mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-12-23 21:20:24 +01:00
Refine some details in word_prefix_pair_proximity indexing code
This commit is contained in:
parent
e6e76fbefe
commit
ab2f6f3aa4
@ -35,9 +35,6 @@ pub fn index_prefix_word_database(
|
||||
.filter(|s| s.len() <= max_prefix_length)
|
||||
.collect();
|
||||
|
||||
// If the prefix trie is not empty, then we can iterate over all new
|
||||
// word pairs to look for new (word1, common_prefix, proximity) elements
|
||||
// to insert in the DB
|
||||
for proximity in 1..=max_proximity - 1 {
|
||||
for prefix in common_prefixes.iter() {
|
||||
let mut prefix_key = vec![];
|
||||
@ -135,13 +132,11 @@ pub fn index_prefix_word_database(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// This is the core of the algorithm to initialise the Word Prefix Pair Proximity Docids database.
|
||||
/// This is the core of the algorithm to initialise the Prefix Word Pair Proximity Docids database.
|
||||
///
|
||||
/// Its main arguments are:
|
||||
/// 1. a sorted prefix iterator over ((word1, word2, proximity), docids) elements
|
||||
/// 2. a closure to describe how to handle the new computed (word1, prefix, proximity) elements
|
||||
///
|
||||
/// For more information about what this function does, read the module documentation.
|
||||
/// Its arguments are:
|
||||
/// - an iterator over the words following the given `prefix` with the given `proximity`
|
||||
/// - a closure to describe how to handle the new computed (proximity, prefix, word2) elements
|
||||
fn execute_on_word_pairs_and_prefixes<I>(
|
||||
proximity: u8,
|
||||
prefix: &[u8],
|
||||
@ -151,28 +146,32 @@ fn execute_on_word_pairs_and_prefixes<I>(
|
||||
) -> Result<()> {
|
||||
let mut batch: BTreeMap<Vec<u8>, Vec<Cow<'static, [u8]>>> = <_>::default();
|
||||
|
||||
while let Some((word2, data)) = next_word2_and_docids(iter)? {
|
||||
// Memory usage check:
|
||||
// The content of the loop will be called for each `word2` that follows a word beginning
|
||||
// with `prefix` with the given proximity.
|
||||
// In practice, I don't think the batch can ever get too big.
|
||||
while let Some((word2, docids)) = next_word2_and_docids(iter)? {
|
||||
let entry = batch.entry(word2.to_owned()).or_default();
|
||||
entry.push(Cow::Owned(data.to_owned()));
|
||||
entry.push(Cow::Owned(docids.to_owned()));
|
||||
}
|
||||
|
||||
let mut key_buffer = Vec::with_capacity(8);
|
||||
let mut key_buffer = Vec::with_capacity(512);
|
||||
key_buffer.push(proximity);
|
||||
key_buffer.extend_from_slice(prefix);
|
||||
key_buffer.push(0);
|
||||
|
||||
let mut value_buffer = Vec::with_capacity(65_536);
|
||||
|
||||
for (key, values) in batch {
|
||||
for (word2, docids) in batch {
|
||||
key_buffer.truncate(prefix.len() + 2);
|
||||
value_buffer.clear();
|
||||
|
||||
key_buffer.extend_from_slice(&key);
|
||||
let data = if values.len() > 1 {
|
||||
CboRoaringBitmapCodec::merge_into(&values, &mut value_buffer)?;
|
||||
key_buffer.extend_from_slice(&word2);
|
||||
let data = if docids.len() > 1 {
|
||||
CboRoaringBitmapCodec::merge_into(&docids, &mut value_buffer)?;
|
||||
value_buffer.as_slice()
|
||||
} else {
|
||||
&values[0]
|
||||
&docids[0]
|
||||
};
|
||||
insert(key_buffer.as_slice(), data)?;
|
||||
}
|
||||
|
@ -1,5 +1,4 @@
|
||||
/*!
|
||||
## What is WordPrefix?
|
||||
The word-prefix-pair-proximity-docids database is a database whose keys are of
|
||||
the form `(proximity, word, prefix)` and the values are roaring bitmaps of
|
||||
the documents which contain `word` followed by another word starting with
|
||||
@ -320,7 +319,7 @@ fn execute_on_word_pairs_and_prefixes<I>(
|
||||
let mut merge_buffer = Vec::with_capacity(65_536);
|
||||
|
||||
while let Some(((proximity, word1, word2), data)) = next_word_pair_proximity(iter)? {
|
||||
// skip this iteration if the proximity is over the threshold
|
||||
// stop indexing if the proximity is over the threshold
|
||||
if proximity > max_proximity {
|
||||
break;
|
||||
};
|
||||
|
Loading…
x
Reference in New Issue
Block a user