When a document deletion occurs, instead of deleting the document we mark it as deleted
in the new “soft deleted” bitmap. It is then removed from the search, and all the other
endpoints.
564: Rename the limitedTo parameter into maxTotalHits r=curquiza a=Kerollmops
This PR is related to https://github.com/meilisearch/meilisearch/issues/2542, it renames the `limitedTo` parameter into `maxTotalHits`.
Co-authored-by: Kerollmops <clement@meilisearch.com>
563: Improve the `estimatedNbHits` when a `distinctAttribute` is specified r=irevoire a=Kerollmops
This PR is related to https://github.com/meilisearch/meilisearch/issues/2532 but it doesn't fix it entirely. It improves it by computing the excluded documents (the ones with an already-seen distinct value) before stopping the loop, I think it was a mistake and should always have been this way.
The reason it doesn't fix the issue is that Meilisearch is lazy, just to be sure not to compute too many things and answer by taking too much time. When we deduplicate the documents by their distinct value we must do it along the water, everytime we see a new document we check that its distinct value of it doesn't collide with an already returned document.
The reason we can see the correct result when enough documents are fetched is that we were lucky to see all of the different distinct values possible in the dataset and all of the deduplication was done, no document can be returned.
If we wanted to implement that to have a correct `extimatedNbHits` every time we should have done a pass on the whole set of possible distinct values for the distinct attribute and do a big intersection, this could cost a lot of CPU cycles.
Co-authored-by: Kerollmops <clement@meilisearch.com>
552: Fix escaped quotes in filter r=Kerollmops a=irevoire
Will fix https://github.com/meilisearch/meilisearch/issues/2380
The issue was that in the evaluation of the filter, I was using the deref implementation instead of calling the `value` method of my token.
To avoid the problem happening again, I removed the deref implementation; now, you need to either call the `lexeme` or the `value` methods but can't rely on a « default » implementation to get a string out of a token.
Co-authored-by: Tamo <tamo@meilisearch.com>
547: Update version for next release (v0.29.1) r=Kerollmops a=curquiza
A new milli version will be released once this PR is merged https://github.com/meilisearch/milli/pull/543
Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
541: Update version for next release (v0.29.0) r=ManyTheFish a=curquiza
Need to update the version since #540 was merged and breaking
Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
535: Reintroduce the max values by facet limit r=ManyTheFish a=Kerollmops
This PR reintroduces the max values by facet limit this is related to https://github.com/meilisearch/meilisearch/issues/2349.
~I would like some help in deciding on whether I keep the default 100 max values in milli and set up the `FacetDistribution` settings in Meilisearch to use 1000 as the new value, I expose the `max_values_by_facet` for this purpose.~
I changed the default value to 1000 and the max to 10000, thank you `@ManyTheFish` for the help!
Co-authored-by: Kerollmops <clement@meilisearch.com>
538: speedup exact words r=Kerollmops a=MarinPostma
This PR make `exact_words` return an `Option` instead of an empty set, since set creation is costly, as noticed by `@kerollmops.`
I was not convinces that this was the cause for all of the performance drop we measured, and then realized that methods that initialized it were called recursively which caused initialization times to add up. While the first fix solves the issue when not using exact words, using exact word remained way more expensive that it should be. To address this issue, the exact words are cached into the `Context`, so they are only initialized once.
Co-authored-by: ad hoc <postma.marin@protonmail.com>
525: Simplify the error creation with thiserror r=irevoire a=irevoire
I introduced [`thiserror`](https://docs.rs/thiserror/latest/thiserror/) to implements all the `Display` trait and most of the `impl From<xxx> for yyy` in way less lines.
And then I introduced a cute macro to implements the `impl<X, Y, Z> From<X> for Z where Y: From<X>, Z: From<X>` more easily.
Co-authored-by: Tamo <tamo@meilisearch.com>
523: Improve geosearch error messages r=irevoire a=irevoire
Improve the geosearch error messages (#488).
And try to parse the string as specified in https://github.com/meilisearch/meilisearch/issues/2354
Co-authored-by: Tamo <tamo@meilisearch.com>
520: fix mistake in Settings initialization r=irevoire a=MarinPostma
fix settings not being correctly initialized and add a test to make sure that they are in the future.
fix https://github.com/meilisearch/meilisearch/issues/2358
Co-authored-by: ad hoc <postma.marin@protonmail.com>
518: Return facets even when there is no value associated to it r=Kerollmops a=Kerollmops
This PR is related to https://github.com/meilisearch/meilisearch/issues/2352 and should fix the issue when Meilisearch is up-to-date with this PR.
Co-authored-by: Kerollmops <clement@meilisearch.com>
511: Update version in every workspace r=curquiza a=curquiza
Checked with `@Kerollmops`
- Update the version into every workspace (the current version is v0.27.0, but I forgot to update it for the previous release)
- add `publish = false` except in `milli` workspace.
Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
514: Stop flattening every field r=Kerollmops a=irevoire
When we need to flatten a document:
* The primary key contains a `.`.
* Some fields need to be flattened
Instead of flattening the whole object and thus creating a lot of allocations with the `serde_json_flatten_crate`, we instead generate a minimal sub-object containing only the fields that need to be flattened.
That should create fewer allocations and thus index faster.
---------
```
group indexing_main_e1e362fa indexing_stop-flattening-every-field_40d1bd6b
----- ---------------------- ---------------------------------------------
indexing/Indexing geo_point 1.99 23.7±0.23s ? ?/sec 1.00 11.9±0.21s ? ?/sec
indexing/Indexing movies in three batches 1.00 18.2±0.24s ? ?/sec 1.01 18.3±0.29s ? ?/sec
indexing/Indexing movies with default settings 1.00 17.5±0.09s ? ?/sec 1.01 17.7±0.26s ? ?/sec
indexing/Indexing songs in three batches with default settings 1.00 64.8±0.47s ? ?/sec 1.00 65.1±0.49s ? ?/sec
indexing/Indexing songs with default settings 1.00 54.9±0.99s ? ?/sec 1.01 55.7±1.34s ? ?/sec
indexing/Indexing songs without any facets 1.00 50.6±0.62s ? ?/sec 1.01 50.9±1.05s ? ?/sec
indexing/Indexing songs without faceted numbers 1.00 54.0±1.14s ? ?/sec 1.01 54.7±1.13s ? ?/sec
indexing/Indexing wiki 1.00 996.2±8.54s ? ?/sec 1.02 1021.1±30.63s ? ?/sec
indexing/Indexing wiki in three batches 1.00 1136.8±9.72s ? ?/sec 1.00 1138.6±6.59s ? ?/sec
```
So basically everything slowed down a liiiiiittle bit except the dataset with a nested field which got twice faster
Co-authored-by: Tamo <tamo@meilisearch.com>
505: normalize exact words r=curquiza a=MarinPostma
Normalize the exact words, as specified in the specification.
Co-authored-by: ad hoc <postma.marin@protonmail.com>
483: Enhance matching words r=Kerollmops a=ManyTheFish
# Summary
Enhance milli word-matcher making it handle match computing and cropping.
# Implementation
## Computing best matches for cropping
Before we were considering that the first match of the attribute was the best one, this was accurate when only one word was searched but was missing the target when more than one word was searched.
Now we are searching for the best matches interval to crop around, the chosen interval is the one:
1) that have the highest count of unique matches
> for example, if we have a query `split the world`, then the interval `the split the split the` has 5 matches but only 2 unique matches (1 for `split` and 1 for `the`) where the interval `split of the world` has 3 matches and 3 unique matches. So the interval `split of the world` is considered better.
2) that have the minimum distance between matches
> for example, if we have a query `split the world`, then the interval `split of the world` has a distance of 3 (2 between `split` and `the`, and 1 between `the` and `world`) where the interval `split the world` has a distance of 2. So the interval `split the world` is considered better.
3) that have the highest count of ordered matches
> for example, if we have a query `split the world`, then the interval `the world split` has 2 ordered words where the interval `split the world` has 3. So the interval `split the world` is considered better.
## Cropping around the best matches interval
Before we were cropping around the interval without checking the context.
Now we are cropping around words in the same context as matching words.
This means that we will keep words that are farther from the matching words but are in the same phrase, than words that are nearer but separated by a dot.
> For instance, for the matching word `Split` the text:
`Natalie risk her future. Split The World is a book written by Emily Henry. I never read it.`
will be cropped like:
`…. Split The World is a book written by Emily Henry. …`
and not like:
`Natalie risk her future. Split The World is a book …`
Co-authored-by: ManyTheFish <many@meilisearch.com>
We need to store all the external id (primary key) in a hashmap
associated to their internal id during.
The smartstring remove heap allocation / memory usage and should
improve the cache locality.
486: Update version (v0.25.0) r=curquiza a=curquiza
v0.25.0 will be released once #478 is merged
Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
472: Remove useless variables in proximity r=Kerollmops a=ManyTheFish
Was passing by plane sweep algorithm to find some inspiration, and I discover that we have useless variables that were not detected because of the recursive function.
Co-authored-by: ManyTheFish <many@meilisearch.com>
466: Bump version to 0.23.1 r=curquiza a=Kerollmops
This PR bumps the crate versions to 0.23.1. Nothing seems to be breaking in the next release.
Co-authored-by: Kerollmops <clement@meilisearch.com>
467: optimize prefix database r=Kerollmops a=MarinPostma
This pr introduces two optimizations that greatly improve the speed of computing prefix databases.
- The time that it takes to create the prefix FST has been divided by 5 by inverting the way we iterated over the words FST.
- We unconditionally and needlessly checked for documents to remove in `word_prefix_pair`, which caused an iteration over the whole database.
Co-authored-by: ad hoc <postma.marin@protonmail.com>
> "Attribute `{}` is not sortable. This index doesn't have configured sortable attributes."
> "Attribute `{}` is not sortable. Available sortable attributes are: `{}`."
coexist in the error handling
436: Speed up the word prefix databases computation time r=Kerollmops a=Kerollmops
This PR depends on the fixes done in #431 and must be merged after it.
In this PR we will bring the `WordPrefixPairProximityDocids`, `WordPrefixDocids` and, `WordPrefixPositionDocids` update structures to a new era, a better era, where computing the word prefix pair proximities costs much fewer CPU cycles, an era where this update structure can use the, previously computed, set of new word docids from the newly indexed batch of documents.
---
The `WordPrefixPairProximityDocids` is an update structure, which means that it is an object that we feed with some parameters and which modifies the LMDB database of an index when asked for. This structure specifically computes the list of word prefix pair proximities, which correspond to a list of pairs of words associated with a proximity (the distance between both words) where the second word is not a word but a prefix e.g. `s`, `se`, `a`. This word prefix pair proximity is associated with the list of documents ids which contains the pair of words and prefix at the given proximity.
The origin of the performances issue that this struct brings is related to the fact that it starts its job from the beginning, it clears the LMDB database before rewriting everything from scratch, using the other LMDB databases to achieve that. I hope you understand that this is absolutely not an optimized way of doing things.
Co-authored-by: Clément Renault <clement@meilisearch.com>
Co-authored-by: Kerollmops <clement@meilisearch.com>
442: fix phrase search r=curquiza a=MarinPostma
Run the exact match search on 7 words windows instead of only two. This makes false positive very very unlikely, and impossible on phrase query that are less than seven words.
Co-authored-by: ad hoc <postma.marin@protonmail.com>
431: Fix and improve word prefix pair proximity r=ManyTheFish a=Kerollmops
This PR first fixes the algorithm we used to select and compute the word prefix pair proximity database. The previous version was skipping nearly all of the prefixes. The issue is that this fix made this method to take more time and we were trying to reduce the time spent in it.
With `@ManyTheFish` we found out that we could skip some of the work we were doing by:
- discarding the prefixes that were shorter than a specific threshold (default: 2).
- discarding the word prefix pairs with proximity bigger than a specific threshold (default: 4).
- remove the unused threshold that was specifying a minimum amount of word docids to merge.
We will take more time to do some more optimization, like stop clearing and recomputing from scratch the database, we will compute the subsets of keys to create, keep and merge. This change is a little bit more complex than what this PR does.
I keep this PR as a draft as I want to further test the real gain if it is enough or not if it is valid or not. I advise reviewers to review commit by commit to see the changes bit by bit, reviewing the whole PR can be hard.
Co-authored-by: Clément Renault <clement@meilisearch.com>
433: fix(filter): Fix two bugs. r=Kerollmops a=irevoire
- Stop lowercasing the field when looking in the field id map
- When a field id does not exist it means there is currently zero
documents containing this field thus we return an empty RoaringBitmap
instead of throwing an internal error
Will fix https://github.com/meilisearch/MeiliSearch/issues/2082 once meilisearch is released
Co-authored-by: Tamo <tamo@meilisearch.com>
426: Fix search highlight for non-unicode chars r=ManyTheFish a=Samyak2
# Pull Request
## What does this PR do?
Fixes https://github.com/meilisearch/MeiliSearch/issues/1480
<!-- Please link the issue you're trying to fix with this PR, if none then please create an issue first. -->
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
## Changes
The `matching_bytes` function takes a `&Token` now and:
- gets the number of bytes to highlight (unchanged).
- uses `Token.num_graphemes_from_bytes` to get the number of grapheme clusters to highlight.
In essence, the `matching_bytes` function now returns the number of matching grapheme clusters instead of bytes.
Added proper highlighting in the HTTP UI:
- requires dependency on `unicode-segmentation` to extract grapheme clusters from tokens
- `<mark>` tag is put around only the matched part
- before this change, the entire word was highlighted even if only a part of it matched
## Questions
Since `matching_bytes` does not return number of bytes but grapheme clusters, should it be renamed to something like `matching_chars` or `matching_graphemes`? Will this break the API?
Thank you very much `@ManyTheFish` for helping 😄
Co-authored-by: Samyak S Sarnayak <samyak201@gmail.com>
- Stop lowercasing the field when looking in the field id map
- When a field id does not exist it means there is currently zero
documents containing this field thus we returns an empty RoaringBitmap
instead of throwing an internal error
The `matching_bytes` function takes a `&Token` now and:
- gets the number of bytes to highlight (unchanged).
- uses `Token.num_graphemes_from_bytes` to get the number of grapheme
clusters to highlight.
In essence, the `matching_bytes` function returns the number of matching
grapheme clusters instead of bytes. Should this function be renamed
then?
Added proper highlighting in the HTTP UI:
- requires dependency on `unicode-segmentation` to extract grapheme
clusters from tokens
- `<mark>` tag is put around only the matched part
- before this change, the entire word was highlighted even if only a
part of it matched
returned metaimprove document addition returned metaimprove document
addition returned metaimprove document addition returned metaimprove
document addition returned metaimprove document addition returned
metaimprove document addition returned meta
407: Update version for the next release (v0.20.0) r=curquiza a=curquiza
Breaking because of #405 and #406
Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
402: Optimize document transform r=MarinPostma a=MarinPostma
This pr optimizes the transform of documents additions in the obkv format. Instead on accepting any serializable objects, we instead treat json and CSV specifically:
- For json, we build a serde `Visitor`, that transform the json straight into obkv without intermediate representation.
- For csv, we directly write the lines in the obkv, applying other optimization as well.
Co-authored-by: marin postma <postma.marin@protonmail.com>
390: Add helper methods on the settings r=Kerollmops a=irevoire
This would be a good addition to look at the content of a setting without consuming it.
It’s useful for analytics.
Co-authored-by: Irevoire <tamo@meilisearch.com>
384: Replace memmap with memmap2 r=Kerollmops a=palfrey
[memmap is unmaintained](https://rustsec.org/advisories/RUSTSEC-2020-0077.html) and needs replacing. memmap2 is a drop-in replacement fork that's well maintained. Note that the version numbers got reset on fork, hence the lower values.
Co-authored-by: Tom Parker-Shemilt <palfrey@tevp.net>
388: fix primary key inference r=MarinPostma a=MarinPostma
The primary key is was infered from a hashtable index of the field. For this reason the order in which the fields were interated upon was not deterministic, and the primary key was chosed ffrom the first field containing "id".
This fix sorts the the index by field_id when infering the primary key.
Co-authored-by: mpostma <postma.marin@protonmail.com>
Instead of using an arbitrary limit we encode the absolute position in a u32
using one strong u16 for the field id and a weak u16 for the relative position in the attribute.
386: fix obkv document r=curquiza a=MarinPostma
When serializing a document, the serializer resolved the field_id of the current field and immediately added it to the obkv document under construction. The issue with that is that obkv expects the fields to be inserted in order, and when a document with out of order fields was added, obkv failed to insert the field.
The current fix first resolves each field_id, and adds all the fields to a temporary `BTreeMap`, until `end` is called on the map serializer, where all the fields are added to the obkv at once, and in order.
Co-authored-by: mpostma <postma.marin@protonmail.com>
Latitude are not supposed to go beyound 90 degrees or below -90.
The same goes for longitude with 180 or -180.
This was badly implemented in the filters, and was not implemented for the AscDesc rules.
379: Revert "Change chunk size to 4MiB to fit more the end user usage" r=curquiza a=ManyTheFish
Reverts meilisearch/milli#370
Co-authored-by: Many <legendre.maxime.isn@gmail.com>
376: Stop casting integer docids to string r=Kerollmops a=irevoire
When a docid is an integer, we stop casting it to a string, and thus we don't add `"` around it.
Co-authored-by: Tamo <tamo@meilisearch.com>
373: Improve error message for bad sort syntax with geosearch r=Kerollmops a=irevoire
`@Kerollmops` This should be the last PR for the geosearch and error handling, sorry for doing it in so many steps 😬
Co-authored-by: Tamo <tamo@meilisearch.com>