mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-07-04 20:37:15 +02:00
357 lines
10 KiB
Rust
357 lines
10 KiB
Rust
use std::collections::BTreeMap;
|
|
|
|
use meili_snap::{json_string, snapshot};
|
|
use wiremock::matchers::{method, path};
|
|
use wiremock::{Mock, MockServer, Request, ResponseTemplate};
|
|
|
|
use crate::common::Value;
|
|
use crate::json;
|
|
use crate::vector::{get_server_vector, GetAllDocumentsOptions};
|
|
|
|
async fn create_mock(indexing_fragments: Value, search_fragments: Value) -> (MockServer, Value) {
|
|
let mock_server = MockServer::start().await;
|
|
|
|
let text_to_embedding: BTreeMap<_, _> = vec![
|
|
("kefir", [0.5, -0.5, 0.0]),
|
|
("intel", [1.0, 1.0, 0.0]),
|
|
("dustin", [-0.5, 0.5, 0.0]),
|
|
("bulldog", [0.0, 0.0, 1.0]),
|
|
("labrador", [0.0, 0.0, -1.0]),
|
|
]
|
|
.into_iter()
|
|
.collect();
|
|
|
|
Mock::given(method("POST"))
|
|
.and(path("/"))
|
|
.respond_with(move |req: &Request| {
|
|
let text = String::from_utf8_lossy(&req.body).to_string();
|
|
let mut data = [0.0, 0.0, 0.0];
|
|
for (inner_text, inner_data) in &text_to_embedding {
|
|
if text.contains(inner_text) {
|
|
for (i, &value) in inner_data.iter().enumerate() {
|
|
data[i] += value;
|
|
}
|
|
}
|
|
}
|
|
ResponseTemplate::new(200).set_body_json(
|
|
json!({ "data": data })
|
|
)
|
|
})
|
|
.mount(&mock_server)
|
|
.await;
|
|
let url = mock_server.uri();
|
|
|
|
let embedder_settings = json!({
|
|
"source": "rest",
|
|
"url": url,
|
|
"dimensions": 3,
|
|
"request": "{{fragment}}",
|
|
"response": {
|
|
"data": "{{embedding}}"
|
|
},
|
|
"indexingFragments": indexing_fragments,
|
|
"searchFragments": search_fragments,
|
|
"documentTemplate": "document template: {{dog.name}}",
|
|
});
|
|
|
|
(mock_server, embedder_settings)
|
|
}
|
|
|
|
|
|
#[actix_rt::test]
|
|
async fn test_fragment_indexing() {
|
|
let (_mock, settings) = create_mock(
|
|
json!({
|
|
"withBreed": {"value": "{{ doc.name }} is a {{ doc.breed }}"},
|
|
"basic": {"value": "{{ doc.name }} is a dog"},
|
|
}),
|
|
json!({
|
|
"withBreed": {"value": "{{ doc.name }} is a {{ doc.breed }}"},
|
|
"basic": {"value": "{{ doc.name }} is a dog"},
|
|
})
|
|
).await;
|
|
let server = get_server_vector().await;
|
|
let index = server.index("doggo");
|
|
|
|
// Enable the experimental feature
|
|
let (_response, code) = server.set_features(json!({"multimodal": true})).await;
|
|
snapshot!(code, @"200 OK");
|
|
|
|
// Configure the index to use our mock embedder
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"rest": settings,
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
|
|
let task = server.wait_task(response.uid()).await;
|
|
println!("[task] {:?}", task);
|
|
snapshot!(task["status"], @r###""succeeded""###);
|
|
|
|
// Send documents
|
|
let documents = json!([
|
|
{"id": 0, "name": "kefir"},
|
|
{"id": 1, "name": "echo", "_vectors": { "rest": [1, 1, 1] }},
|
|
{"id": 2, "name": "intel", "breed": "labrador"},
|
|
{"id": 3, "name": "dustin", "breed": "bulldog"},
|
|
]);
|
|
let (value, code) = index.add_documents(documents, None).await;
|
|
snapshot!(code, @"202 Accepted");
|
|
|
|
let task = index.wait_task(value.uid()).await;
|
|
snapshot!(task["status"], @r###""succeeded""###);
|
|
|
|
// Make sure the documents have been indexed and their embeddings retrieved
|
|
let (documents, code) = index
|
|
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
|
|
.await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(json_string!(documents), @r#"
|
|
{
|
|
"results": [
|
|
{
|
|
"id": 0,
|
|
"name": "kefir",
|
|
"_vectors": {
|
|
"rest": {
|
|
"embeddings": [
|
|
[
|
|
0.5,
|
|
-0.5,
|
|
2.0
|
|
]
|
|
],
|
|
"regenerate": true
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"id": 1,
|
|
"name": "echo",
|
|
"_vectors": {
|
|
"rest": {
|
|
"embeddings": [
|
|
[
|
|
1.0,
|
|
1.0,
|
|
1.0
|
|
]
|
|
],
|
|
"regenerate": false
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"id": 2,
|
|
"name": "intel",
|
|
"breed": "labrador",
|
|
"_vectors": {
|
|
"rest": {
|
|
"embeddings": [
|
|
[
|
|
1.0,
|
|
1.0,
|
|
1.0
|
|
],
|
|
[
|
|
-2.5,
|
|
1.5,
|
|
0.0
|
|
]
|
|
],
|
|
"regenerate": true
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"id": 3,
|
|
"name": "dustin",
|
|
"breed": "bulldog",
|
|
"_vectors": {
|
|
"rest": {
|
|
"embeddings": [
|
|
[
|
|
-0.5,
|
|
0.5,
|
|
2.5
|
|
],
|
|
[
|
|
1.0,
|
|
-2.0,
|
|
2.5
|
|
]
|
|
],
|
|
"regenerate": true
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"offset": 0,
|
|
"limit": 20,
|
|
"total": 4
|
|
}
|
|
"#);
|
|
}
|
|
|
|
#[actix_rt::test]
|
|
async fn test_search_fragments() {
|
|
let (_mock, settings) = create_mock(
|
|
json!({
|
|
"withBreed": {"value": "{{ doc.name }} is a {{ doc.breed }}"},
|
|
"basic": {"value": "{{ doc.name }} is a dog"},
|
|
}),
|
|
json!({
|
|
"justBreed": {"value": "It's a {{ media.breed }}"},
|
|
"justName": {"value": "{{ media.name }} is a dog"},
|
|
"query": {"value": "Some pre-prompt for query {{ q }}"},
|
|
})
|
|
).await;
|
|
let server = get_server_vector().await;
|
|
let index = server.index("doggo");
|
|
|
|
// Enable the experimental feature
|
|
let (_response, code) = server.set_features(json!({"multimodal": true})).await;
|
|
snapshot!(code, @"200 OK");
|
|
|
|
// Configure the index to use our mock embedder
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"rest": settings,
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
|
|
let task = server.wait_task(response.uid()).await;
|
|
snapshot!(task["status"], @r###""succeeded""###);
|
|
|
|
// Send documents
|
|
let documents = json!([
|
|
{"id": 0, "name": "kefir"},
|
|
{"id": 1, "name": "echo", "_vectors": { "rest": [1, 1, 1] }},
|
|
{"id": 2, "name": "intel", "breed": "labrador"},
|
|
{"id": 3, "name": "dustin", "breed": "bulldog"},
|
|
]);
|
|
let (value, code) = index.add_documents(documents, None).await;
|
|
snapshot!(code, @"202 Accepted");
|
|
|
|
let task = index.wait_task(value.uid()).await;
|
|
snapshot!(task["status"], @r###""succeeded""###);
|
|
|
|
// Perform a search with a provided vector
|
|
let (value, code) = index.search_post(
|
|
json!({"vector": [1.0, 1.0, 1.0], "hybrid": {"semanticRatio": 1.0, "embedder": "rest"}, "limit": 1}
|
|
)).await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(value, @r#"
|
|
{
|
|
"hits": [
|
|
{
|
|
"id": 1,
|
|
"name": "echo"
|
|
}
|
|
],
|
|
"query": "",
|
|
"processingTimeMs": "[duration]",
|
|
"limit": 1,
|
|
"offset": 0,
|
|
"estimatedTotalHits": 4,
|
|
"semanticHitCount": 1
|
|
}
|
|
"#);
|
|
|
|
// Perform a search with some media
|
|
let (value, code) = index.search_post(
|
|
json!({
|
|
"media": { "breed": "labrador" },
|
|
"hybrid": {"semanticRatio": 1.0, "embedder": "rest"},
|
|
"limit": 1
|
|
}
|
|
)).await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(value, @r#"
|
|
{
|
|
"hits": [
|
|
{
|
|
"id": 2,
|
|
"name": "intel",
|
|
"breed": "labrador"
|
|
}
|
|
],
|
|
"query": "",
|
|
"processingTimeMs": "[duration]",
|
|
"limit": 1,
|
|
"offset": 0,
|
|
"estimatedTotalHits": 4,
|
|
"semanticHitCount": 1
|
|
}
|
|
"#);
|
|
|
|
// Perform a search that matches multiple media
|
|
let (value, code) = index.search_post(
|
|
json!({
|
|
"media": { "name": "dustin", "breed": "labrador" },
|
|
"hybrid": {"semanticRatio": 1.0, "embedder": "rest"},
|
|
"limit": 1
|
|
}
|
|
)).await;
|
|
snapshot!(code, @"400 Bad Request");
|
|
snapshot!(value, @r#"
|
|
{
|
|
"message": "Error while generating embeddings: user error: Query matches multiple search fragments.\n - Note: First matched fragment `justBreed`.\n - Note: Second matched fragment `justName`.\n - Note: {\"q\":null,\"media\":{\"name\":\"dustin\",\"breed\":\"labrador\"}}",
|
|
"code": "vector_embedding_error",
|
|
"type": "invalid_request",
|
|
"link": "https://docs.meilisearch.com/errors#vector_embedding_error"
|
|
}
|
|
"#);
|
|
|
|
// Perform a search that matches no media
|
|
let (value, code) = index.search_post(
|
|
json!({
|
|
"media": { "ticker": "GME", "section": "portfolio" },
|
|
"hybrid": {"semanticRatio": 1.0, "embedder": "rest"},
|
|
"limit": 1
|
|
}
|
|
)).await;
|
|
snapshot!(code, @"400 Bad Request");
|
|
snapshot!(value, @r#"
|
|
{
|
|
"message": "Error while generating embeddings: user error: Query matches no search fragment.\n - Note: {\"q\":null,\"media\":{\"ticker\":\"GME\",\"section\":\"portfolio\"}}",
|
|
"code": "vector_embedding_error",
|
|
"type": "invalid_request",
|
|
"link": "https://docs.meilisearch.com/errors#vector_embedding_error"
|
|
}
|
|
"#);
|
|
|
|
// Perform a search with a query media
|
|
let (value, code) = index.search_post(
|
|
json!({
|
|
"q": "bulldog",
|
|
"hybrid": {"semanticRatio": 1.0, "embedder": "rest"},
|
|
"limit": 1
|
|
}
|
|
)).await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(value, @r#"
|
|
{
|
|
"hits": [
|
|
{
|
|
"id": 3,
|
|
"name": "dustin",
|
|
"breed": "bulldog"
|
|
}
|
|
],
|
|
"query": "bulldog",
|
|
"processingTimeMs": "[duration]",
|
|
"limit": 1,
|
|
"offset": 0,
|
|
"estimatedTotalHits": 4,
|
|
"semanticHitCount": 1
|
|
}
|
|
"#);
|
|
}
|
|
|