639: Reduce the size of the word_pair_proximity database r=loiclec a=loiclec # Pull Request ## What does this PR do? Fixes #634 Now, the value corresponding to the key `prox word1 word2` in the `word_pair_proximity_docids` database contains the ids of the documents in which: - `word1` is followed by `word2` - the minimum number of words between `word1` and `word2` is `prox-1` Before this PR, the `word_pair_proximity_docids` had keys with the format `word1 word2 prox` and the value contained the ids of the documents in which either: - `word1` is followed by `word2` after a minimum of `prox-1` words in between them - `word2` is followed by `word1` after a minimum of `prox-2` words As a consequence of this change, calls such as: ``` let docids = word_pair_proximity_docids.get(rtxn, (word1, word2, prox)); ``` have to be replaced with: ``` let docids1 = word_pair_proximity_docids.get(rtxn, (prox, word1, word2)) ; let docids2 = word_pair_proximity_docids.get(rtxn, (prox-1, word2, word1)) ; let docids = docids1 | docids2; ``` ## Phrase search The PR also fixes two bugs in the `resolve_phrase` function. The first bug is that a phrase containing twice the same word would always return zero documents (e.g. `"dog eats dog"`). The second bug occurs with a phrase such as "fox is smarter than a dog"` and the document with the text: ``` fox or dog? a fox is smarter than a dog ``` In that case, the phrase search would not return the documents because: * we only have the key `fox dog 2` in `word_pair_proximity_docids` * but the implementation of `resolve_phrase` looks for `fox dog 5`, which returns 0 documents ### New implementation of `resolve_phrase` Given the phrase: ``` fox is smarter than a dog ``` We select the document ids corresponding to all of the following keys in `word_pair_proximity_docids`: - `1 fox is` - `1 is smarter` - `1 smarter than` - (etc.) - `1 fox smarter` OR `2 fox smarter` - `1 is than` OR `2 is than` - ... - `1 than dog` OR `2 than dog` ## Benchmark Results Indexing: ``` group indexing_main_d94339a8 indexing_word-pair-proximity-docids-refactor_2983dd8e ----- ---------------------- ----------------------------------------------------- indexing/-geo-delete-facetedNumber-facetedGeo-searchable- 1.19 40.7±11.28ms ? ?/sec 1.00 34.3±4.16ms ? ?/sec indexing/-movies-delete-facetedString-facetedNumber-searchable- 1.62 11.3±3.77ms ? ?/sec 1.00 7.0±1.56ms ? ?/sec indexing/-movies-delete-facetedString-facetedNumber-searchable-nested- 1.00 12.5±2.62ms ? ?/sec 1.07 13.4±4.24ms ? ?/sec indexing/-songs-delete-facetedString-facetedNumber-searchable- 1.26 50.2±12.63ms ? ?/sec 1.00 39.8±20.25ms ? ?/sec indexing/-wiki-delete-searchable- 1.83 269.1±16.11ms ? ?/sec 1.00 146.8±6.12ms ? ?/sec indexing/Indexing geo_point 1.00 47.2±0.46s ? ?/sec 1.00 47.3±0.56s ? ?/sec indexing/Indexing movies in three batches 1.42 12.7±0.13s ? ?/sec 1.00 9.0±0.07s ? ?/sec indexing/Indexing movies with default settings 1.40 10.2±0.07s ? ?/sec 1.00 7.3±0.06s ? ?/sec indexing/Indexing nested movies with default settings 1.22 7.8±0.11s ? ?/sec 1.00 6.4±0.13s ? ?/sec indexing/Indexing nested movies without any facets 1.24 7.3±0.07s ? ?/sec 1.00 5.9±0.06s ? ?/sec indexing/Indexing songs in three batches with default settings 1.14 47.6±0.67s ? ?/sec 1.00 41.8±0.63s ? ?/sec indexing/Indexing songs with default settings 1.13 44.1±0.74s ? ?/sec 1.00 38.9±0.76s ? ?/sec indexing/Indexing songs without any facets 1.19 42.0±0.66s ? ?/sec 1.00 35.2±0.48s ? ?/sec indexing/Indexing songs without faceted numbers 1.20 44.3±1.40s ? ?/sec 1.00 37.0±0.48s ? ?/sec indexing/Indexing wiki 1.39 862.9±9.95s ? ?/sec 1.00 622.6±27.11s ? ?/sec indexing/Indexing wiki in three batches 1.40 934.4±5.97s ? ?/sec 1.00 665.7±4.72s ? ?/sec indexing/Reindexing geo_point 1.01 15.9±0.39s ? ?/sec 1.00 15.7±0.28s ? ?/sec indexing/Reindexing movies with default settings 1.15 288.8±25.03ms ? ?/sec 1.00 250.4±2.23ms ? ?/sec indexing/Reindexing songs with default settings 1.01 4.1±0.06s ? ?/sec 1.00 4.1±0.03s ? ?/sec indexing/Reindexing wiki 1.41 1484.7±20.59s ? ?/sec 1.00 1052.0±19.89s ? ?/sec ``` Search Wiki: <details> <pre> group search_wiki_main_d94339a8 search_wiki_word-pair-proximity-docids-refactor_2983dd8e ----- ------------------------- -------------------------------------------------------- smol-wiki-articles.csv: basic placeholder/ 1.02 25.8±0.21µs ? ?/sec 1.00 25.4±0.19µs ? ?/sec smol-wiki-articles.csv: basic with quote/"film" 1.00 441.7±2.57µs ? ?/sec 1.00 442.3±2.41µs ? ?/sec smol-wiki-articles.csv: basic with quote/"france" 1.00 357.0±2.63µs ? ?/sec 1.00 358.3±2.65µs ? ?/sec smol-wiki-articles.csv: basic with quote/"japan" 1.00 239.4±2.24µs ? ?/sec 1.00 240.2±1.82µs ? ?/sec smol-wiki-articles.csv: basic with quote/"machine" 1.00 180.3±2.40µs ? ?/sec 1.00 180.0±1.08µs ? ?/sec smol-wiki-articles.csv: basic with quote/"miles" "davis" 1.00 9.1±0.03ms ? ?/sec 1.03 9.3±0.04ms ? ?/sec smol-wiki-articles.csv: basic with quote/"mingus" 1.00 3.6±0.01ms ? ?/sec 1.03 3.7±0.02ms ? ?/sec smol-wiki-articles.csv: basic with quote/"rock" "and" "roll" 1.00 34.0±0.11ms ? ?/sec 1.03 35.1±0.13ms ? ?/sec smol-wiki-articles.csv: basic with quote/"spain" 1.00 162.0±0.88µs ? ?/sec 1.00 161.9±0.98µs ? ?/sec smol-wiki-articles.csv: basic without quote/film 1.01 164.4±1.46µs ? ?/sec 1.00 163.1±1.58µs ? ?/sec smol-wiki-articles.csv: basic without quote/france 1.00 1698.3±7.37µs ? ?/sec 1.00 1697.7±11.53µs ? ?/sec smol-wiki-articles.csv: basic without quote/japan 1.00 1154.0±23.61µs ? ?/sec 1.00 1150.7±9.27µs ? ?/sec smol-wiki-articles.csv: basic without quote/machine 1.00 524.6±3.45µs ? ?/sec 1.01 528.1±4.56µs ? ?/sec smol-wiki-articles.csv: basic without quote/miles davis 1.00 13.5±0.05ms ? ?/sec 1.02 13.8±0.05ms ? ?/sec smol-wiki-articles.csv: basic without quote/mingus 1.00 4.1±0.02ms ? ?/sec 1.03 4.2±0.01ms ? ?/sec smol-wiki-articles.csv: basic without quote/rock and roll 1.00 49.0±0.19ms ? ?/sec 1.03 50.4±0.22ms ? ?/sec smol-wiki-articles.csv: basic without quote/spain 1.00 412.2±3.35µs ? ?/sec 1.00 412.9±2.81µs ? ?/sec smol-wiki-articles.csv: prefix search/c 1.00 383.9±2.53µs ? ?/sec 1.00 383.4±2.44µs ? ?/sec smol-wiki-articles.csv: prefix search/g 1.00 433.4±2.53µs ? ?/sec 1.00 432.8±2.52µs ? ?/sec smol-wiki-articles.csv: prefix search/j 1.00 424.3±2.05µs ? ?/sec 1.00 424.0±2.15µs ? ?/sec smol-wiki-articles.csv: prefix search/q 1.00 154.0±1.93µs ? ?/sec 1.00 153.5±1.04µs ? ?/sec smol-wiki-articles.csv: prefix search/t 1.04 658.5±91.93µs ? ?/sec 1.00 631.4±3.89µs ? ?/sec smol-wiki-articles.csv: prefix search/x 1.00 446.2±2.09µs ? ?/sec 1.00 445.6±3.13µs ? ?/sec smol-wiki-articles.csv: proximity/april paris 1.02 3.4±0.39ms ? ?/sec 1.00 3.3±0.01ms ? ?/sec smol-wiki-articles.csv: proximity/diesel engine 1.00 1022.1±17.52µs ? ?/sec 1.00 1017.7±8.16µs ? ?/sec smol-wiki-articles.csv: proximity/herald sings 1.01 1872.5±97.70µs ? ?/sec 1.00 1862.2±8.57µs ? ?/sec smol-wiki-articles.csv: proximity/tea two 1.00 295.2±34.91µs ? ?/sec 1.00 296.6±4.08µs ? ?/sec smol-wiki-articles.csv: typo/Disnaylande 1.00 3.4±0.51ms ? ?/sec 1.04 3.5±0.01ms ? ?/sec smol-wiki-articles.csv: typo/aritmetric 1.00 3.6±0.01ms ? ?/sec 1.00 3.7±0.01ms ? ?/sec smol-wiki-articles.csv: typo/linax 1.00 167.5±1.28µs ? ?/sec 1.00 167.1±2.65µs ? ?/sec smol-wiki-articles.csv: typo/migrosoft 1.01 217.9±1.84µs ? ?/sec 1.00 216.2±1.61µs ? ?/sec smol-wiki-articles.csv: typo/nympalidea 1.00 2.9±0.01ms ? ?/sec 1.10 3.1±0.01ms ? ?/sec smol-wiki-articles.csv: typo/phytogropher 1.00 3.0±0.23ms ? ?/sec 1.08 3.3±0.01ms ? ?/sec smol-wiki-articles.csv: typo/sisan 1.00 234.6±1.38µs ? ?/sec 1.01 235.8±1.67µs ? ?/sec smol-wiki-articles.csv: typo/the fronce 1.00 104.4±0.84µs ? ?/sec 1.00 103.9±0.81µs ? ?/sec smol-wiki-articles.csv: words/Abraham machin 1.02 675.5±4.74µs ? ?/sec 1.00 662.1±5.13µs ? ?/sec smol-wiki-articles.csv: words/Idaho Bellevue pizza 1.02 1004.5±11.07µs ? ?/sec 1.00 989.5±13.08µs ? ?/sec smol-wiki-articles.csv: words/Kameya Tokujirō mingus monk 1.00 1650.8±10.92µs ? ?/sec 1.00 1643.2±10.77µs ? ?/sec smol-wiki-articles.csv: words/Ulrich Hensel meilisearch milli 1.00 5.4±0.03ms ? ?/sec 1.00 5.4±0.02ms ? ?/sec smol-wiki-articles.csv: words/the black saint and the sinner lady and the good doggo 1.00 32.9±0.10ms ? ?/sec 1.00 32.8±0.10ms ? ?/sec </pre> </details> Search songs: <details> <pre> group search_songs_main_d94339a8 search_songs_word-pair-proximity-docids-refactor_2983dd8e ----- -------------------------- --------------------------------------------------------- smol-songs.csv: asc + default/Notstandskomitee 1.00 3.0±0.01ms ? ?/sec 1.01 3.0±0.04ms ? ?/sec smol-songs.csv: asc + default/charles 1.00 2.2±0.01ms ? ?/sec 1.01 2.2±0.01ms ? ?/sec smol-songs.csv: asc + default/charles mingus 1.00 3.1±0.01ms ? ?/sec 1.01 3.1±0.01ms ? ?/sec smol-songs.csv: asc + default/david 1.00 2.9±0.01ms ? ?/sec 1.00 2.9±0.01ms ? ?/sec smol-songs.csv: asc + default/david bowie 1.00 4.5±0.02ms ? ?/sec 1.00 4.5±0.02ms ? ?/sec smol-songs.csv: asc + default/john 1.00 3.1±0.01ms ? ?/sec 1.01 3.2±0.01ms ? ?/sec smol-songs.csv: asc + default/marcus miller 1.00 5.0±0.02ms ? ?/sec 1.00 5.0±0.02ms ? ?/sec smol-songs.csv: asc + default/michael jackson 1.00 4.7±0.02ms ? ?/sec 1.00 4.7±0.02ms ? ?/sec smol-songs.csv: asc + default/tamo 1.00 1463.4±12.17µs ? ?/sec 1.01 1481.5±8.83µs ? ?/sec smol-songs.csv: asc + default/thelonious monk 1.00 4.4±0.01ms ? ?/sec 1.00 4.4±0.02ms ? ?/sec smol-songs.csv: asc/Notstandskomitee 1.01 2.6±0.01ms ? ?/sec 1.00 2.6±0.01ms ? ?/sec smol-songs.csv: asc/charles 1.00 473.6±3.70µs ? ?/sec 1.01 476.8±22.17µs ? ?/sec smol-songs.csv: asc/charles mingus 1.01 780.1±3.90µs ? ?/sec 1.00 773.6±4.60µs ? ?/sec smol-songs.csv: asc/david 1.00 757.6±4.50µs ? ?/sec 1.00 760.7±5.20µs ? ?/sec smol-songs.csv: asc/david bowie 1.00 1131.2±8.68µs ? ?/sec 1.00 1130.7±8.36µs ? ?/sec smol-songs.csv: asc/john 1.00 668.9±6.48µs ? ?/sec 1.00 669.9±2.78µs ? ?/sec smol-songs.csv: asc/marcus miller 1.00 959.8±7.10µs ? ?/sec 1.00 958.9±4.72µs ? ?/sec smol-songs.csv: asc/michael jackson 1.01 1076.7±16.73µs ? ?/sec 1.00 1070.8±7.34µs ? ?/sec smol-songs.csv: asc/tamo 1.00 70.4±0.55µs ? ?/sec 1.00 70.5±0.51µs ? ?/sec smol-songs.csv: asc/thelonious monk 1.01 2.9±0.01ms ? ?/sec 1.00 2.9±0.01ms ? ?/sec smol-songs.csv: basic filter: <=/Notstandskomitee 1.00 162.0±0.91µs ? ?/sec 1.01 163.6±1.72µs ? ?/sec smol-songs.csv: basic filter: <=/charles 1.00 38.3±0.24µs ? ?/sec 1.01 38.7±0.31µs ? ?/sec smol-songs.csv: basic filter: <=/charles mingus 1.01 85.3±0.44µs ? ?/sec 1.00 84.6±0.47µs ? ?/sec smol-songs.csv: basic filter: <=/david 1.01 32.4±0.25µs ? ?/sec 1.00 32.1±0.24µs ? ?/sec smol-songs.csv: basic filter: <=/david bowie 1.00 68.6±0.99µs ? ?/sec 1.01 68.9±0.88µs ? ?/sec smol-songs.csv: basic filter: <=/john 1.04 26.1±0.37µs ? ?/sec 1.00 25.1±0.22µs ? ?/sec smol-songs.csv: basic filter: <=/marcus miller 1.00 76.7±0.39µs ? ?/sec 1.01 77.3±0.61µs ? ?/sec smol-songs.csv: basic filter: <=/michael jackson 1.00 95.5±0.66µs ? ?/sec 1.01 96.3±0.79µs ? ?/sec smol-songs.csv: basic filter: <=/tamo 1.03 26.2±0.36µs ? ?/sec 1.00 25.3±0.23µs ? ?/sec smol-songs.csv: basic filter: <=/thelonious monk 1.00 140.7±1.36µs ? ?/sec 1.01 142.7±0.88µs ? ?/sec smol-songs.csv: basic filter: TO/Notstandskomitee 1.00 165.4±1.25µs ? ?/sec 1.00 165.7±1.72µs ? ?/sec smol-songs.csv: basic filter: TO/charles 1.01 40.6±0.57µs ? ?/sec 1.00 40.1±0.54µs ? ?/sec smol-songs.csv: basic filter: TO/charles mingus 1.01 87.1±0.80µs ? ?/sec 1.00 86.3±0.61µs ? ?/sec smol-songs.csv: basic filter: TO/david 1.02 34.5±0.26µs ? ?/sec 1.00 33.7±0.24µs ? ?/sec smol-songs.csv: basic filter: TO/david bowie 1.00 70.6±0.38µs ? ?/sec 1.00 70.6±0.68µs ? ?/sec smol-songs.csv: basic filter: TO/john 1.02 27.5±0.77µs ? ?/sec 1.00 26.9±0.21µs ? ?/sec smol-songs.csv: basic filter: TO/marcus miller 1.01 79.8±0.76µs ? ?/sec 1.00 79.3±1.27µs ? ?/sec smol-songs.csv: basic filter: TO/michael jackson 1.00 98.3±0.54µs ? ?/sec 1.00 98.0±0.88µs ? ?/sec smol-songs.csv: basic filter: TO/tamo 1.03 27.9±0.23µs ? ?/sec 1.00 27.1±0.32µs ? ?/sec smol-songs.csv: basic filter: TO/thelonious monk 1.00 142.5±1.36µs ? ?/sec 1.02 145.2±0.98µs ? ?/sec smol-songs.csv: basic placeholder/ 1.00 49.4±0.34µs ? ?/sec 1.00 49.3±0.45µs ? ?/sec smol-songs.csv: basic with quote/"Notstandskomitee" 1.00 190.5±1.60µs ? ?/sec 1.01 191.8±2.10µs ? ?/sec smol-songs.csv: basic with quote/"charles" 1.00 165.0±1.13µs ? ?/sec 1.01 166.0±1.39µs ? ?/sec smol-songs.csv: basic with quote/"charles" "mingus" 1.00 1149.4±15.78µs ? ?/sec 1.02 1171.1±9.95µs ? ?/sec smol-songs.csv: basic with quote/"david" 1.00 236.5±1.61µs ? ?/sec 1.00 236.9±1.73µs ? ?/sec smol-songs.csv: basic with quote/"david" "bowie" 1.00 1384.8±9.02µs ? ?/sec 1.01 1393.8±11.39µs ? ?/sec smol-songs.csv: basic with quote/"john" 1.00 358.3±4.85µs ? ?/sec 1.00 358.9±1.75µs ? ?/sec smol-songs.csv: basic with quote/"marcus" "miller" 1.00 281.4±1.79µs ? ?/sec 1.01 285.6±3.24µs ? ?/sec smol-songs.csv: basic with quote/"michael" "jackson" 1.00 1328.4±8.01µs ? ?/sec 1.00 1334.6±8.00µs ? ?/sec smol-songs.csv: basic with quote/"tamo" 1.00 528.7±3.72µs ? ?/sec 1.01 533.4±5.31µs ? ?/sec smol-songs.csv: basic with quote/"thelonious" "monk" 1.00 1223.0±7.24µs ? ?/sec 1.02 1245.7±12.04µs ? ?/sec smol-songs.csv: basic without quote/Notstandskomitee 1.00 2.8±0.01ms ? ?/sec 1.00 2.8±0.01ms ? ?/sec smol-songs.csv: basic without quote/charles 1.00 273.3±2.06µs ? ?/sec 1.01 275.9±1.76µs ? ?/sec smol-songs.csv: basic without quote/charles mingus 1.00 2.3±0.01ms ? ?/sec 1.02 2.4±0.01ms ? ?/sec smol-songs.csv: basic without quote/david 1.00 434.3±3.86µs ? ?/sec 1.01 436.7±2.47µs ? ?/sec smol-songs.csv: basic without quote/david bowie 1.00 5.6±0.02ms ? ?/sec 1.01 5.7±0.02ms ? ?/sec smol-songs.csv: basic without quote/john 1.00 1322.5±9.98µs ? ?/sec 1.00 1321.2±17.40µs ? ?/sec smol-songs.csv: basic without quote/marcus miller 1.02 2.4±0.02ms ? ?/sec 1.00 2.4±0.01ms ? ?/sec smol-songs.csv: basic without quote/michael jackson 1.00 3.8±0.02ms ? ?/sec 1.01 3.9±0.01ms ? ?/sec smol-songs.csv: basic without quote/tamo 1.00 809.0±4.01µs ? ?/sec 1.01 819.0±6.22µs ? ?/sec smol-songs.csv: basic without quote/thelonious monk 1.00 3.8±0.02ms ? ?/sec 1.02 3.9±0.02ms ? ?/sec smol-songs.csv: big filter/Notstandskomitee 1.00 2.7±0.01ms ? ?/sec 1.01 2.8±0.01ms ? ?/sec smol-songs.csv: big filter/charles 1.00 266.5±1.34µs ? ?/sec 1.01 270.1±8.17µs ? ?/sec smol-songs.csv: big filter/charles mingus 1.00 651.0±5.40µs ? ?/sec 1.00 651.0±2.73µs ? ?/sec smol-songs.csv: big filter/david 1.00 1018.1±11.16µs ? ?/sec 1.00 1022.3±8.94µs ? ?/sec smol-songs.csv: big filter/david bowie 1.00 1912.2±11.13µs ? ?/sec 1.00 1919.8±8.30µs ? ?/sec smol-songs.csv: big filter/john 1.00 867.2±6.66µs ? ?/sec 1.01 873.3±3.44µs ? ?/sec smol-songs.csv: big filter/marcus miller 1.00 717.7±2.86µs ? ?/sec 1.01 721.5±3.89µs ? ?/sec smol-songs.csv: big filter/michael jackson 1.00 1668.4±16.76µs ? ?/sec 1.00 1667.9±10.11µs ? ?/sec smol-songs.csv: big filter/tamo 1.01 136.7±0.88µs ? ?/sec 1.00 135.5±1.22µs ? ?/sec smol-songs.csv: big filter/thelonious monk 1.03 3.1±0.02ms ? ?/sec 1.00 3.0±0.01ms ? ?/sec smol-songs.csv: desc + default/Notstandskomitee 1.00 3.0±0.01ms ? ?/sec 1.00 3.0±0.01ms ? ?/sec smol-songs.csv: desc + default/charles 1.00 1599.5±13.07µs ? ?/sec 1.01 1622.9±22.43µs ? ?/sec smol-songs.csv: desc + default/charles mingus 1.00 2.3±0.01ms ? ?/sec 1.01 2.4±0.03ms ? ?/sec smol-songs.csv: desc + default/david 1.00 5.7±0.02ms ? ?/sec 1.00 5.7±0.02ms ? ?/sec smol-songs.csv: desc + default/david bowie 1.00 9.0±0.04ms ? ?/sec 1.00 9.0±0.03ms ? ?/sec smol-songs.csv: desc + default/john 1.00 4.5±0.01ms ? ?/sec 1.00 4.5±0.02ms ? ?/sec smol-songs.csv: desc + default/marcus miller 1.00 3.9±0.01ms ? ?/sec 1.00 3.9±0.02ms ? ?/sec smol-songs.csv: desc + default/michael jackson 1.00 6.6±0.03ms ? ?/sec 1.00 6.6±0.03ms ? ?/sec smol-songs.csv: desc + default/tamo 1.00 1472.4±10.38µs ? ?/sec 1.01 1484.2±8.07µs ? ?/sec smol-songs.csv: desc + default/thelonious monk 1.00 4.4±0.02ms ? ?/sec 1.00 4.4±0.05ms ? ?/sec smol-songs.csv: desc/Notstandskomitee 1.01 2.6±0.01ms ? ?/sec 1.00 2.6±0.01ms ? ?/sec smol-songs.csv: desc/charles 1.00 475.9±3.38µs ? ?/sec 1.00 475.9±2.64µs ? ?/sec smol-songs.csv: desc/charles mingus 1.00 775.3±4.30µs ? ?/sec 1.00 778.9±3.52µs ? ?/sec smol-songs.csv: desc/david 1.00 757.9±4.10µs ? ?/sec 1.01 763.4±3.27µs ? ?/sec smol-songs.csv: desc/david bowie 1.00 1129.0±11.87µs ? ?/sec 1.01 1135.1±8.86µs ? ?/sec smol-songs.csv: desc/john 1.00 670.2±4.38µs ? ?/sec 1.00 670.2±3.46µs ? ?/sec smol-songs.csv: desc/marcus miller 1.00 961.2±4.47µs ? ?/sec 1.00 961.9±4.03µs ? ?/sec smol-songs.csv: desc/michael jackson 1.00 1076.5±6.61µs ? ?/sec 1.00 1077.9±7.11µs ? ?/sec smol-songs.csv: desc/tamo 1.00 70.6±0.57µs ? ?/sec 1.01 71.3±0.48µs ? ?/sec smol-songs.csv: desc/thelonious monk 1.01 2.9±0.01ms ? ?/sec 1.00 2.9±0.01ms ? ?/sec smol-songs.csv: prefix search/a 1.00 1236.2±9.43µs ? ?/sec 1.00 1232.0±12.07µs ? ?/sec smol-songs.csv: prefix search/b 1.00 1090.8±9.89µs ? ?/sec 1.00 1090.8±9.43µs ? ?/sec smol-songs.csv: prefix search/i 1.00 1333.9±8.28µs ? ?/sec 1.00 1334.2±11.21µs ? ?/sec smol-songs.csv: prefix search/s 1.00 810.5±3.69µs ? ?/sec 1.00 806.6±3.50µs ? ?/sec smol-songs.csv: prefix search/x 1.00 290.5±1.88µs ? ?/sec 1.00 291.0±1.85µs ? ?/sec smol-songs.csv: proximity/7000 Danses Un Jour Dans Notre Vie 1.00 4.7±0.02ms ? ?/sec 1.00 4.7±0.02ms ? ?/sec smol-songs.csv: proximity/The Disneyland Sing-Along Chorus 1.01 5.6±0.02ms ? ?/sec 1.00 5.6±0.03ms ? ?/sec smol-songs.csv: proximity/Under Great Northern Lights 1.00 2.5±0.01ms ? ?/sec 1.00 2.5±0.01ms ? ?/sec smol-songs.csv: proximity/black saint sinner lady 1.00 4.8±0.02ms ? ?/sec 1.00 4.8±0.02ms ? ?/sec smol-songs.csv: proximity/les dangeureuses 1960 1.00 3.2±0.01ms ? ?/sec 1.01 3.2±0.01ms ? ?/sec smol-songs.csv: typo/Arethla Franklin 1.00 388.7±5.16µs ? ?/sec 1.00 390.0±2.11µs ? ?/sec smol-songs.csv: typo/Disnaylande 1.01 2.6±0.01ms ? ?/sec 1.00 2.6±0.01ms ? ?/sec smol-songs.csv: typo/dire straights 1.00 125.9±1.22µs ? ?/sec 1.00 126.0±0.71µs ? ?/sec smol-songs.csv: typo/fear of the duck 1.00 373.7±4.25µs ? ?/sec 1.01 375.7±14.17µs ? ?/sec smol-songs.csv: typo/indochie 1.00 103.6±0.94µs ? ?/sec 1.00 103.4±0.74µs ? ?/sec smol-songs.csv: typo/indochien 1.00 155.6±1.14µs ? ?/sec 1.01 157.5±1.75µs ? ?/sec smol-songs.csv: typo/klub des loopers 1.00 160.6±2.98µs ? ?/sec 1.01 161.7±1.96µs ? ?/sec smol-songs.csv: typo/michel depech 1.00 79.4±0.54µs ? ?/sec 1.01 79.9±0.60µs ? ?/sec smol-songs.csv: typo/mongus 1.00 126.7±1.85µs ? ?/sec 1.00 126.1±0.74µs ? ?/sec smol-songs.csv: typo/stromal 1.01 132.9±0.99µs ? ?/sec 1.00 131.9±1.09µs ? ?/sec smol-songs.csv: typo/the white striper 1.00 287.8±2.88µs ? ?/sec 1.00 286.5±1.91µs ? ?/sec smol-songs.csv: typo/thelonius monk 1.00 304.2±1.49µs ? ?/sec 1.01 306.5±1.50µs ? ?/sec smol-songs.csv: words/7000 Danses / Le Baiser / je me trompe de mots 1.01 20.9±0.08ms ? ?/sec 1.00 20.7±0.07ms ? ?/sec smol-songs.csv: words/Bring Your Daughter To The Slaughter but now this is not part of the title 1.00 48.9±0.13ms ? ?/sec 1.00 48.9±0.11ms ? ?/sec smol-songs.csv: words/The Disneyland Children's Sing-Alone song 1.01 13.9±0.06ms ? ?/sec 1.00 13.8±0.07ms ? ?/sec smol-songs.csv: words/les liaisons dangeureuses 1793 1.01 3.7±0.01ms ? ?/sec 1.00 3.6±0.02ms ? ?/sec smol-songs.csv: words/seven nation mummy 1.00 1054.2±14.49µs ? ?/sec 1.00 1056.6±10.53µs ? ?/sec smol-songs.csv: words/the black saint and the sinner lady and the good doggo 1.00 58.2±0.29ms ? ?/sec 1.00 57.9±0.21ms ? ?/sec smol-songs.csv: words/whathavenotnsuchforth and a good amount of words to pop to match the first one 1.00 66.1±0.21ms ? ?/sec 1.00 66.0±0.24ms ? ?/sec </code> </details> Co-authored-by: Loïc Lecrenier <loic@meilisearch.com> Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
a concurrent indexer combined with fast and relevant search algorithms
Introduction
This repository contains the core engine used in Meilisearch.
It contains a library that can manage one and only one index. Meilisearch manages the multi-index itself. Milli is unable to store updates in a store: it is the job of something else above and this is why it is only able to process one update at a time.
This repository contains crates to quickly debug the engine:
- There are benchmarks located in the
benchmarks
crate. - The
cli
crate is a simple command-line interface that helps run flamegraph on top of it. - The
filter-parser
crate contains the parser for the Meilisearch filter syntax. - The
flatten-serde-json
crate contains the library that flattens serde-jsonValue
objects like Elasticsearch does. - The
json-depth-checker
crate is used to indicate if a JSON must be flattened.
How to use it?
Milli is a library that does search things, it must be embedded in a program.
You can compute the documentation of it by using cargo doc --open
.
Here is an example usage of the library where we insert documents into the engine and search for one of them right after.
let path = tempfile::tempdir().unwrap();
let mut options = EnvOpenOptions::new();
options.map_size(10 * 1024 * 1024); // 10 MB
let index = Index::new(options, &path).unwrap();
let mut wtxn = index.write_txn().unwrap();
let content = documents!([
{
"id": 2,
"title": "Prideand Prejudice",
"author": "Jane Austin",
"genre": "romance",
"price$": "3.5$",
},
{
"id": 456,
"title": "Le Petit Prince",
"author": "Antoine de Saint-Exupéry",
"genre": "adventure",
"price$": "10.0$",
},
{
"id": 1,
"title": "Wonderland",
"author": "Lewis Carroll",
"genre": "fantasy",
"price$": "25.99$",
},
{
"id": 4,
"title": "Harry Potter ing fantasy\0lood Prince",
"author": "J. K. Rowling",
"genre": "fantasy\0",
},
]);
let config = IndexerConfig::default();
let indexing_config = IndexDocumentsConfig::default();
let mut builder =
IndexDocuments::new(&mut wtxn, &index, &config, indexing_config.clone(), |_| ())
.unwrap();
builder.add_documents(content).unwrap();
builder.execute().unwrap();
wtxn.commit().unwrap();
// You can search in the index now!
let mut rtxn = index.read_txn().unwrap();
let mut search = Search::new(&rtxn, &index);
search.query("horry");
search.limit(10);
let result = search.execute().unwrap();
assert_eq!(result.documents_ids.len(), 1);
Contributing
We're glad you're thinking about contributing to this repository! Feel free to pick an issue, and to ask any question you need. Some points might not be clear and we are available to help you!
Also, we recommend following the CONTRIBUTING.md to create your PR.