Introduce a structure to represent a set of graph paths efficiently

This commit is contained in:
Loïc Lecrenier 2023-02-21 09:46:49 +01:00
parent c9bf6bb2fa
commit 864f6410ed

View File

@ -0,0 +1,427 @@
use std::collections::hash_map::DefaultHasher;
use std::collections::HashSet;
use std::fmt::Write;
use std::hash::{Hash, Hasher};
use super::cheapest_paths::Path;
use super::{EdgeDetails, EdgeIndex, RankingRuleGraph, RankingRuleGraphTrait, Edge};
use crate::new::QueryNode;
#[derive(Debug)]
pub struct PathsMap<V> {
nodes: Vec<(EdgeIndex, PathsMap<V>)>,
value: Option<V>
}
impl<V> Default for PathsMap<V> {
fn default() -> Self {
Self { nodes: vec![], value: None }
}
}
impl PathsMap<u64> {
pub fn from_paths(paths: &[Path]) -> Self {
let mut result = Self::default();
for p in paths {
result.add_path(p);
}
result
}
pub fn add_path(&mut self, path: &Path) {
self.insert(path.edges.iter().copied(), path.cost);
}
}
impl<V> PathsMap<V> {
pub fn is_empty(&self) -> bool {
self.nodes.is_empty() && self.value.is_none()
}
pub fn insert(&mut self, mut edges: impl Iterator<Item = EdgeIndex>, value: V) {
match edges.next() {
None => {
self.value = Some(value);
}
Some(first_edge) => {
// comment
for (edge, next_node) in &mut self.nodes {
if edge == &first_edge {
return next_node.insert(edges, value);
}
}
let mut rest = PathsMap::default();
rest.insert(edges, value);
self.nodes.push((first_edge, rest));
}
}
}
fn remove_first_rec(&mut self, cur: &mut Vec<EdgeIndex>) -> (bool, V) {
let Some((first_edge, rest)) = self.nodes.first_mut() else {
// The PathsMap has to be correct by construction here, otherwise
// the unwrap() will crash
return (true, self.value.take().unwrap())
};
cur.push(*first_edge);
let (rest_is_empty, value) = rest.remove_first_rec(cur);
if rest_is_empty {
self.nodes.remove(0);
(self.nodes.is_empty(), value)
} else {
(false, value)
}
}
pub fn remove_first(&mut self) -> Option<(Vec<EdgeIndex>, V)> {
if self.is_empty() {
return None
}
let mut result = vec![];
let (_, value) = self.remove_first_rec(&mut result);
Some((result, value))
}
pub fn iterate_rec(&self, cur: &mut Vec<EdgeIndex>, visit: &mut impl FnMut(&Vec<EdgeIndex>, &V)) {
if let Some(value) = &self.value {
visit(cur, value);
}
for (first_edge, rest) in self.nodes.iter() {
cur.push(*first_edge);
rest.iterate_rec(cur, visit);
cur.pop();
}
}
pub fn iterate(&self, mut visit: impl FnMut(&Vec<EdgeIndex>, &V)) {
self.iterate_rec(&mut vec![], &mut visit)
}
pub fn remove_prefixes<U>(&mut self, prefixes: &PathsMap<U>) {
prefixes.iterate(|prefix, _v| {
self.remove_prefix(prefix);
});
}
pub fn remove_edges(&mut self, forbidden_edges: &HashSet<EdgeIndex>) {
let mut i = 0;
while i < self.nodes.len() {
let should_remove = if forbidden_edges.contains(&self.nodes[i].0) {
true
} else if !self.nodes[i].1.nodes.is_empty() {
self.nodes[i].1.remove_edges(forbidden_edges);
self.nodes[i].1.nodes.is_empty()
} else {
false
};
if should_remove {
self.nodes.remove(i);
} else {
i += 1;
}
}
}
pub fn remove_edge(&mut self, forbidden_edge: &EdgeIndex) {
let mut i = 0;
while i < self.nodes.len() {
let should_remove = if &self.nodes[i].0 == forbidden_edge {
true
} else if !self.nodes[i].1.nodes.is_empty() {
self.nodes[i].1.remove_edge(forbidden_edge);
self.nodes[i].1.nodes.is_empty()
} else {
false
};
if should_remove {
self.nodes.remove(i);
} else {
i += 1;
}
}
}
pub fn remove_prefix(&mut self, forbidden_prefix: &[EdgeIndex]) {
let [first_edge, remaining_prefix @ ..] = forbidden_prefix else {
self.nodes.clear();
self.value = None;
return;
};
let mut i = 0;
while i < self.nodes.len() {
let edge = self.nodes[i].0;
let should_remove = if edge == *first_edge {
self.nodes[i].1.remove_prefix(remaining_prefix);
self.nodes[i].1.nodes.is_empty()
} else {
false
};
if should_remove {
self.nodes.remove(i);
} else {
i += 1;
}
}
}
pub fn edge_indices_after_prefix(&self, prefix: &[EdgeIndex]) -> Vec<EdgeIndex> {
let [first_edge, remaining_prefix @ ..] = prefix else {
return self.nodes.iter().map(|n| n.0).collect();
};
for (edge, rest) in self.nodes.iter(){
if edge == first_edge {
return rest.edge_indices_after_prefix(remaining_prefix);
}
}
vec![]
}
pub fn contains_prefix_of_path(&self, path: &[EdgeIndex]) -> bool {
if self.value.is_some() {
return true
}
match path {
[] => {
false
}
[first_edge, remaining_path @ ..] => {
for (edge, rest) in self.nodes.iter(){
if edge == first_edge {
return rest.contains_prefix_of_path(remaining_path);
}
}
false
}
}
}
pub fn graphviz<G: RankingRuleGraphTrait>(&self, graph: &RankingRuleGraph<G>) -> String {
let mut desc = String::new();
desc.push_str("digraph G {\n");
self.graphviz_rec(&mut desc, vec![], graph);
desc.push_str("\n}\n");
desc
}
fn graphviz_rec<G: RankingRuleGraphTrait>(&self, desc: &mut String, path_from: Vec<u64>, graph: &RankingRuleGraph<G>) {
let id_from = {
let mut h = DefaultHasher::new();
path_from.hash(&mut h);
h.finish()
};
for (edge_idx, rest) in self.nodes.iter() {
let Some(Edge { from_node, to_node, cost, details }) = graph.get_edge(*edge_idx).as_ref() else {
continue;
};
let mut path_to = path_from.clone();
path_to.push({
let mut h = DefaultHasher::new();
edge_idx.hash(&mut h);
h.finish()
});
let id_to = {
let mut h = DefaultHasher::new();
path_to.hash(&mut h);
h.finish()
};
writeln!(desc, "{id_to} [label = \"{from_node}→{to_node} [{cost}]\"];").unwrap();
writeln!(desc, "{id_from} -> {id_to};").unwrap();
rest.graphviz_rec(desc, path_to, graph);
}
}
}
impl<G: RankingRuleGraphTrait> RankingRuleGraph<G> {
pub fn graphviz_with_path(&self, path: &Path) -> String {
let mut desc = String::new();
desc.push_str("digraph G {\nrankdir = LR;\nnode [shape = \"record\"]\n");
for (node_idx, node) in self.query_graph.nodes.iter().enumerate() {
if matches!(node, QueryNode::Deleted) {
continue;
}
desc.push_str(&format!("{node_idx} [label = {:?}]", node));
if node_idx == self.query_graph.root_node {
desc.push_str("[color = blue]");
} else if node_idx == self.query_graph.end_node {
desc.push_str("[color = red]");
}
desc.push_str(";\n");
}
for (edge_idx, edge) in self.all_edges.iter().enumerate() {
let Some(edge) = edge else { continue };
let Edge { from_node, to_node, cost, details } = edge;
let color = if path.edges.contains(&EdgeIndex(edge_idx)) {
"red"
} else {
"green"
};
match &edge.details {
EdgeDetails::Unconditional => {
desc.push_str(&format!(
"{from_node} -> {to_node} [label = \"cost {cost}\", color = {color}];\n",
cost = edge.cost,
));
}
EdgeDetails::Data(details) => {
desc.push_str(&format!(
"{from_node} -> {to_node} [label = \"cost {cost} {edge_label}\", color = {color}];\n",
cost = edge.cost,
edge_label = G::edge_details_dot_label(details),
));
}
}
}
desc.push('}');
desc
}
}
#[cfg(test)]
mod tests {
use super::PathsMap;
use crate::db_snap;
use crate::index::tests::TempIndex;
use crate::new::db_cache::DatabaseCache;
use crate::new::ranking_rule_graph::cheapest_paths::KCheapestPathsState;
use crate::new::ranking_rule_graph::empty_paths_cache::EmptyPathsCache;
use crate::new::ranking_rule_graph::proximity::ProximityGraph;
use crate::new::ranking_rule_graph::{RankingRuleGraph, EdgeIndex};
use crate::search::new::query_term::{word_derivations, LocatedQueryTerm};
use crate::search::new::QueryGraph;
use charabia::Tokenize;
#[test]
fn paths_tree() {
let mut index = TempIndex::new();
index.index_documents_config.autogenerate_docids = true;
index
.update_settings(|s| {
s.set_searchable_fields(vec!["text".to_owned()]);
})
.unwrap();
index
.add_documents(documents!([
{
"text": "0 1 2 3 4 5"
},
{
"text": "0 a 1 b 2 3 4 5"
},
{
"text": "0 a 1 b 3 a 4 b 5"
},
{
"text": "0 a a 1 b 2 3 4 5"
},
{
"text": "0 a a a a 1 b 3 45"
},
]))
.unwrap();
db_snap!(index, word_pair_proximity_docids, @"679d1126b569b3e8b10dd937c3faedf9");
let txn = index.read_txn().unwrap();
let mut db_cache = DatabaseCache::default();
let fst = index.words_fst(&txn).unwrap();
let query =
LocatedQueryTerm::from_query("0 1 2 3 4 5".tokenize(), None, |word, is_prefix| {
word_derivations(&index, &txn, word, if word.len() < 3 {
0
} else if word.len() < 6 {
1
} else {
2
},is_prefix, &fst)
})
.unwrap();
let graph = QueryGraph::from_query(&index, &txn, &mut db_cache, query).unwrap();
let empty_paths_cache = EmptyPathsCache::default();
let mut db_cache = DatabaseCache::default();
let mut prox_graph =
RankingRuleGraph::<ProximityGraph>::build(&index, &txn, &mut db_cache, graph).unwrap();
println!("{}", prox_graph.graphviz());
let mut state = KCheapestPathsState::new(&prox_graph).unwrap();
let mut path_tree = PathsMap::default();
while state.next_cost() <= 6 {
let next_state = state.compute_paths_of_next_lowest_cost(&mut prox_graph, &empty_paths_cache, &mut path_tree);
if let Some(next_state) = next_state {
state = next_state;
} else {
break;
}
}
let desc = path_tree.graphviz(&prox_graph);
println!("{desc}");
// let path = vec![EdgeIndex { from: 0, to: 2, edge_idx: 0 }, EdgeIndex { from: 2, to: 3, edge_idx: 0 }, EdgeIndex { from: 3, to: 4, edge_idx: 0 }, EdgeIndex { from: 4, to: 5, edge_idx: 0 }, EdgeIndex { from: 5, to: 8, edge_idx: 0 }, EdgeIndex { from: 8, to: 1, edge_idx: 0 }, EdgeIndex { from: 1, to: 10, edge_idx: 0 }];
// println!("{}", psath_tree.contains_prefix_of_path(&path));
// let path = vec![EdgeIndex { from: 0, to: 2, edge_idx: 0 }, EdgeIndex { from: 2, to: 3, edge_idx: 0 }, EdgeIndex { from: 3, to: 4, edge_idx: 0 }, EdgeIndex { from: 4, to: 5, edge_idx: 0 }, EdgeIndex { from: 5, to: 6, edge_idx: 0 }, EdgeIndex { from: 6, to: 7, edge_idx: 0 }, EdgeIndex { from: 7, to: 1, edge_idx: 0 }];
// path_tree.iterate(|path, cost| {
// println!("cost {cost} for path: {path:?}");
// });
// path_tree.remove_forbidden_prefix(&[
// EdgeIndex { from: 0, to: 2, edge_idx: 0 },
// EdgeIndex { from: 2, to: 3, edge_idx: 2 },
// ]);
// let desc = path_tree.graphviz();
// println!("{desc}");
// path_tree.remove_forbidden_edge(&EdgeIndex { from: 5, to: 6, cost: 1 });
// let desc = path_tree.graphviz();
// println!("AFTER REMOVING 5-6 [1]:\n{desc}");
// path_tree.remove_forbidden_edge(&EdgeIndex { from: 3, to: 4, cost: 1 });
// let desc = path_tree.graphviz();
// println!("AFTER REMOVING 3-4 [1]:\n{desc}");
// let p = path_tree.remove_first();
// println!("PATH: {p:?}");
// let desc = path_tree.graphviz();
// println!("AFTER REMOVING: {desc}");
// let p = path_tree.remove_first();
// println!("PATH: {p:?}");
// let desc = path_tree.graphviz();
// println!("AFTER REMOVING: {desc}");
// path_tree.remove_all_containing_edge(&EdgeIndex { from: 5, to: 6, cost: 2 });
// let desc = path_tree.graphviz();
// println!("{desc}");
// let first_edges = path_tree.remove_first().unwrap();
// println!("{first_edges:?}");
// let desc = path_tree.graphviz();
// println!("{desc}");
// let first_edges = path_tree.remove_first().unwrap();
// println!("{first_edges:?}");
// let desc = path_tree.graphviz();
// println!("{desc}");
// let first_edges = path_tree.remove_first().unwrap();
// println!("{first_edges:?}");
// let desc = path_tree.graphviz();
// println!("{desc}");
// println!("{path_tree:?}");
}
#[test]
fn test_contains_prefix_of_path() {
}
}