Test search fragments

This commit is contained in:
Mubelotix 2025-07-03 10:43:27 +02:00
parent 8af76a65bf
commit 65ba7b47af
No known key found for this signature in database
GPG key ID: 0406DF6C3A69B942

View file

@ -12,11 +12,11 @@ async fn create_mock(indexing_fragments: Value, search_fragments: Value) -> (Moc
let mock_server = MockServer::start().await;
let text_to_embedding: BTreeMap<_, _> = vec![
("kefir", [0.5, -0.5, 2.0]),
("intel", [1.0, 1.0, 1.0]),
("bulldog", [1.5, -2.5, 0.0]),
("dustin", [-0.5, 0.5, 2.5]),
("labrador", [-3.5, 0.5, -1.0]),
("kefir", [0.5, -0.5, 0.0]),
("intel", [1.0, 1.0, 0.0]),
("dustin", [-0.5, 0.5, 0.0]),
("bulldog", [0.0, 0.0, 1.0]),
("labrador", [0.0, 0.0, -1.0]),
]
.into_iter()
.collect();
@ -196,3 +196,162 @@ async fn test_fragment_indexing() {
"#);
}
#[actix_rt::test]
async fn test_search_fragments() {
let (_mock, settings) = create_mock(
json!({
"withBreed": {"value": "{{ doc.name }} is a {{ doc.breed }}"},
"basic": {"value": "{{ doc.name }} is a dog"},
}),
json!({
"justBreed": {"value": "It's a {{ media.breed }}"},
"justName": {"value": "{{ media.name }} is a dog"},
"query": {"value": "Some pre-prompt for query {{ q }}"},
})
).await;
let server = get_server_vector().await;
let index = server.index("doggo");
// Enable the experimental feature
let (_response, code) = server.set_features(json!({"multimodal": true})).await;
snapshot!(code, @"200 OK");
// Configure the index to use our mock embedder
let (response, code) = index
.update_settings(json!({
"embedders": {
"rest": settings,
},
}))
.await;
snapshot!(code, @"202 Accepted");
let task = server.wait_task(response.uid()).await;
snapshot!(task["status"], @r###""succeeded""###);
// Send documents
let documents = json!([
{"id": 0, "name": "kefir"},
{"id": 1, "name": "echo", "_vectors": { "rest": [1, 1, 1] }},
{"id": 2, "name": "intel", "breed": "labrador"},
{"id": 3, "name": "dustin", "breed": "bulldog"},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
let task = index.wait_task(value.uid()).await;
snapshot!(task["status"], @r###""succeeded""###);
// Perform a search with a provided vector
let (value, code) = index.search_post(
json!({"vector": [1.0, 1.0, 1.0], "hybrid": {"semanticRatio": 1.0, "embedder": "rest"}, "limit": 1}
)).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r#"
{
"hits": [
{
"id": 1,
"name": "echo"
}
],
"query": "",
"processingTimeMs": "[duration]",
"limit": 1,
"offset": 0,
"estimatedTotalHits": 4,
"semanticHitCount": 1
}
"#);
// Perform a search with some media
let (value, code) = index.search_post(
json!({
"media": { "breed": "labrador" },
"hybrid": {"semanticRatio": 1.0, "embedder": "rest"},
"limit": 1
}
)).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r#"
{
"hits": [
{
"id": 2,
"name": "intel",
"breed": "labrador"
}
],
"query": "",
"processingTimeMs": "[duration]",
"limit": 1,
"offset": 0,
"estimatedTotalHits": 4,
"semanticHitCount": 1
}
"#);
// Perform a search that matches multiple media
let (value, code) = index.search_post(
json!({
"media": { "name": "dustin", "breed": "labrador" },
"hybrid": {"semanticRatio": 1.0, "embedder": "rest"},
"limit": 1
}
)).await;
snapshot!(code, @"400 Bad Request");
snapshot!(value, @r#"
{
"message": "Error while generating embeddings: user error: Query matches multiple search fragments.\n - Note: First matched fragment `justBreed`.\n - Note: Second matched fragment `justName`.\n - Note: {\"q\":null,\"media\":{\"name\":\"dustin\",\"breed\":\"labrador\"}}",
"code": "vector_embedding_error",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#vector_embedding_error"
}
"#);
// Perform a search that matches no media
let (value, code) = index.search_post(
json!({
"media": { "ticker": "GME", "section": "portfolio" },
"hybrid": {"semanticRatio": 1.0, "embedder": "rest"},
"limit": 1
}
)).await;
snapshot!(code, @"400 Bad Request");
snapshot!(value, @r#"
{
"message": "Error while generating embeddings: user error: Query matches no search fragment.\n - Note: {\"q\":null,\"media\":{\"ticker\":\"GME\",\"section\":\"portfolio\"}}",
"code": "vector_embedding_error",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#vector_embedding_error"
}
"#);
// Perform a search with a query media
let (value, code) = index.search_post(
json!({
"q": "bulldog",
"hybrid": {"semanticRatio": 1.0, "embedder": "rest"},
"limit": 1
}
)).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r#"
{
"hits": [
{
"id": 3,
"name": "dustin",
"breed": "bulldog"
}
],
"query": "bulldog",
"processingTimeMs": "[duration]",
"limit": 1,
"offset": 0,
"estimatedTotalHits": 4,
"semanticHitCount": 1
}
"#);
}