_values = (0..1000).into_iter().collect::<Vec<_>>();
|
||||
|
||||
let mut documents = vec![];
|
||||
for i in 0..1000 {
|
||||
let document = serde_json::json!({
|
||||
"colour": facet_values[i % 1000],
|
||||
})
|
||||
.as_object()
|
||||
.unwrap()
|
||||
.clone();
|
||||
documents.push(document);
|
||||
}
|
||||
|
||||
let documents = documents_batch_reader_from_objects(documents);
|
||||
|
||||
index.add_documents(documents).unwrap();
|
||||
|
||||
let txn = index.read_txn().unwrap();
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.candidates((0..1000).into_iter().collect())
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 999.0)}"###);
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.candidates((217..777).into_iter().collect())
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "candidates_217_777", @r###"{"colour": (217.0, 776.0)}"###);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn facet_stats_array() {
|
||||
let mut index = TempIndex::new_with_map_size(4096 * 10_000);
|
||||
index.index_documents_config.autogenerate_docids = true;
|
||||
|
||||
index
|
||||
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
|
||||
.unwrap();
|
||||
|
||||
let facet_values = (0..1000).into_iter().collect::<Vec<_>>();
|
||||
|
||||
let mut documents = vec![];
|
||||
for i in 0..1000 {
|
||||
let document = serde_json::json!({
|
||||
"colour": [facet_values[i % 1000], facet_values[i % 1000] + 1000],
|
||||
})
|
||||
.as_object()
|
||||
.unwrap()
|
||||
.clone();
|
||||
documents.push(document);
|
||||
}
|
||||
|
||||
let documents = documents_batch_reader_from_objects(documents);
|
||||
|
||||
index.add_documents(documents).unwrap();
|
||||
|
||||
let txn = index.read_txn().unwrap();
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.candidates((0..1000).into_iter().collect())
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 1999.0)}"###);
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.candidates((217..777).into_iter().collect())
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "candidates_217_777", @r###"{"colour": (217.0, 1776.0)}"###);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn facet_stats_mixed_array() {
|
||||
let mut index = TempIndex::new_with_map_size(4096 * 10_000);
|
||||
index.index_documents_config.autogenerate_docids = true;
|
||||
|
||||
index
|
||||
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
|
||||
.unwrap();
|
||||
|
||||
let facet_values = (0..1000).into_iter().collect::<Vec<_>>();
|
||||
|
||||
let mut documents = vec![];
|
||||
for i in 0..1000 {
|
||||
let document = serde_json::json!({
|
||||
"colour": [facet_values[i % 1000], format!("{}", facet_values[i % 1000] + 1000)],
|
||||
})
|
||||
.as_object()
|
||||
.unwrap()
|
||||
.clone();
|
||||
documents.push(document);
|
||||
}
|
||||
|
||||
let documents = documents_batch_reader_from_objects(documents);
|
||||
|
||||
index.add_documents(documents).unwrap();
|
||||
|
||||
let txn = index.read_txn().unwrap();
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.candidates((0..1000).into_iter().collect())
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 999.0)}"###);
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.candidates((217..777).into_iter().collect())
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "candidates_217_777", @r###"{"colour": (217.0, 776.0)}"###);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn facet_mixed_values() {
|
||||
let mut index = TempIndex::new_with_map_size(4096 * 10_000);
|
||||
index.index_documents_config.autogenerate_docids = true;
|
||||
|
||||
index
|
||||
.update_settings(|settings| settings.set_filterable_fields(hashset! { S("colour") }))
|
||||
.unwrap();
|
||||
|
||||
let facet_values = (0..1000).into_iter().collect::<Vec<_>>();
|
||||
|
||||
let mut documents = vec![];
|
||||
for i in 0..1000 {
|
||||
let document = if i % 2 == 0 {
|
||||
serde_json::json!({
|
||||
"colour": [facet_values[i % 1000], facet_values[i % 1000] + 1000],
|
||||
})
|
||||
} else {
|
||||
serde_json::json!({
|
||||
"colour": format!("{}", facet_values[i % 1000] + 10000),
|
||||
})
|
||||
};
|
||||
let document = document.as_object().unwrap().clone();
|
||||
documents.push(document);
|
||||
}
|
||||
|
||||
let documents = documents_batch_reader_from_objects(documents);
|
||||
|
||||
index.add_documents(documents).unwrap();
|
||||
|
||||
let txn = index.read_txn().unwrap();
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "no_candidates", @"{}");
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.candidates((0..1000).into_iter().collect())
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "candidates_0_1000", @r###"{"colour": (0.0, 1998.0)}"###);
|
||||
|
||||
let map = FacetDistribution::new(&txn, &index)
|
||||
.facets(std::iter::once("colour"))
|
||||
.candidates((217..777).into_iter().collect())
|
||||
.compute_stats()
|
||||
.unwrap();
|
||||
|
||||
milli_snap!(format!("{map:?}"), "candidates_217_777", @r###"{"colour": (218.0, 1776.0)}"###);
|
||||
}
|
||||
}
|
||||
|
@ -34,15 +34,20 @@ pub fn ascending_facet_sort<'t>(
|
||||
db: heed::Database<FacetGroupKeyCodec<ByteSliceRefCodec>, FacetGroupValueCodec>,
|
||||
field_id: u16,
|
||||
candidates: RoaringBitmap,
|
||||
) -> Result<Box<dyn Iterator<Item = Result<RoaringBitmap>> + 't>> {
|
||||
) -> Result<impl Iterator<Item = Result<(RoaringBitmap, &'t [u8])>> + 't> {
|
||||
let highest_level = get_highest_level(rtxn, db, field_id)?;
|
||||
if let Some(first_bound) = get_first_facet_value::<ByteSliceRefCodec>(rtxn, db, field_id)? {
|
||||
let first_key = FacetGroupKey { field_id, level: highest_level, left_bound: first_bound };
|
||||
let iter = db.range(rtxn, &(first_key..)).unwrap().take(usize::MAX);
|
||||
|
||||
Ok(Box::new(AscendingFacetSort { rtxn, db, field_id, stack: vec![(candidates, iter)] }))
|
||||
Ok(itertools::Either::Left(AscendingFacetSort {
|
||||
rtxn,
|
||||
db,
|
||||
field_id,
|
||||
stack: vec![(candidates, iter)],
|
||||
}))
|
||||
} else {
|
||||
Ok(Box::new(std::iter::empty()))
|
||||
Ok(itertools::Either::Right(std::iter::empty()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -60,7 +65,7 @@ struct AscendingFacetSort<'t, 'e> {
|
||||
}
|
||||
|
||||
impl<'t, 'e> Iterator for AscendingFacetSort<'t, 'e> {
|
||||
type Item = Result<RoaringBitmap>;
|
||||
type Item = Result<(RoaringBitmap, &'t [u8])>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
'outer: loop {
|
||||
@ -90,7 +95,8 @@ impl<'t, 'e> Iterator for AscendingFacetSort<'t, 'e> {
|
||||
*documents_ids -= &bitmap;
|
||||
|
||||
if level == 0 {
|
||||
return Some(Ok(bitmap));
|
||||
// Since the level is 0, the left_bound is the exact value.
|
||||
return Some(Ok((bitmap, left_bound)));
|
||||
}
|
||||
let starting_key_below =
|
||||
FacetGroupKey { field_id: self.field_id, level: level - 1, left_bound };
|
||||
@ -130,7 +136,7 @@ mod tests {
|
||||
let mut results = String::new();
|
||||
let iter = ascending_facet_sort(&txn, index.content, 0, candidates).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
@ -152,7 +158,7 @@ mod tests {
|
||||
let mut results = String::new();
|
||||
let iter = ascending_facet_sort(&txn, index.content, 0, candidates.clone()).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
@ -161,7 +167,7 @@ mod tests {
|
||||
let mut results = String::new();
|
||||
let iter = ascending_facet_sort(&txn, index.content, 1, candidates).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
@ -183,7 +189,7 @@ mod tests {
|
||||
let mut results = String::new();
|
||||
let iter = ascending_facet_sort(&txn, index.content, 0, candidates.clone()).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
@ -192,7 +198,7 @@ mod tests {
|
||||
let mut results = String::new();
|
||||
let iter = ascending_facet_sort(&txn, index.content, 1, candidates).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
@ -214,7 +220,7 @@ mod tests {
|
||||
let mut results = String::new();
|
||||
let iter = ascending_facet_sort(&txn, index.content, 3, candidates.clone()).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
|
@ -17,21 +17,21 @@ pub fn descending_facet_sort<'t>(
|
||||
db: heed::Database<FacetGroupKeyCodec<ByteSliceRefCodec>, FacetGroupValueCodec>,
|
||||
field_id: u16,
|
||||
candidates: RoaringBitmap,
|
||||
) -> Result<Box<dyn Iterator<Item = Result<RoaringBitmap>> + 't>> {
|
||||
) -> Result<impl Iterator<Item = Result<(RoaringBitmap, &'t [u8])>> + 't> {
|
||||
let highest_level = get_highest_level(rtxn, db, field_id)?;
|
||||
if let Some(first_bound) = get_first_facet_value::<ByteSliceRefCodec>(rtxn, db, field_id)? {
|
||||
let first_key = FacetGroupKey { field_id, level: highest_level, left_bound: first_bound };
|
||||
let last_bound = get_last_facet_value::<ByteSliceRefCodec>(rtxn, db, field_id)?.unwrap();
|
||||
let last_key = FacetGroupKey { field_id, level: highest_level, left_bound: last_bound };
|
||||
let iter = db.rev_range(rtxn, &(first_key..=last_key))?.take(usize::MAX);
|
||||
Ok(Box::new(DescendingFacetSort {
|
||||
Ok(itertools::Either::Left(DescendingFacetSort {
|
||||
rtxn,
|
||||
db,
|
||||
field_id,
|
||||
stack: vec![(candidates, iter, Bound::Included(last_bound))],
|
||||
}))
|
||||
} else {
|
||||
Ok(Box::new(std::iter::empty()))
|
||||
Ok(itertools::Either::Right(std::iter::empty()))
|
||||
}
|
||||
}
|
||||
|
||||
@ -50,7 +50,7 @@ struct DescendingFacetSort<'t> {
|
||||
}
|
||||
|
||||
impl<'t> Iterator for DescendingFacetSort<'t> {
|
||||
type Item = Result<RoaringBitmap>;
|
||||
type Item = Result<(RoaringBitmap, &'t [u8])>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
'outer: loop {
|
||||
@ -77,7 +77,8 @@ impl<'t> Iterator for DescendingFacetSort<'t> {
|
||||
*documents_ids -= &bitmap;
|
||||
|
||||
if level == 0 {
|
||||
return Some(Ok(bitmap));
|
||||
// Since we're at the level 0 the left_bound is the exact value.
|
||||
return Some(Ok((bitmap, left_bound)));
|
||||
}
|
||||
let starting_key_below =
|
||||
FacetGroupKey { field_id, level: level - 1, left_bound };
|
||||
@ -146,7 +147,7 @@ mod tests {
|
||||
let db = index.content.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>();
|
||||
let iter = descending_facet_sort(&txn, db, 0, candidates).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
@ -169,7 +170,7 @@ mod tests {
|
||||
let db = index.content.remap_key_type::<FacetGroupKeyCodec<ByteSliceRefCodec>>();
|
||||
let iter = descending_facet_sort(&txn, db, 0, candidates.clone()).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
@ -179,7 +180,7 @@ mod tests {
|
||||
|
||||
let iter = descending_facet_sort(&txn, db, 1, candidates).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
@ -200,7 +201,7 @@ mod tests {
|
||||
let mut results = String::new();
|
||||
let iter = descending_facet_sort(&txn, index.content, 0, candidates.clone()).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
@ -209,7 +210,7 @@ mod tests {
|
||||
let mut results = String::new();
|
||||
let iter = descending_facet_sort(&txn, index.content, 1, candidates).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
@ -231,7 +232,7 @@ mod tests {
|
||||
let mut results = String::new();
|
||||
let iter = descending_facet_sort(&txn, index.content, 3, candidates.clone()).unwrap();
|
||||
for el in iter {
|
||||
let docids = el.unwrap();
|
||||
let (docids, _) = el.unwrap();
|
||||
results.push_str(&display_bitmap(&docids));
|
||||
results.push('\n');
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user