2138 Commits

Author SHA1 Message Date
Samyak S Sarnayak
f1da623af3
Add test for phrase search with stop words and all criteria at once
Moved the actual test into a separate function used by both the existing
test and the new test.
2022-10-26 19:09:44 +05:30
Samyak S Sarnayak
77f1ff019b
Simplify stop word checking in create_primitive_query 2022-10-26 19:09:44 +05:30
Samyak S Sarnayak
2aa11afb87
Fix panic when phrase contains only one stop word and nothing else 2022-10-26 19:09:42 +05:30
Samyak S Sarnayak
bb9ce3c5c5
Run cargo fmt 2022-10-26 19:09:03 +05:30
Samyak S Sarnayak
d187b32a28
Fix snapshots to use new phrase type 2022-10-26 19:09:03 +05:30
Samyak S Sarnayak
c8c666c6a6
Use resolve_phrase in exactness and typo criteria 2022-10-26 19:09:01 +05:30
Samyak S Sarnayak
3e190503e6
Search for closest non-stop words in proximity criteria 2022-10-26 19:08:34 +05:30
Samyak S Sarnayak
709ab3c14c
Increment position even when it's a stop word in exactness criteria 2022-10-26 19:08:33 +05:30
Samyak S Sarnayak
ef13c6a5b6
Perform filter after enumerate to keep origin indices 2022-10-26 19:08:33 +05:30
Samyak S Sarnayak
6a10b679ca
Add test for phrase search with stop words
Originally written by ManyTheFish here:
https://gist.github.com/ManyTheFish/f840e37cb2d2e029ce05396b4d540762

Co-authored-by: ManyTheFish <many@meilisearch.com>
2022-10-26 19:08:32 +05:30
Samyak S Sarnayak
62816dddde
[WIP] Fix phrase search containing stop words
Fixes #661 and meilisearch/meilisearch#2905
2022-10-26 19:08:06 +05:30
bors[bot]
365f44c39b
Merge #668
668: Fix many Clippy errors part 2 r=ManyTheFish a=ehiggs

This brings us a step closer to enforcing clippy on each build.

# Pull Request

## Related issue
This does not fix any issue outright, but it is a second round of fixes for clippy after https://github.com/meilisearch/milli/pull/665. This should contribute to fixing https://github.com/meilisearch/milli/pull/659.

## What does this PR do?

Satisfies many issues for clippy. The complaints are mostly:

* Passing reference where a variable is already a reference.
* Using clone where a struct already implements `Copy`
* Using `ok_or_else` when it is a closure that returns a value instead of using the closure to call function (hence we use `ok_or`)
* Unambiguous lifetimes don't need names, so we can just use `'_`
* Using `return` when it is not needed as we are on the last expression of a function.

## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?

Thank you so much for contributing to Meilisearch!


Co-authored-by: Ewan Higgs <ewan.higgs@gmail.com>
2022-10-26 12:16:24 +00:00
bors[bot]
d3f95e6c69
Merge #671
671: Update version for the next release (v0.35.0) in Cargo.toml files r=Kerollmops a=meili-bot

⚠️ This PR is automatically generated. Check the new version is the expected one before merging.

Co-authored-by: curquiza <curquiza@users.noreply.github.com>
2022-10-26 11:58:05 +00:00
curquiza
e883bccc76 Update version for the next release (v0.35.0) in Cargo.toml files 2022-10-26 11:43:54 +00:00
bors[bot]
c8f16530d5
Merge #616
616: Introduce an indexation abortion function when indexing documents r=Kerollmops a=Kerollmops



Co-authored-by: Kerollmops <clement@meilisearch.com>
Co-authored-by: Clément Renault <clement@meilisearch.com>
2022-10-26 11:41:18 +00:00
Ewan Higgs
9d27ac8a2e Ignore too many arguments to functions. 2022-10-25 21:22:53 +02:00
Ewan Higgs
42cdc38c7b Allow weird ranges like 1..=0 to pass clippy.
Everything else is just a warning and exit code will be 0.
2022-10-25 21:12:59 +02:00
Ewan Higgs
2ce025a906 Fixes after rebase to fix new issues. 2022-10-25 20:58:31 +02:00
Ewan Higgs
17f7922bfc Remove unneeded lifetimes. 2022-10-25 20:49:04 +02:00
Ewan Higgs
6b2fe94192 Fixes for clippy bringing us down to 18 remaining issues.
This brings us a step closer to enforcing clippy on each build.
2022-10-25 20:49:02 +02:00
bors[bot]
004c09a8e2
Merge #669
669: Add method to create a new Index with specific creation dates r=irevoire a=loiclec

This functionality is needed to implement the import of dumps correctly.

Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
2022-10-25 12:44:43 +00:00
Loïc Lecrenier
36bd66281d Add method to create a new Index with specific creation dates 2022-10-25 14:37:56 +02:00
bors[bot]
d11a6e187f
Merge #639
639: Reduce the size of the word_pair_proximity database  r=loiclec a=loiclec

# Pull Request

## What does this PR do?
Fixes #634 

Now, the value corresponding to the key `prox word1 word2` in the `word_pair_proximity_docids` database contains the ids of the documents in which:
- `word1` is followed by `word2`
- the minimum number of words between `word1` and `word2` is `prox-1`

Before this PR, the `word_pair_proximity_docids` had keys with the format `word1 word2 prox` and the value contained the ids of the documents in which either:
- `word1` is followed by `word2` after a minimum of `prox-1` words in between them
- `word2` is followed by `word1` after a minimum of `prox-2` words 

As a consequence of this change, calls such as:
```
let docids = word_pair_proximity_docids.get(rtxn, (word1, word2, prox));
```
have to be replaced with:
```
let docids1 = word_pair_proximity_docids.get(rtxn, (prox, word1, word2)) ;
let docids2 = word_pair_proximity_docids.get(rtxn, (prox-1, word2, word1)) ;
let docids = docids1 | docids2;
```

## Phrase search

The PR also fixes two bugs in the `resolve_phrase` function. The first bug is that a phrase containing twice the same word would always return zero documents (e.g. `"dog eats dog"`). 

The second bug occurs with a phrase such as "fox is smarter than a dog"` and the document with the text:
```
fox or dog? a fox is smarter than a dog
```
In that case, the phrase search would not return the documents because:
* we only have the key `fox dog 2` in `word_pair_proximity_docids`
* but the implementation of `resolve_phrase` looks for `fox dog 5`, which returns 0 documents 

### New implementation of `resolve_phrase`
Given the phrase:
```
fox is smarter than a dog
```
We select the document ids corresponding to all of the following keys in `word_pair_proximity_docids`:
- `1 fox is`
- `1 is smarter`
- `1 smarter than`
- (etc.)
- `1 fox smarter` OR `2 fox smarter`
- `1 is than` OR `2 is than`
- ...
- `1 than dog` OR `2 than dog`

## Benchmark Results

Indexing:
```
group                                                                     indexing_main_d94339a8                 indexing_word-pair-proximity-docids-refactor_2983dd8e
-----                                                                     ----------------------                 -----------------------------------------------------
indexing/-geo-delete-facetedNumber-facetedGeo-searchable-                 1.19    40.7±11.28ms        ? ?/sec    1.00     34.3±4.16ms        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-           1.62     11.3±3.77ms        ? ?/sec    1.00      7.0±1.56ms        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-nested-    1.00     12.5±2.62ms        ? ?/sec    1.07     13.4±4.24ms        ? ?/sec
indexing/-songs-delete-facetedString-facetedNumber-searchable-            1.26    50.2±12.63ms        ? ?/sec    1.00    39.8±20.25ms        ? ?/sec
indexing/-wiki-delete-searchable-                                         1.83   269.1±16.11ms        ? ?/sec    1.00    146.8±6.12ms        ? ?/sec
indexing/Indexing geo_point                                               1.00      47.2±0.46s        ? ?/sec    1.00      47.3±0.56s        ? ?/sec
indexing/Indexing movies in three batches                                 1.42      12.7±0.13s        ? ?/sec    1.00       9.0±0.07s        ? ?/sec
indexing/Indexing movies with default settings                            1.40      10.2±0.07s        ? ?/sec    1.00       7.3±0.06s        ? ?/sec
indexing/Indexing nested movies with default settings                     1.22       7.8±0.11s        ? ?/sec    1.00       6.4±0.13s        ? ?/sec
indexing/Indexing nested movies without any facets                        1.24       7.3±0.07s        ? ?/sec    1.00       5.9±0.06s        ? ?/sec
indexing/Indexing songs in three batches with default settings            1.14      47.6±0.67s        ? ?/sec    1.00      41.8±0.63s        ? ?/sec
indexing/Indexing songs with default settings                             1.13      44.1±0.74s        ? ?/sec    1.00      38.9±0.76s        ? ?/sec
indexing/Indexing songs without any facets                                1.19      42.0±0.66s        ? ?/sec    1.00      35.2±0.48s        ? ?/sec
indexing/Indexing songs without faceted numbers                           1.20      44.3±1.40s        ? ?/sec    1.00      37.0±0.48s        ? ?/sec
indexing/Indexing wiki                                                    1.39     862.9±9.95s        ? ?/sec    1.00    622.6±27.11s        ? ?/sec
indexing/Indexing wiki in three batches                                   1.40     934.4±5.97s        ? ?/sec    1.00     665.7±4.72s        ? ?/sec
indexing/Reindexing geo_point                                             1.01      15.9±0.39s        ? ?/sec    1.00      15.7±0.28s        ? ?/sec
indexing/Reindexing movies with default settings                          1.15   288.8±25.03ms        ? ?/sec    1.00    250.4±2.23ms        ? ?/sec
indexing/Reindexing songs with default settings                           1.01       4.1±0.06s        ? ?/sec    1.00       4.1±0.03s        ? ?/sec
indexing/Reindexing wiki                                                  1.41   1484.7±20.59s        ? ?/sec    1.00   1052.0±19.89s        ? ?/sec
```

Search Wiki:
<details>
<pre>
group                                                                                    search_wiki_main_d94339a8              search_wiki_word-pair-proximity-docids-refactor_2983dd8e
-----                                                                                    -------------------------              --------------------------------------------------------
smol-wiki-articles.csv: basic placeholder/                                               1.02     25.8±0.21µs        ? ?/sec    1.00     25.4±0.19µs        ? ?/sec
smol-wiki-articles.csv: basic with quote/"film"                                          1.00    441.7±2.57µs        ? ?/sec    1.00    442.3±2.41µs        ? ?/sec
smol-wiki-articles.csv: basic with quote/"france"                                        1.00    357.0±2.63µs        ? ?/sec    1.00    358.3±2.65µs        ? ?/sec
smol-wiki-articles.csv: basic with quote/"japan"                                         1.00    239.4±2.24µs        ? ?/sec    1.00    240.2±1.82µs        ? ?/sec
smol-wiki-articles.csv: basic with quote/"machine"                                       1.00    180.3±2.40µs        ? ?/sec    1.00    180.0±1.08µs        ? ?/sec
smol-wiki-articles.csv: basic with quote/"miles" "davis"                                 1.00      9.1±0.03ms        ? ?/sec    1.03      9.3±0.04ms        ? ?/sec
smol-wiki-articles.csv: basic with quote/"mingus"                                        1.00      3.6±0.01ms        ? ?/sec    1.03      3.7±0.02ms        ? ?/sec
smol-wiki-articles.csv: basic with quote/"rock" "and" "roll"                             1.00     34.0±0.11ms        ? ?/sec    1.03     35.1±0.13ms        ? ?/sec
smol-wiki-articles.csv: basic with quote/"spain"                                         1.00    162.0±0.88µs        ? ?/sec    1.00    161.9±0.98µs        ? ?/sec
smol-wiki-articles.csv: basic without quote/film                                         1.01    164.4±1.46µs        ? ?/sec    1.00    163.1±1.58µs        ? ?/sec
smol-wiki-articles.csv: basic without quote/france                                       1.00   1698.3±7.37µs        ? ?/sec    1.00  1697.7±11.53µs        ? ?/sec
smol-wiki-articles.csv: basic without quote/japan                                        1.00  1154.0±23.61µs        ? ?/sec    1.00   1150.7±9.27µs        ? ?/sec
smol-wiki-articles.csv: basic without quote/machine                                      1.00    524.6±3.45µs        ? ?/sec    1.01    528.1±4.56µs        ? ?/sec
smol-wiki-articles.csv: basic without quote/miles davis                                  1.00     13.5±0.05ms        ? ?/sec    1.02     13.8±0.05ms        ? ?/sec
smol-wiki-articles.csv: basic without quote/mingus                                       1.00      4.1±0.02ms        ? ?/sec    1.03      4.2±0.01ms        ? ?/sec
smol-wiki-articles.csv: basic without quote/rock and roll                                1.00     49.0±0.19ms        ? ?/sec    1.03     50.4±0.22ms        ? ?/sec
smol-wiki-articles.csv: basic without quote/spain                                        1.00    412.2±3.35µs        ? ?/sec    1.00    412.9±2.81µs        ? ?/sec
smol-wiki-articles.csv: prefix search/c                                                  1.00    383.9±2.53µs        ? ?/sec    1.00    383.4±2.44µs        ? ?/sec
smol-wiki-articles.csv: prefix search/g                                                  1.00    433.4±2.53µs        ? ?/sec    1.00    432.8±2.52µs        ? ?/sec
smol-wiki-articles.csv: prefix search/j                                                  1.00    424.3±2.05µs        ? ?/sec    1.00    424.0±2.15µs        ? ?/sec
smol-wiki-articles.csv: prefix search/q                                                  1.00    154.0±1.93µs        ? ?/sec    1.00    153.5±1.04µs        ? ?/sec
smol-wiki-articles.csv: prefix search/t                                                  1.04   658.5±91.93µs        ? ?/sec    1.00    631.4±3.89µs        ? ?/sec
smol-wiki-articles.csv: prefix search/x                                                  1.00    446.2±2.09µs        ? ?/sec    1.00    445.6±3.13µs        ? ?/sec
smol-wiki-articles.csv: proximity/april paris                                            1.02      3.4±0.39ms        ? ?/sec    1.00      3.3±0.01ms        ? ?/sec
smol-wiki-articles.csv: proximity/diesel engine                                          1.00  1022.1±17.52µs        ? ?/sec    1.00   1017.7±8.16µs        ? ?/sec
smol-wiki-articles.csv: proximity/herald sings                                           1.01  1872.5±97.70µs        ? ?/sec    1.00   1862.2±8.57µs        ? ?/sec
smol-wiki-articles.csv: proximity/tea two                                                1.00   295.2±34.91µs        ? ?/sec    1.00    296.6±4.08µs        ? ?/sec
smol-wiki-articles.csv: typo/Disnaylande                                                 1.00      3.4±0.51ms        ? ?/sec    1.04      3.5±0.01ms        ? ?/sec
smol-wiki-articles.csv: typo/aritmetric                                                  1.00      3.6±0.01ms        ? ?/sec    1.00      3.7±0.01ms        ? ?/sec
smol-wiki-articles.csv: typo/linax                                                       1.00    167.5±1.28µs        ? ?/sec    1.00    167.1±2.65µs        ? ?/sec
smol-wiki-articles.csv: typo/migrosoft                                                   1.01    217.9±1.84µs        ? ?/sec    1.00    216.2±1.61µs        ? ?/sec
smol-wiki-articles.csv: typo/nympalidea                                                  1.00      2.9±0.01ms        ? ?/sec    1.10      3.1±0.01ms        ? ?/sec
smol-wiki-articles.csv: typo/phytogropher                                                1.00      3.0±0.23ms        ? ?/sec    1.08      3.3±0.01ms        ? ?/sec
smol-wiki-articles.csv: typo/sisan                                                       1.00    234.6±1.38µs        ? ?/sec    1.01    235.8±1.67µs        ? ?/sec
smol-wiki-articles.csv: typo/the fronce                                                  1.00    104.4±0.84µs        ? ?/sec    1.00    103.9±0.81µs        ? ?/sec
smol-wiki-articles.csv: words/Abraham machin                                             1.02    675.5±4.74µs        ? ?/sec    1.00    662.1±5.13µs        ? ?/sec
smol-wiki-articles.csv: words/Idaho Bellevue pizza                                       1.02  1004.5±11.07µs        ? ?/sec    1.00   989.5±13.08µs        ? ?/sec
smol-wiki-articles.csv: words/Kameya Tokujirō mingus monk                                1.00  1650.8±10.92µs        ? ?/sec    1.00  1643.2±10.77µs        ? ?/sec
smol-wiki-articles.csv: words/Ulrich Hensel meilisearch milli                            1.00      5.4±0.03ms        ? ?/sec    1.00      5.4±0.02ms        ? ?/sec
smol-wiki-articles.csv: words/the black saint and the sinner lady and the good doggo     1.00     32.9±0.10ms        ? ?/sec    1.00     32.8±0.10ms        ? ?/sec
</pre>
</details>

Search songs:
<details>
<pre>
group                                                                                                    search_songs_main_d94339a8             search_songs_word-pair-proximity-docids-refactor_2983dd8e
-----                                                                                                    --------------------------             ---------------------------------------------------------
smol-songs.csv: asc + default/Notstandskomitee                                                           1.00      3.0±0.01ms        ? ?/sec    1.01      3.0±0.04ms        ? ?/sec
smol-songs.csv: asc + default/charles                                                                    1.00      2.2±0.01ms        ? ?/sec    1.01      2.2±0.01ms        ? ?/sec
smol-songs.csv: asc + default/charles mingus                                                             1.00      3.1±0.01ms        ? ?/sec    1.01      3.1±0.01ms        ? ?/sec
smol-songs.csv: asc + default/david                                                                      1.00      2.9±0.01ms        ? ?/sec    1.00      2.9±0.01ms        ? ?/sec
smol-songs.csv: asc + default/david bowie                                                                1.00      4.5±0.02ms        ? ?/sec    1.00      4.5±0.02ms        ? ?/sec
smol-songs.csv: asc + default/john                                                                       1.00      3.1±0.01ms        ? ?/sec    1.01      3.2±0.01ms        ? ?/sec
smol-songs.csv: asc + default/marcus miller                                                              1.00      5.0±0.02ms        ? ?/sec    1.00      5.0±0.02ms        ? ?/sec
smol-songs.csv: asc + default/michael jackson                                                            1.00      4.7±0.02ms        ? ?/sec    1.00      4.7±0.02ms        ? ?/sec
smol-songs.csv: asc + default/tamo                                                                       1.00  1463.4±12.17µs        ? ?/sec    1.01   1481.5±8.83µs        ? ?/sec
smol-songs.csv: asc + default/thelonious monk                                                            1.00      4.4±0.01ms        ? ?/sec    1.00      4.4±0.02ms        ? ?/sec
smol-songs.csv: asc/Notstandskomitee                                                                     1.01      2.6±0.01ms        ? ?/sec    1.00      2.6±0.01ms        ? ?/sec
smol-songs.csv: asc/charles                                                                              1.00    473.6±3.70µs        ? ?/sec    1.01   476.8±22.17µs        ? ?/sec
smol-songs.csv: asc/charles mingus                                                                       1.01    780.1±3.90µs        ? ?/sec    1.00    773.6±4.60µs        ? ?/sec
smol-songs.csv: asc/david                                                                                1.00    757.6±4.50µs        ? ?/sec    1.00    760.7±5.20µs        ? ?/sec
smol-songs.csv: asc/david bowie                                                                          1.00   1131.2±8.68µs        ? ?/sec    1.00   1130.7±8.36µs        ? ?/sec
smol-songs.csv: asc/john                                                                                 1.00    668.9±6.48µs        ? ?/sec    1.00    669.9±2.78µs        ? ?/sec
smol-songs.csv: asc/marcus miller                                                                        1.00    959.8±7.10µs        ? ?/sec    1.00    958.9±4.72µs        ? ?/sec
smol-songs.csv: asc/michael jackson                                                                      1.01  1076.7±16.73µs        ? ?/sec    1.00   1070.8±7.34µs        ? ?/sec
smol-songs.csv: asc/tamo                                                                                 1.00     70.4±0.55µs        ? ?/sec    1.00     70.5±0.51µs        ? ?/sec
smol-songs.csv: asc/thelonious monk                                                                      1.01      2.9±0.01ms        ? ?/sec    1.00      2.9±0.01ms        ? ?/sec
smol-songs.csv: basic filter: <=/Notstandskomitee                                                        1.00    162.0±0.91µs        ? ?/sec    1.01    163.6±1.72µs        ? ?/sec
smol-songs.csv: basic filter: <=/charles                                                                 1.00     38.3±0.24µs        ? ?/sec    1.01     38.7±0.31µs        ? ?/sec
smol-songs.csv: basic filter: <=/charles mingus                                                          1.01     85.3±0.44µs        ? ?/sec    1.00     84.6±0.47µs        ? ?/sec
smol-songs.csv: basic filter: <=/david                                                                   1.01     32.4±0.25µs        ? ?/sec    1.00     32.1±0.24µs        ? ?/sec
smol-songs.csv: basic filter: <=/david bowie                                                             1.00     68.6±0.99µs        ? ?/sec    1.01     68.9±0.88µs        ? ?/sec
smol-songs.csv: basic filter: <=/john                                                                    1.04     26.1±0.37µs        ? ?/sec    1.00     25.1±0.22µs        ? ?/sec
smol-songs.csv: basic filter: <=/marcus miller                                                           1.00     76.7±0.39µs        ? ?/sec    1.01     77.3±0.61µs        ? ?/sec
smol-songs.csv: basic filter: <=/michael jackson                                                         1.00     95.5±0.66µs        ? ?/sec    1.01     96.3±0.79µs        ? ?/sec
smol-songs.csv: basic filter: <=/tamo                                                                    1.03     26.2±0.36µs        ? ?/sec    1.00     25.3±0.23µs        ? ?/sec
smol-songs.csv: basic filter: <=/thelonious monk                                                         1.00    140.7±1.36µs        ? ?/sec    1.01    142.7±0.88µs        ? ?/sec
smol-songs.csv: basic filter: TO/Notstandskomitee                                                        1.00    165.4±1.25µs        ? ?/sec    1.00    165.7±1.72µs        ? ?/sec
smol-songs.csv: basic filter: TO/charles                                                                 1.01     40.6±0.57µs        ? ?/sec    1.00     40.1±0.54µs        ? ?/sec
smol-songs.csv: basic filter: TO/charles mingus                                                          1.01     87.1±0.80µs        ? ?/sec    1.00     86.3±0.61µs        ? ?/sec
smol-songs.csv: basic filter: TO/david                                                                   1.02     34.5±0.26µs        ? ?/sec    1.00     33.7±0.24µs        ? ?/sec
smol-songs.csv: basic filter: TO/david bowie                                                             1.00     70.6±0.38µs        ? ?/sec    1.00     70.6±0.68µs        ? ?/sec
smol-songs.csv: basic filter: TO/john                                                                    1.02     27.5±0.77µs        ? ?/sec    1.00     26.9±0.21µs        ? ?/sec
smol-songs.csv: basic filter: TO/marcus miller                                                           1.01     79.8±0.76µs        ? ?/sec    1.00     79.3±1.27µs        ? ?/sec
smol-songs.csv: basic filter: TO/michael jackson                                                         1.00     98.3±0.54µs        ? ?/sec    1.00     98.0±0.88µs        ? ?/sec
smol-songs.csv: basic filter: TO/tamo                                                                    1.03     27.9±0.23µs        ? ?/sec    1.00     27.1±0.32µs        ? ?/sec
smol-songs.csv: basic filter: TO/thelonious monk                                                         1.00    142.5±1.36µs        ? ?/sec    1.02    145.2±0.98µs        ? ?/sec
smol-songs.csv: basic placeholder/                                                                       1.00     49.4±0.34µs        ? ?/sec    1.00     49.3±0.45µs        ? ?/sec
smol-songs.csv: basic with quote/"Notstandskomitee"                                                      1.00    190.5±1.60µs        ? ?/sec    1.01    191.8±2.10µs        ? ?/sec
smol-songs.csv: basic with quote/"charles"                                                               1.00    165.0±1.13µs        ? ?/sec    1.01    166.0±1.39µs        ? ?/sec
smol-songs.csv: basic with quote/"charles" "mingus"                                                      1.00  1149.4±15.78µs        ? ?/sec    1.02   1171.1±9.95µs        ? ?/sec
smol-songs.csv: basic with quote/"david"                                                                 1.00    236.5±1.61µs        ? ?/sec    1.00    236.9±1.73µs        ? ?/sec
smol-songs.csv: basic with quote/"david" "bowie"                                                         1.00   1384.8±9.02µs        ? ?/sec    1.01  1393.8±11.39µs        ? ?/sec
smol-songs.csv: basic with quote/"john"                                                                  1.00    358.3±4.85µs        ? ?/sec    1.00    358.9±1.75µs        ? ?/sec
smol-songs.csv: basic with quote/"marcus" "miller"                                                       1.00    281.4±1.79µs        ? ?/sec    1.01    285.6±3.24µs        ? ?/sec
smol-songs.csv: basic with quote/"michael" "jackson"                                                     1.00   1328.4±8.01µs        ? ?/sec    1.00   1334.6±8.00µs        ? ?/sec
smol-songs.csv: basic with quote/"tamo"                                                                  1.00    528.7±3.72µs        ? ?/sec    1.01    533.4±5.31µs        ? ?/sec
smol-songs.csv: basic with quote/"thelonious" "monk"                                                     1.00   1223.0±7.24µs        ? ?/sec    1.02  1245.7±12.04µs        ? ?/sec
smol-songs.csv: basic without quote/Notstandskomitee                                                     1.00      2.8±0.01ms        ? ?/sec    1.00      2.8±0.01ms        ? ?/sec
smol-songs.csv: basic without quote/charles                                                              1.00    273.3±2.06µs        ? ?/sec    1.01    275.9±1.76µs        ? ?/sec
smol-songs.csv: basic without quote/charles mingus                                                       1.00      2.3±0.01ms        ? ?/sec    1.02      2.4±0.01ms        ? ?/sec
smol-songs.csv: basic without quote/david                                                                1.00    434.3±3.86µs        ? ?/sec    1.01    436.7±2.47µs        ? ?/sec
smol-songs.csv: basic without quote/david bowie                                                          1.00      5.6±0.02ms        ? ?/sec    1.01      5.7±0.02ms        ? ?/sec
smol-songs.csv: basic without quote/john                                                                 1.00   1322.5±9.98µs        ? ?/sec    1.00  1321.2±17.40µs        ? ?/sec
smol-songs.csv: basic without quote/marcus miller                                                        1.02      2.4±0.02ms        ? ?/sec    1.00      2.4±0.01ms        ? ?/sec
smol-songs.csv: basic without quote/michael jackson                                                      1.00      3.8±0.02ms        ? ?/sec    1.01      3.9±0.01ms        ? ?/sec
smol-songs.csv: basic without quote/tamo                                                                 1.00    809.0±4.01µs        ? ?/sec    1.01    819.0±6.22µs        ? ?/sec
smol-songs.csv: basic without quote/thelonious monk                                                      1.00      3.8±0.02ms        ? ?/sec    1.02      3.9±0.02ms        ? ?/sec
smol-songs.csv: big filter/Notstandskomitee                                                              1.00      2.7±0.01ms        ? ?/sec    1.01      2.8±0.01ms        ? ?/sec
smol-songs.csv: big filter/charles                                                                       1.00    266.5±1.34µs        ? ?/sec    1.01    270.1±8.17µs        ? ?/sec
smol-songs.csv: big filter/charles mingus                                                                1.00    651.0±5.40µs        ? ?/sec    1.00    651.0±2.73µs        ? ?/sec
smol-songs.csv: big filter/david                                                                         1.00  1018.1±11.16µs        ? ?/sec    1.00   1022.3±8.94µs        ? ?/sec
smol-songs.csv: big filter/david bowie                                                                   1.00  1912.2±11.13µs        ? ?/sec    1.00   1919.8±8.30µs        ? ?/sec
smol-songs.csv: big filter/john                                                                          1.00    867.2±6.66µs        ? ?/sec    1.01    873.3±3.44µs        ? ?/sec
smol-songs.csv: big filter/marcus miller                                                                 1.00    717.7±2.86µs        ? ?/sec    1.01    721.5±3.89µs        ? ?/sec
smol-songs.csv: big filter/michael jackson                                                               1.00  1668.4±16.76µs        ? ?/sec    1.00  1667.9±10.11µs        ? ?/sec
smol-songs.csv: big filter/tamo                                                                          1.01    136.7±0.88µs        ? ?/sec    1.00    135.5±1.22µs        ? ?/sec
smol-songs.csv: big filter/thelonious monk                                                               1.03      3.1±0.02ms        ? ?/sec    1.00      3.0±0.01ms        ? ?/sec
smol-songs.csv: desc + default/Notstandskomitee                                                          1.00      3.0±0.01ms        ? ?/sec    1.00      3.0±0.01ms        ? ?/sec
smol-songs.csv: desc + default/charles                                                                   1.00  1599.5±13.07µs        ? ?/sec    1.01  1622.9±22.43µs        ? ?/sec
smol-songs.csv: desc + default/charles mingus                                                            1.00      2.3±0.01ms        ? ?/sec    1.01      2.4±0.03ms        ? ?/sec
smol-songs.csv: desc + default/david                                                                     1.00      5.7±0.02ms        ? ?/sec    1.00      5.7±0.02ms        ? ?/sec
smol-songs.csv: desc + default/david bowie                                                               1.00      9.0±0.04ms        ? ?/sec    1.00      9.0±0.03ms        ? ?/sec
smol-songs.csv: desc + default/john                                                                      1.00      4.5±0.01ms        ? ?/sec    1.00      4.5±0.02ms        ? ?/sec
smol-songs.csv: desc + default/marcus miller                                                             1.00      3.9±0.01ms        ? ?/sec    1.00      3.9±0.02ms        ? ?/sec
smol-songs.csv: desc + default/michael jackson                                                           1.00      6.6±0.03ms        ? ?/sec    1.00      6.6±0.03ms        ? ?/sec
smol-songs.csv: desc + default/tamo                                                                      1.00  1472.4±10.38µs        ? ?/sec    1.01   1484.2±8.07µs        ? ?/sec
smol-songs.csv: desc + default/thelonious monk                                                           1.00      4.4±0.02ms        ? ?/sec    1.00      4.4±0.05ms        ? ?/sec
smol-songs.csv: desc/Notstandskomitee                                                                    1.01      2.6±0.01ms        ? ?/sec    1.00      2.6±0.01ms        ? ?/sec
smol-songs.csv: desc/charles                                                                             1.00    475.9±3.38µs        ? ?/sec    1.00    475.9±2.64µs        ? ?/sec
smol-songs.csv: desc/charles mingus                                                                      1.00    775.3±4.30µs        ? ?/sec    1.00    778.9±3.52µs        ? ?/sec
smol-songs.csv: desc/david                                                                               1.00    757.9±4.10µs        ? ?/sec    1.01    763.4±3.27µs        ? ?/sec
smol-songs.csv: desc/david bowie                                                                         1.00  1129.0±11.87µs        ? ?/sec    1.01   1135.1±8.86µs        ? ?/sec
smol-songs.csv: desc/john                                                                                1.00    670.2±4.38µs        ? ?/sec    1.00    670.2±3.46µs        ? ?/sec
smol-songs.csv: desc/marcus miller                                                                       1.00    961.2±4.47µs        ? ?/sec    1.00    961.9±4.03µs        ? ?/sec
smol-songs.csv: desc/michael jackson                                                                     1.00   1076.5±6.61µs        ? ?/sec    1.00   1077.9±7.11µs        ? ?/sec
smol-songs.csv: desc/tamo                                                                                1.00     70.6±0.57µs        ? ?/sec    1.01     71.3±0.48µs        ? ?/sec
smol-songs.csv: desc/thelonious monk                                                                     1.01      2.9±0.01ms        ? ?/sec    1.00      2.9±0.01ms        ? ?/sec
smol-songs.csv: prefix search/a                                                                          1.00   1236.2±9.43µs        ? ?/sec    1.00  1232.0±12.07µs        ? ?/sec
smol-songs.csv: prefix search/b                                                                          1.00   1090.8±9.89µs        ? ?/sec    1.00   1090.8±9.43µs        ? ?/sec
smol-songs.csv: prefix search/i                                                                          1.00   1333.9±8.28µs        ? ?/sec    1.00  1334.2±11.21µs        ? ?/sec
smol-songs.csv: prefix search/s                                                                          1.00    810.5±3.69µs        ? ?/sec    1.00    806.6±3.50µs        ? ?/sec
smol-songs.csv: prefix search/x                                                                          1.00    290.5±1.88µs        ? ?/sec    1.00    291.0±1.85µs        ? ?/sec
smol-songs.csv: proximity/7000 Danses Un Jour Dans Notre Vie                                             1.00      4.7±0.02ms        ? ?/sec    1.00      4.7±0.02ms        ? ?/sec
smol-songs.csv: proximity/The Disneyland Sing-Along Chorus                                               1.01      5.6±0.02ms        ? ?/sec    1.00      5.6±0.03ms        ? ?/sec
smol-songs.csv: proximity/Under Great Northern Lights                                                    1.00      2.5±0.01ms        ? ?/sec    1.00      2.5±0.01ms        ? ?/sec
smol-songs.csv: proximity/black saint sinner lady                                                        1.00      4.8±0.02ms        ? ?/sec    1.00      4.8±0.02ms        ? ?/sec
smol-songs.csv: proximity/les dangeureuses 1960                                                          1.00      3.2±0.01ms        ? ?/sec    1.01      3.2±0.01ms        ? ?/sec
smol-songs.csv: typo/Arethla Franklin                                                                    1.00    388.7±5.16µs        ? ?/sec    1.00    390.0±2.11µs        ? ?/sec
smol-songs.csv: typo/Disnaylande                                                                         1.01      2.6±0.01ms        ? ?/sec    1.00      2.6±0.01ms        ? ?/sec
smol-songs.csv: typo/dire straights                                                                      1.00    125.9±1.22µs        ? ?/sec    1.00    126.0±0.71µs        ? ?/sec
smol-songs.csv: typo/fear of the duck                                                                    1.00    373.7±4.25µs        ? ?/sec    1.01   375.7±14.17µs        ? ?/sec
smol-songs.csv: typo/indochie                                                                            1.00    103.6±0.94µs        ? ?/sec    1.00    103.4±0.74µs        ? ?/sec
smol-songs.csv: typo/indochien                                                                           1.00    155.6±1.14µs        ? ?/sec    1.01    157.5±1.75µs        ? ?/sec
smol-songs.csv: typo/klub des loopers                                                                    1.00    160.6±2.98µs        ? ?/sec    1.01    161.7±1.96µs        ? ?/sec
smol-songs.csv: typo/michel depech                                                                       1.00     79.4±0.54µs        ? ?/sec    1.01     79.9±0.60µs        ? ?/sec
smol-songs.csv: typo/mongus                                                                              1.00    126.7±1.85µs        ? ?/sec    1.00    126.1±0.74µs        ? ?/sec
smol-songs.csv: typo/stromal                                                                             1.01    132.9±0.99µs        ? ?/sec    1.00    131.9±1.09µs        ? ?/sec
smol-songs.csv: typo/the white striper                                                                   1.00    287.8±2.88µs        ? ?/sec    1.00    286.5±1.91µs        ? ?/sec
smol-songs.csv: typo/thelonius monk                                                                      1.00    304.2±1.49µs        ? ?/sec    1.01    306.5±1.50µs        ? ?/sec
smol-songs.csv: words/7000 Danses / Le Baiser / je me trompe de mots                                     1.01     20.9±0.08ms        ? ?/sec    1.00     20.7±0.07ms        ? ?/sec
smol-songs.csv: words/Bring Your Daughter To The Slaughter but now this is not part of the title         1.00     48.9±0.13ms        ? ?/sec    1.00     48.9±0.11ms        ? ?/sec
smol-songs.csv: words/The Disneyland Children's Sing-Alone song                                          1.01     13.9±0.06ms        ? ?/sec    1.00     13.8±0.07ms        ? ?/sec
smol-songs.csv: words/les liaisons dangeureuses 1793                                                     1.01      3.7±0.01ms        ? ?/sec    1.00      3.6±0.02ms        ? ?/sec
smol-songs.csv: words/seven nation mummy                                                                 1.00  1054.2±14.49µs        ? ?/sec    1.00  1056.6±10.53µs        ? ?/sec
smol-songs.csv: words/the black saint and the sinner lady and the good doggo                             1.00     58.2±0.29ms        ? ?/sec    1.00     57.9±0.21ms        ? ?/sec
smol-songs.csv: words/whathavenotnsuchforth and a good amount of words to pop to match the first one     1.00     66.1±0.21ms        ? ?/sec    1.00     66.0±0.24ms        ? ?/sec
</code>
</details>

Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
2022-10-25 10:42:04 +00:00
Loïc Lecrenier
9a569d73d1 Minor code style change 2022-10-24 15:30:43 +02:00
Loïc Lecrenier
be302fd250 Remove outdated workaround for duplicate words in phrase search 2022-10-24 15:27:06 +02:00
Loïc Lecrenier
d76d0cb1bf Merge branch 'main' into word-pair-proximity-docids-refactor 2022-10-24 15:23:00 +02:00
bors[bot]
2bf867982a
Merge #667
667: Update version for the next release (v0.34.0) in Cargo.toml files r=curquiza a=meili-bot

⚠️ This PR is automatically generated. Check the new version is the expected one before merging.

Co-authored-by: curquiza <curquiza@users.noreply.github.com>
2022-10-24 10:19:04 +00:00
curquiza
f3874d58b9 Update version for the next release (v0.34.0) in Cargo.toml files 2022-10-24 10:13:25 +00:00
Loïc Lecrenier
a983129613 Apply suggestions from code review 2022-10-20 09:49:37 +02:00
bors[bot]
f11a4087da
Merge #665
665: Fixing piles of clippy errors. r=ManyTheFish a=ehiggs

## Related issue
No issue fixed. Simply cleaning up some code for clippy on the march towards a clean build when #659 is merged.

## What does this PR do?
Most of these are calling clone when the struct supports Copy.

Many are using & and &mut on `self` when the function they are called from already has an immutable or mutable borrow so this isn't needed.

I tried to stay away from actual changes or places where I'd have to name fresh variables.

## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?

Co-authored-by: Ewan Higgs <ewan.higgs@gmail.com>
2022-10-20 07:19:46 +00:00
Loïc Lecrenier
176ffd23f5 Fix compile error after rebasing wppd-refactor 2022-10-18 10:40:26 +02:00
Loïc Lecrenier
ab2f6f3aa4 Refine some details in word_prefix_pair_proximity indexing code 2022-10-18 10:37:34 +02:00
Loïc Lecrenier
e6e76fbefe Improve performance of resolve_phrase at the cost of some relevancy 2022-10-18 10:37:34 +02:00
Loïc Lecrenier
178d00f93a Cargo fmt 2022-10-18 10:37:34 +02:00
Loïc Lecrenier
830a7c0c7a Use resolve_phrase function for exactness criteria as well 2022-10-18 10:37:34 +02:00
Loïc Lecrenier
18d578dfc4 Adjust some algorithms using DBs of word pair proximities 2022-10-18 10:37:34 +02:00
Loïc Lecrenier
072b576514 Fix proximity value in keys of prefix_word_pair_proximity_docids 2022-10-18 10:37:34 +02:00
Loïc Lecrenier
6c3a5d69e1 Update snapshots 2022-10-18 10:37:34 +02:00
Loïc Lecrenier
a7de4f5b85 Don't add swapped word pairs to the word_pair_proximity_docids db 2022-10-18 10:37:34 +02:00
Loïc Lecrenier
264a04922d Add prefix_word_pair_proximity database
Similar to the word_prefix_pair_proximity one but instead the keys are:
(proximity, prefix, word2)
2022-10-18 10:37:34 +02:00
Loïc Lecrenier
1dbbd8694f Rename StrStrU8Codec to U8StrStrCodec and reorder its fields 2022-10-18 10:37:34 +02:00
Loïc Lecrenier
bdeb47305e Change encoding of word_pair_proximity DB to (proximity, word1, word2)
Same for word_prefix_pair_proximity
2022-10-18 10:37:34 +02:00
bors[bot]
19b2326f3d
Merge #586
586: Add settings to force milli to exhaustively compute the total number of hits r=Kerollmops a=ManyTheFish

Add a new setting `exhaustive_number_hits` to `Search` forcing the `Initial` criterion to exhaustively compute the bucket_candidates allowing the end users to implement finite pagination.
 
related to https://github.com/meilisearch/meilisearch/pull/2601

Co-authored-by: ManyTheFish <many@meilisearch.com>
Co-authored-by: Many the fish <many@meilisearch.com>
2022-10-17 16:24:35 +00:00
Many the fish
81919a35a2
Update milli/src/search/criteria/initial.rs
Co-authored-by: Clément Renault <clement@meilisearch.com>
2022-10-17 18:23:20 +02:00
Many the fish
516e838eb4
Update milli/src/search/criteria/initial.rs
Co-authored-by: Clément Renault <clement@meilisearch.com>
2022-10-17 18:23:15 +02:00
Clément Renault
fc03e53615
Add a test to check that we can abort an indexation 2022-10-17 17:28:03 +02:00
Kerollmops
6603437cb1
Introduce an indexation abortion function when indexing documents 2022-10-17 17:28:03 +02:00
ManyTheFish
6f55e7844c Add some code comments 2022-10-17 14:41:57 +02:00
ManyTheFish
cf203b7fde Take filter in account when computing the pages candidates 2022-10-17 14:13:44 +02:00
ManyTheFish
d71bc1e69f Compute an exact count when using distinct 2022-10-17 14:13:44 +02:00