2010 Commits

Author SHA1 Message Date
bors[bot]
2c2f3d38cc
Merge #617
617: Accept integers as document ids again r=irevoire a=Kerollmops

This PR is related to https://github.com/meilisearch/meilisearch/issues/2723 and will fix when this PR will be merged, a new release deployed and used in Meilisearch itself.

This PR makes the indexer to try to parse the values of the fields identified as numbers i.e. `id:number` as integer first then as float if it fails.

Co-authored-by: Clément Renault <clement@meilisearch.com>
2022-08-31 09:25:17 +00:00
Clément Renault
7f92116b51
Accept again integers as document ids 2022-08-31 10:56:39 +02:00
bors[bot]
0b55e7ce6a
Merge #615
615: Remove the artifacts of the past r=Kerollmops a=irevoire



Co-authored-by: Irevoire <tamo@meilisearch.com>
2022-08-23 14:22:43 +00:00
Irevoire
f6024b3269
Remove the artifacts of the past 2022-08-23 16:10:38 +02:00
bors[bot]
a79ff8a1a9
Merge #611
611: Upgrade charabia v0.6.0 r=curquiza a=ManyTheFish

# Pull Request

## What does this PR do?

- Update `log`
- Upgrade `charabia`

related to https://github.com/meilisearch/meilisearch/issues/2686


Co-authored-by: ManyTheFish <many@meilisearch.com>
2022-08-23 10:17:29 +00:00
bors[bot]
e314423653
Merge #613
613: Update version for next release (v0.33.0) r=Kerollmops a=curquiza



Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
2022-08-23 10:01:20 +00:00
bors[bot]
d0521e493f
Merge #612
612: Remove Bors required test for Windows r=Kerollmops a=curquiza

Remove the required windows test for merging due to the issue with Lindera
https://github.com/meilisearch/milli/runs/7970141278?check_suite_focus=true

Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
2022-08-23 09:47:51 +00:00
Clémentine Urquizar
9ed7324995
Update version for next release (v0.33.0) 2022-08-23 11:47:48 +02:00
Clémentine Urquizar
e140227065
Remove Bors required test for Windows 2022-08-23 11:45:29 +02:00
bors[bot]
18886dc6b7
Merge #598
598: Matching query terms policy r=Kerollmops a=ManyTheFish

## Summary

Implement several optional words strategy.

## Content

Replace `optional_words` boolean with an enum containing several term matching strategies:
```rust
pub enum TermsMatchingStrategy {
    // remove last word first
    Last,
    // remove first word first
    First,
    // remove more frequent word first
    Frequency,
    // remove smallest word first
    Size,
    // only one of the word is mandatory
    Any,
    // all words are mandatory
    All,
}
```

All strategies implemented during the prototype are kept, but only `Last` and `All` will be published by Meilisearch in the `v0.29.0` release.

## Related

spec: https://github.com/meilisearch/specifications/pull/173
prototype discussion: https://github.com/meilisearch/meilisearch/discussions/2639#discussioncomment-3447699


Co-authored-by: ManyTheFish <many@meilisearch.com>
2022-08-22 15:51:37 +00:00
ManyTheFish
5391e3842c replace optional_words by term_matching_strategy 2022-08-22 17:47:19 +02:00
ManyTheFish
f9029727e0 Fix benchmarks 2022-08-22 14:55:53 +02:00
ManyTheFish
a5b9a35c50 Activate char_map for highlighting 2022-08-22 14:39:16 +02:00
ManyTheFish
ba5ca8a362 Upgrade charabia v0.6.0 2022-08-22 14:38:00 +02:00
ManyTheFish
5943e1c3b2 Update log dependency 2022-08-22 13:55:01 +02:00
bors[bot]
b46225070f
Merge #610
610: Share heed between all sub-crates r=Kerollmops a=irevoire

# Pull Request

## What does this PR do?
Use the reexported version of heed in the benchmarks and the fuzzer

Co-authored-by: Irevoire <tamo@meilisearch.com>
2022-08-22 08:44:31 +00:00
Irevoire
e7624abe63
share heed between all sub-crates 2022-08-19 11:23:41 +02:00
ManyTheFish
993aa1321c Fix query tree building 2022-08-18 17:56:06 +02:00
ManyTheFish
bff9653050 Fix remove count 2022-08-18 17:36:30 +02:00
ManyTheFish
9640976c79 Rename TermMatchingPolicies 2022-08-18 17:36:08 +02:00
bors[bot]
60a7221827
Merge #609
609: Retry downloading the benchmarks datasets r=Kerollmops a=irevoire

Downloading the benchmarks datasets is failing [more and more](https://github.com/meilisearch/milli/pull/607#pullrequestreview-1076023074) often; thus, instead of fixing the issue, I thought we could retry multiple times.


Co-authored-by: Irevoire <tamo@meilisearch.com>
2022-08-18 11:47:09 +00:00
bors[bot]
afc10acd19
Merge #596
596: Filter operators: NOT + IN[..] r=irevoire a=loiclec

# Pull Request

## What does this PR do?
Implements the changes described in https://github.com/meilisearch/meilisearch/issues/2580
It is based on top of #556 

Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
2022-08-18 11:24:32 +00:00
Loïc Lecrenier
c7a86b56ef Fix filter parser compilation error 2022-08-18 13:16:56 +02:00
Loïc Lecrenier
9b6602cba2 Avoid cloning FilterCondition in filter array parsing 2022-08-18 13:06:57 +02:00
Loïc Lecrenier
8a271223a9 Change a macro_rules to a function in filter parser 2022-08-18 13:03:55 +02:00
Loïc Lecrenier
dd34dbaca5 Add more filter parser tests 2022-08-18 11:55:01 +02:00
Loïc Lecrenier
5d74ebd5e5 Cargo fmt 2022-08-18 11:36:38 +02:00
Loïc Lecrenier
9af69c151b Limit the maximum depth of filters
This should have no impact on the user but is there to safeguard
meilisearch against malicious inputs.
2022-08-18 11:31:38 +02:00
Loïc Lecrenier
c51dcad51b Don't recompute filterable fields in evaluation of IN[] filter 2022-08-18 10:59:21 +02:00
Loïc Lecrenier
98f0da6b38 Simplify representation of nested NOT filters 2022-08-18 10:58:24 +02:00
Loïc Lecrenier
b030efdc83 Fix parsing of IN[] filter followed by whitespace + factorise its impl 2022-08-18 10:58:04 +02:00
Irevoire
84a784834e
retry downloading the benchmarks datasets 2022-08-17 19:25:05 +02:00
bors[bot]
79094bcbcf
Merge #607
607: Better threshold r=Kerollmops a=irevoire

# Pull Request

## What does this PR do?
Fixes #570 

This PR tries to improve the threshold used to trigger the real deletion of documents.
The deletion is now triggered in two cases;
- 10% of the total available space is used by soft deleted documents
- 90% of the total available space is used.

In this context, « total available space » means the `map_size` of lmdb.
And the size used by the soft deleted documents is actually an estimation. We can't determine precisely the size used by one document thus what we do is; take the total space used, divide it by the number of documents + soft deleted documents to estimate the size of one average document. Then multiply the size of one avg document by the number of soft deleted document.

--------

<img width="808" alt="image" src="https://user-images.githubusercontent.com/7032172/185083075-92cf379e-8ae1-4bfc-9ca6-93b54e6ab4e9.png">

Here we can see we have a ~10GB drift in the end between the space used by the soft deleted and the real space used by the documents.
Personally I don’t think that's a big issue because once the red line reach 90GB everything will be freed but now you know.

If you have an idea on how to improve this estimation I would love to hear it.
It look like the difference is linear so maybe we could simply multiply the current estimation by two?

Co-authored-by: Irevoire <tamo@meilisearch.com>
2022-08-17 16:31:04 +00:00
Loïc Lecrenier
497f9817a2 Use snapshot testing for the filter parser 2022-08-17 17:35:01 +02:00
Irevoire
4aae07d5f5
expose the size methods 2022-08-17 17:07:38 +02:00
Irevoire
e96b852107
bump heed 2022-08-17 17:05:50 +02:00
Loïc Lecrenier
238a7be58d Fix filter parser handling of keywords and surrounding spaces
Now the following fragments are allowed:

AND(field =

AND'field' =

AND"field" =
2022-08-17 16:53:40 +02:00
Loïc Lecrenier
b09a8f1b91 Filters: add explicit error message when using a keyword as value 2022-08-17 16:07:00 +02:00
bors[bot]
087da5621a
Merge #587
587: Word prefix pair proximity docids indexation refactor r=Kerollmops a=loiclec

# Pull Request

## What does this PR do?
Refactor the code of `WordPrefixPairProximityDocIds` to make it much faster, fix a bug, and add a unit test.

## Why is it faster?
Because we avoid using a sorter to insert the (`word1`, `prefix`, `proximity`) keys and their associated bitmaps, and thus we don't have to sort a potentially very big set of data. I have also added a couple of other optimisations: 

1. reusing allocations
2. using a prefix trie instead of an array of prefixes to get all the prefixes of a word
3. inserting directly into the database instead of putting the data in an intermediary grenad when possible. Also avoid checking for pre-existing values in the database when we know for certain that they do not exist. 

## What bug was fixed?
When reindexing, the `new_prefix_fst_words` prefixes may look like:
```
["ant",  "axo", "bor"]
```
which we group by first letter:
```
[["ant", "axo"], ["bor"]]
```

Later in the code, if we have the word2 "axolotl", we try to find which subarray of prefixes contains its prefixes. This check is done with `word2.starts_with(subarray_prefixes[0])`, but `"axolotl".starts_with("ant")` is false, and thus we wrongly think that there are no prefixes in `new_prefix_fst_words` that are prefixes of `axolotl`.

## StrStrU8Codec
I had to change the encoding of `StrStrU8Codec` to make the second string null-terminated as well. I don't think this should be a problem, but I may have missed some nuances about the impacts of this change.

## Requests when reviewing this PR
I have explained what the code does in the module documentation of `word_pair_proximity_prefix_docids`. It would be nice if someone could read it and give their opinion on whether it is a clear explanation or not. 

I also have a couple questions regarding the code itself:
- Should we clean up and factor out the `PrefixTrieNode` code to try and make broader use of it outside this module? For now, the prefixes undergo a few transformations: from FST, to array, to prefix trie. It seems like it could be simplified.
- I wrote a function called `write_into_lmdb_database_without_merging`. (1) Are we okay with such a function existing? (2) Should it be in `grenad_helpers` instead?

## Benchmark Results

We reduce the time it takes to index about 8% in most cases, but it varies between -3% and -20%. 

```
group                                                                     indexing_main_ce90fc62                  indexing_word-prefix-pair-proximity-docids-refactor_cbad2023
-----                                                                     ----------------------                  ------------------------------------------------------------
indexing/-geo-delete-facetedNumber-facetedGeo-searchable-                 1.00  1893.0±233.03µs        ? ?/sec    1.01  1921.2±260.79µs        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-           1.05      9.4±3.51ms        ? ?/sec     1.00      9.0±2.14ms        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-nested-    1.22    18.3±11.42ms        ? ?/sec     1.00     15.0±5.79ms        ? ?/sec
indexing/-songs-delete-facetedString-facetedNumber-searchable-            1.00     41.4±4.20ms        ? ?/sec     1.28    53.0±13.97ms        ? ?/sec
indexing/-wiki-delete-searchable-                                         1.00   285.6±18.12ms        ? ?/sec     1.03   293.1±16.09ms        ? ?/sec
indexing/Indexing geo_point                                               1.03      60.8±0.45s        ? ?/sec     1.00      58.8±0.68s        ? ?/sec
indexing/Indexing movies in three batches                                 1.14      16.5±0.30s        ? ?/sec     1.00      14.5±0.24s        ? ?/sec
indexing/Indexing movies with default settings                            1.11      13.7±0.07s        ? ?/sec     1.00      12.3±0.28s        ? ?/sec
indexing/Indexing nested movies with default settings                     1.10      10.6±0.11s        ? ?/sec     1.00       9.6±0.15s        ? ?/sec
indexing/Indexing nested movies without any facets                        1.11       9.4±0.15s        ? ?/sec     1.00       8.5±0.10s        ? ?/sec
indexing/Indexing songs in three batches with default settings            1.18      66.2±0.39s        ? ?/sec     1.00      56.0±0.67s        ? ?/sec
indexing/Indexing songs with default settings                             1.07      58.7±1.26s        ? ?/sec     1.00      54.7±1.71s        ? ?/sec
indexing/Indexing songs without any facets                                1.08      53.1±0.88s        ? ?/sec     1.00      49.3±1.43s        ? ?/sec
indexing/Indexing songs without faceted numbers                           1.08      57.7±1.33s        ? ?/sec     1.00      53.3±0.98s        ? ?/sec
indexing/Indexing wiki                                                    1.06   1051.1±21.46s        ? ?/sec     1.00    989.6±24.55s        ? ?/sec
indexing/Indexing wiki in three batches                                   1.20    1184.8±8.93s        ? ?/sec     1.00     989.7±7.06s        ? ?/sec
indexing/Reindexing geo_point                                             1.04      67.5±0.75s        ? ?/sec     1.00      64.9±0.32s        ? ?/sec
indexing/Reindexing movies with default settings                          1.12      13.9±0.17s        ? ?/sec     1.00      12.4±0.13s        ? ?/sec
indexing/Reindexing songs with default settings                           1.05      60.6±0.84s        ? ?/sec     1.00      57.5±0.99s        ? ?/sec
indexing/Reindexing wiki                                                  1.07   1725.0±17.92s        ? ?/sec     1.00    1611.4±9.90s        ? ?/sec
```

Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
2022-08-17 14:06:12 +00:00
bors[bot]
fb95e67a2a
Merge #608
608: Fix soft deleted documents r=ManyTheFish a=ManyTheFish

When we replaced or updated some documents, the indexing was skipping the replaced documents.

Related to https://github.com/meilisearch/meilisearch/issues/2672

Co-authored-by: ManyTheFish <many@meilisearch.com>
2022-08-17 13:38:10 +00:00
bors[bot]
e4a52e6e45
Merge #594
594: Fix(Search): Fix phrase search candidates computation r=Kerollmops a=ManyTheFish

This bug is an old bug but was hidden by the proximity criterion,
Phrase searches were always returning an empty candidates list when the proximity criterion is deactivated.

Before the fix, we were trying to find any words[n] near words[n]
instead of finding  any words[n] near words[n+1], for example:

for a phrase search '"Hello world"' we were searching for "hello" near "hello" first, instead of "hello" near "world".



Co-authored-by: ManyTheFish <many@meilisearch.com>
2022-08-17 13:22:52 +00:00
ManyTheFish
8c3f1a9c39 Remove useless lifetime declaration 2022-08-17 15:20:43 +02:00
ManyTheFish
e9e2349ce6 Fix typo in comment 2022-08-17 15:09:48 +02:00
ManyTheFish
2668f841d1 Fix update indexing 2022-08-17 15:03:37 +02:00
ManyTheFish
7384650d85 Update test to showcase the bug 2022-08-17 15:03:08 +02:00
bors[bot]
39869be23b
Merge #590
590: Optimise facets indexing r=Kerollmops a=loiclec

# Pull Request

## What does this PR do?
Fixes #589 

## Notes
I added documentation for the whole module which attempts to explain the shape of the databases and their purpose. However, I realise there is already some documentation about this, so I am not sure if we want to keep it.

## Benchmarks

We get a ~1.15x speed up on the geo_point benchmark.

```
group                                                                     indexing_main_57042355                  indexing_optimise-facets-indexation_5728619a
-----                                                                     ----------------------                  --------------------------------------------
indexing/-geo-delete-facetedNumber-facetedGeo-searchable-                 1.00  1862.7±294.45µs        ? ?/sec    1.58      2.9±1.32ms        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-           1.11      8.9±2.44ms        ? ?/sec     1.00      8.0±1.42ms        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-nested-    1.00     12.8±3.32ms        ? ?/sec     1.32     16.9±6.98ms        ? ?/sec
indexing/-songs-delete-facetedString-facetedNumber-searchable-            1.09     43.8±4.78ms        ? ?/sec     1.00     40.3±3.79ms        ? ?/sec
indexing/-wiki-delete-searchable-                                         1.08   287.4±28.72ms        ? ?/sec     1.00    264.9±9.46ms        ? ?/sec
indexing/Indexing geo_point                                               1.14      61.2±0.39s        ? ?/sec     1.00      53.8±0.57s        ? ?/sec
indexing/Indexing movies in three batches                                 1.00      16.6±0.12s        ? ?/sec     1.00      16.5±0.10s        ? ?/sec
indexing/Indexing movies with default settings                            1.00      14.1±0.30s        ? ?/sec     1.00      14.0±0.28s        ? ?/sec
indexing/Indexing nested movies with default settings                     1.10      10.9±0.50s        ? ?/sec     1.00      10.0±0.10s        ? ?/sec
indexing/Indexing nested movies without any facets                        1.01       9.6±0.23s        ? ?/sec     1.00       9.5±0.06s        ? ?/sec
indexing/Indexing songs in three batches with default settings            1.07      66.3±0.55s        ? ?/sec     1.00      61.8±0.63s        ? ?/sec
indexing/Indexing songs with default settings                             1.03      58.8±0.82s        ? ?/sec     1.00      57.1±1.22s        ? ?/sec
indexing/Indexing songs without any facets                                1.00      53.6±1.09s        ? ?/sec     1.01      54.0±0.58s        ? ?/sec
indexing/Indexing songs without faceted numbers                           1.02      58.0±1.29s        ? ?/sec     1.00      57.1±1.43s        ? ?/sec
indexing/Indexing wiki                                                    1.00   1064.1±21.20s        ? ?/sec     1.00   1068.0±20.49s        ? ?/sec
indexing/Indexing wiki in three batches                                   1.00    1182.5±9.62s        ? ?/sec     1.01   1191.2±10.96s        ? ?/sec
indexing/Reindexing geo_point                                             1.12      68.0±0.21s        ? ?/sec     1.00      60.5±0.82s        ? ?/sec
indexing/Reindexing movies with default settings                          1.01      14.1±0.21s        ? ?/sec     1.00      14.0±0.26s        ? ?/sec
indexing/Reindexing songs with default settings                           1.04      61.6±0.57s        ? ?/sec     1.00      59.2±0.87s        ? ?/sec
indexing/Reindexing wiki                                                  1.00   1734.0±11.38s        ? ?/sec     1.01   1746.6±22.48s        ? ?/sec
```


Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
2022-08-17 11:46:55 +00:00
Loïc Lecrenier
6cc975704d Add some documentation to facets.rs 2022-08-17 12:59:52 +02:00
Loïc Lecrenier
93252769af Apply review suggestions 2022-08-17 12:41:22 +02:00
Loïc Lecrenier
196f79115a Run cargo fmt 2022-08-17 12:28:33 +02:00
Loïc Lecrenier
d10d78d520 Add integration tests for the IN filter 2022-08-17 12:28:33 +02:00