1594 Commits

Author SHA1 Message Date
Kerollmops
f42bef2f66
Make the search to always return the facets ordered by count 2023-06-29 14:31:17 +02:00
Kerollmops
bd3c026406
First to-test version of the algorithm 2023-06-29 14:31:17 +02:00
Kerollmops
84f8938f33
Rename facet distribution to be explicit on the order to find them 2023-06-29 14:31:15 +02:00
Clément Renault
efbe7ce78b
Clean the facet string FSTs when we clear the documents 2023-06-28 15:36:32 +02:00
Kerollmops
26f0fa678d
Change the error message when a facet is not searchable 2023-06-28 15:06:09 +02:00
Kerollmops
60ddd53439
Return one of the original facet values when doing a facet search 2023-06-28 15:06:09 +02:00
Kerollmops
2bcd8d2983
Make sure the facet queries are normalized 2023-06-28 15:06:09 +02:00
Kerollmops
41760a9306
Introduce a new invalid_facet_search_facet_name error code 2023-06-28 15:06:07 +02:00
Kerollmops
e9a3029c30
Use the right field id to write the string facet values FST 2023-06-28 15:01:51 +02:00
Kerollmops
ed0ff47551
Return an empty list of results if attribute is set as filterable 2023-06-28 15:01:51 +02:00
Clément Renault
e1b8fb48ee
Use the minWordSizeForTypos index settings 2023-06-28 15:01:51 +02:00
Clément Renault
87e22e436a
Fix compilation issues 2023-06-28 15:01:51 +02:00
Clément Renault
0252cfe8b6
Simplify the placeholder search of the facet-search route 2023-06-28 15:01:50 +02:00
Clément Renault
f35ad96afa
Use the disableOnAttributes parameter on the facet-search route 2023-06-28 15:01:50 +02:00
Clément Renault
2ceb781c73
Use the disableOnWords parameter on the facet-search route 2023-06-28 15:01:50 +02:00
Clément Renault
7bd67543dd
Support the typoTolerant.enabled parameter 2023-06-28 15:01:50 +02:00
Clément Renault
8e86eb91bb
Log an error when a facet value is missing from the database 2023-06-28 15:01:50 +02:00
Clément Renault
55c17aa38b
Rename the SearchForFacetValues struct 2023-06-28 15:01:50 +02:00
Clément Renault
aadbe88048
Return an internal error when a field id is missing 2023-06-28 15:01:50 +02:00
Clément Renault
f36de2115f
Make clippy happy 2023-06-28 15:01:50 +02:00
Clément Renault
702041b7e1
Improve the returned errors from the facet-search route 2023-06-28 15:01:48 +02:00
Clément Renault
a05074e675
Fix the max number of facets to be returned to 100 2023-06-28 14:58:42 +02:00
Clément Renault
93f30e65a9
Return the correct response JSON object from the facet-search route 2023-06-28 14:58:42 +02:00
Clément Renault
e81809aae7
Make the search for facet work 2023-06-28 14:58:41 +02:00
Kerollmops
ce7e7f12c8
Introduce the facet search route 2023-06-28 14:58:41 +02:00
Kerollmops
addb21f110
Restrict the number of facet search results to 1000 2023-06-28 14:58:41 +02:00
Kerollmops
c34de05106
Introduce the SearchForFacetValue struct 2023-06-28 14:58:41 +02:00
Clément Renault
15a4c05379
Store the facet string values in multiple FSTs 2023-06-28 14:58:41 +02:00
meili-bors[bot]
d4f10800f2
Merge #3834
3834: Define searchable fields at runtime r=Kerollmops a=ManyTheFish

## Summary
This feature allows the end-user to search in one or multiple attributes using the search parameter `attributesToSearchOn`:

```json
{
  "q": "Captain Marvel",
  "attributesToSearchOn": ["title"]
}
```

This feature act like a filter, forcing Meilisearch to only return the documents containing the requested words in the attributes-to-search-on. Note that, with the matching strategy `last`, Meilisearch will only ensure that the first word is in the attributes-to-search-on, but, the retrieved documents will be ordered taking into account the word contained in the attributes-to-search-on. 

## Trying the prototype

A dedicated docker image has been released for this feature:

#### last prototype version:

```bash
docker pull getmeili/meilisearch:prototype-define-searchable-fields-at-search-time-1
```

#### others prototype versions:

```bash
docker pull getmeili/meilisearch:prototype-define-searchable-fields-at-search-time-0
```

## Technical Detail

The attributes-to-search-on list is given to the search context, then, the search context uses the `fid_word_docids`database using only the allowed field ids instead of the global `word_docids` database. This is the same for the prefix databases.
The database cache is updated with the merged values, meaning that the union of the field-id-database values is only made if the requested key is missing from the cache.

### Relevancy limits

Almost all ranking rules behave as expected when ordering the documents.
Only `proximity` could miss-order documents if all the searched words are in the restricted attribute but a better proximity is found in an ignored attribute in a document that should be ranked lower. I put below a failing test showing it:
```rust
#[actix_rt::test]
async fn proximity_ranking_rule_order() {
    let server = Server::new().await;
    let index = index_with_documents(
        &server,
        &json!([
        {
            "title": "Captain super mega cool. A Marvel story",
            // Perfect distance between words in an ignored attribute
            "desc": "Captain Marvel",
            "id": "1",
        },
        {
            "title": "Captain America from Marvel",
            "desc": "a Shazam ersatz",
            "id": "2",
        }]),
    )
    .await;

    // Document 2 should appear before document 1.
    index
        .search(json!({"q": "Captain Marvel", "attributesToSearchOn": ["title"], "attributesToRetrieve": ["id"]}), |response, code| {
            assert_eq!(code, 200, "{}", response);
            assert_eq!(
                response["hits"],
                json!([
                    {"id": "2"},
                    {"id": "1"},
                ])
            );
        })
        .await;
}
```

Fixing this would force us to create a `fid_word_pair_proximity_docids` and a `fid_word_prefix_pair_proximity_docids` databases which may multiply the keys of `word_pair_proximity_docids` and `word_prefix_pair_proximity_docids` by the number of attributes in the searchable_attributes list. If we think we should fix this test, I'll suggest doing it in another PR.

## Related

Fixes #3772

Co-authored-by: Tamo <tamo@meilisearch.com>
Co-authored-by: ManyTheFish <many@meilisearch.com>
2023-06-28 08:19:23 +00:00
Clément Renault
30741d17fa
Change the TODO message 2023-06-27 12:32:43 +02:00
Clément Renault
ebad1f396f
Remove the useless euclidean distance implementation 2023-06-27 12:32:43 +02:00
Clément Renault
29d8268c94
Fix the vector query part by using the correct universe 2023-06-27 12:32:43 +02:00
Clément Renault
63bfe1cee2
Ignore when there are too many vectors 2023-06-27 12:32:43 +02:00
Kerollmops
7c2f5f77b8
Make clippy and fmt happy 2023-06-27 12:32:42 +02:00
Kerollmops
66b8cfd8c8
Introduce a way to store the HNSW on multiple LMDB entries 2023-06-27 12:32:42 +02:00
Kerollmops
ff3664431f
Make rustfmt happy 2023-06-27 12:32:42 +02:00
Kerollmops
531748c536
Return a user error when the _vectors type is invalid 2023-06-27 12:32:41 +02:00
Kerollmops
7aa1275337
Display the _semanticSimilarity even if the _vectors field is not displayed 2023-06-27 12:32:41 +02:00
Kerollmops
737aec1705
Expose an _semanticSimilarity as a dot product in the documents 2023-06-27 12:32:41 +02:00
Kerollmops
3e3c743392
Make Rustfmt happy 2023-06-27 12:32:41 +02:00
Kerollmops
5c5a4e075d
Make clippy happy 2023-06-27 12:32:41 +02:00
Kerollmops
ab9f2269aa
Normalize the vectors during indexation and search 2023-06-27 12:32:41 +02:00
Kerollmops
321ec5f3fa
Accept multiple vectors by documents using the _vectors field 2023-06-27 12:32:40 +02:00
Kerollmops
717d4fddd4
Remove the unused distance 2023-06-27 12:32:40 +02:00
Kerollmops
a7e0f0de89
Introduce a new error message for invalid vector dimensions 2023-06-27 12:32:40 +02:00
Kerollmops
3b560ef7d0
Make clippy happy 2023-06-27 12:32:40 +02:00
Kerollmops
2cf747cb89
Fix the tests 2023-06-27 12:32:40 +02:00
Kerollmops
3c31e1cdd1
Support more pages but in an ugly way 2023-06-27 12:32:39 +02:00
Kerollmops
23eaaf1001
Change the name of the distance module 2023-06-27 12:32:39 +02:00
Kerollmops
c2a402f3ae
Implement an ugly deletion of values in the HNSW 2023-06-27 12:32:39 +02:00
Kerollmops
436a10bef4
Replace the euclidean with a dot product 2023-06-27 12:32:39 +02:00
Kerollmops
8debf6fe81
Use a basic euclidean distance function 2023-06-27 12:32:39 +02:00
Kerollmops
c79e82c62a
Move back to the hnsw crate
This reverts commit 7a4b6c065482f988b01298642f4c18775503f92f.
2023-06-27 12:32:39 +02:00
Kerollmops
aca305bb77
Log more to make sure we insert vectors in the hgg data-structure 2023-06-27 12:32:38 +02:00
Kerollmops
5816008139
Introduce an optimized version of the euclidean distance function 2023-06-27 12:32:38 +02:00
Kerollmops
268a9ef416
Move to the hgg crate 2023-06-27 12:32:38 +02:00
Clément Renault
642b0f3a1b
Expose a new vector field on the search route 2023-06-27 12:32:38 +02:00
Clément Renault
4571e512d2
Store the vectors in an HNSW in LMDB 2023-06-27 12:32:38 +02:00
Clément Renault
7ac2f1489d
Extract the vectors from the documents 2023-06-27 12:32:37 +02:00
Clément Renault
34349faeae
Create a new _vector extractor 2023-06-27 12:32:37 +02:00
ManyTheFish
63ca25290b Take into account small Review requests 2023-06-26 14:56:19 +02:00
ManyTheFish
59f64a5256 Return an error when an attribute is not searchable 2023-06-26 14:56:19 +02:00
ManyTheFish
42709ea9a5 Fix clippy warnings 2023-06-26 14:55:57 +02:00
ManyTheFish
fb8fa07169 Restrict field ids in search context 2023-06-26 14:55:57 +02:00
ManyTheFish
0ccf1e2e40 Allow the search cache to store owned values 2023-06-26 14:55:57 +02:00
ManyTheFish
9680e1e41f Introduce a BytesDecodeOwned trait in heed_codecs 2023-06-26 14:55:14 +02:00
ManyTheFish
461b5118bd Add API search setting 2023-06-26 14:55:14 +02:00
Tamo
a3716c5678 add the new parameter to the search builder of milli 2023-06-26 14:55:14 +02:00
meili-bors[bot]
2d34005965
Merge #3821
3821: Add normalized and detailed scores to documents returned by a query r=dureuill a=dureuill

# Pull Request

## Related issue
Fixes #3771 

## What does this PR do?

### User standpoint

<details>
<summary>Request ranking score</summary>

```
echo '{ 
  "q": "Badman dark knight returns",
  "showRankingScore": true, 
  "limit": 10,
  "attributesToRetrieve": ["title"]
}' | mieli search -i index-word-count-10-count
```

</details>


<details>
<summary>Response</summary>

```json
{
  "hits": [
    {
      "title": "Batman: The Dark Knight Returns, Part 1",
      "_rankingScore": 0.947520325203252
    },
    {
      "title": "Batman: The Dark Knight Returns, Part 2",
      "_rankingScore": 0.947520325203252
    },
    {
      "title": "Batman Unmasked: The Psychology of the Dark Knight",
      "_rankingScore": 0.6657594086021505
    },
    {
      "title": "Legends of the Dark Knight: The History of Batman",
      "_rankingScore": 0.6654905913978495
    },
    {
      "title": "Angel and the Badman",
      "_rankingScore": 0.2196969696969697
    },
    {
      "title": "Angel and the Badman",
      "_rankingScore": 0.2196969696969697
    },
    {
      "title": "Batman",
      "_rankingScore": 0.11553030303030302
    },
    {
      "title": "Batman Begins",
      "_rankingScore": 0.11553030303030302
    },
    {
      "title": "Batman Returns",
      "_rankingScore": 0.11553030303030302
    },
    {
      "title": "Batman Forever",
      "_rankingScore": 0.11553030303030302
    }
  ],
  "query": "Badman dark knight returns",
  "processingTimeMs": 12,
  "limit": 10,
  "offset": 0,
  "estimatedTotalHits": 46
}
```

</details>



- If adding a `showRankingScore` parameter to the search query, then documents returned by a search now contain an additional field `_rankingScore` that is a float bigger than 0 and lower or equal to 1.0. This field represents the relevancy of the document, relatively to the search query and the settings of the index, with 1.0 meaning "perfect match" and 0 meaning "not matching the query" (Meilisearch should never return documents not matching the query at all). 
  - The `sort` and `geosort` ranking rules do not influence the `_rankingScore`.

<details>
<summary>Request detailed ranking scores</summary>

```
echo '{ 
  "q": "Badman dark knight returns",
  "showRankingScoreDetails": true, 
  "limit": 5, 
  "attributesToRetrieve": ["title"]
}' | mieli search -i index-word-count-10-count
```

</details>

<details>
<summary>Response</summary>

```json
{
  "hits": [
    {
      "title": "Batman: The Dark Knight Returns, Part 1",
      "_rankingScoreDetails": {
        "words": {
          "order": 0,
          "matchingWords": 4,
          "maxMatchingWords": 4,
          "score": 1.0
        },
        "typo": {
          "order": 1,
          "typoCount": 1,
          "maxTypoCount": 4,
          "score": 0.8
        },
        "proximity": {
          "order": 2,
          "score": 0.9545454545454546
        },
        "attribute": {
          "order": 3,
          "attributes_ranking_order": 1.0,
          "attributes_query_word_order": 0.926829268292683,
          "score": 0.926829268292683
        },
        "exactness": {
          "order": 4,
          "matchType": "noExactMatch",
          "score": 0.26666666666666666
        }
      }
    },
    {
      "title": "Batman: The Dark Knight Returns, Part 2",
      "_rankingScoreDetails": {
        "words": {
          "order": 0,
          "matchingWords": 4,
          "maxMatchingWords": 4,
          "score": 1.0
        },
        "typo": {
          "order": 1,
          "typoCount": 1,
          "maxTypoCount": 4,
          "score": 0.8
        },
        "proximity": {
          "order": 2,
          "score": 0.9545454545454546
        },
        "attribute": {
          "order": 3,
          "attributes_ranking_order": 1.0,
          "attributes_query_word_order": 0.926829268292683,
          "score": 0.926829268292683
        },
        "exactness": {
          "order": 4,
          "matchType": "noExactMatch",
          "score": 0.26666666666666666
        }
      }
    },
    {
      "title": "Batman Unmasked: The Psychology of the Dark Knight",
      "_rankingScoreDetails": {
        "words": {
          "order": 0,
          "matchingWords": 3,
          "maxMatchingWords": 4,
          "score": 0.75
        },
        "typo": {
          "order": 1,
          "typoCount": 1,
          "maxTypoCount": 3,
          "score": 0.75
        },
        "proximity": {
          "order": 2,
          "score": 0.6666666666666666
        },
        "attribute": {
          "order": 3,
          "attributes_ranking_order": 1.0,
          "attributes_query_word_order": 0.8064516129032258,
          "score": 0.8064516129032258
        },
        "exactness": {
          "order": 4,
          "matchType": "noExactMatch",
          "score": 0.25
        }
      }
    },
    {
      "title": "Legends of the Dark Knight: The History of Batman",
      "_rankingScoreDetails": {
        "words": {
          "order": 0,
          "matchingWords": 3,
          "maxMatchingWords": 4,
          "score": 0.75
        },
        "typo": {
          "order": 1,
          "typoCount": 1,
          "maxTypoCount": 3,
          "score": 0.75
        },
        "proximity": {
          "order": 2,
          "score": 0.6666666666666666
        },
        "attribute": {
          "order": 3,
          "attributes_ranking_order": 1.0,
          "attributes_query_word_order": 0.7419354838709677,
          "score": 0.7419354838709677
        },
        "exactness": {
          "order": 4,
          "matchType": "noExactMatch",
          "score": 0.25
        }
      }
    },
    {
      "title": "Angel and the Badman",
      "_rankingScoreDetails": {
        "words": {
          "order": 0,
          "matchingWords": 1,
          "maxMatchingWords": 4,
          "score": 0.25
        },
        "typo": {
          "order": 1,
          "typoCount": 0,
          "maxTypoCount": 1,
          "score": 1.0
        },
        "proximity": {
          "order": 2,
          "score": 1.0
        },
        "attribute": {
          "order": 3,
          "attributes_ranking_order": 1.0,
          "attributes_query_word_order": 0.8181818181818182,
          "score": 0.8181818181818182
        },
        "exactness": {
          "order": 4,
          "matchType": "noExactMatch",
          "score": 0.3333333333333333
        }
      }
    }
  ],
  "query": "Badman dark knight returns",
  "processingTimeMs": 9,
  "limit": 5,
  "offset": 0,
  "estimatedTotalHits": 46
}
```

</details>

- If adding a `showRankingScoreDetails` parameter to the search query, then the returned documents will now contain an additional `_rankingScoreDetails` field that is a JSON object containing one field per ranking rule that was applied, whose value is a JSON object with the following fields:
  - `order`: a number indicating the order this rule was applied (0 is the first applied ranking rule)
  - `score` (except for `sort` and `geosort`): a float indicating how the document matched this particular rule.
  - other fields that are specific to the rule, indicating for example how many words matched for a document and how many typos were counted in a matching document.
- If the `displayableAttributes` list is defined in the settings of the index, any ranking rule using an attribute **not** part of that list will be marked as `<hidden-rule>` in the `_rankingScoreDetails`.  

- Search queries that are part of a `multi-search` requests are modified in the same way and each of the queries can take the `showRankingScore` and `showRankingScoreDetails` parameters independently. The results are still returned in separate lists and providing a unified list of results between multiple queries is not in the scope of this PR (but is unblocked by this PR and can be done manually by using the scores of the various documents). 

### Implementation standpoint

- Fix difference in how the position of terms were computed at indexing time and query time: this difference meant that a query containing a hard separator would fail the exactness check.
- Fix the id reported by the sort ranking rule (very minor)
- Change how the cost of removing words is computed. After this change the cost no longer works for any other ranking rule than `words`. Also made `words` have a cost of 0 such that the entire cost of `words` is given by the termRemovalStrategy. The new cost computation makes it so the score is computed in a way consistent with the number of words in the query. Additionally, the words that appear in phrases in the query are also counted as matching words.
- When any score computation is requested through `showRankingScore` or `showRankingScoreDetails`, remove optimization where ranking rules are not executed on buckets of a single document: this is important to allow the computation of an accurate score.
- add virtual conditions to fid and position to always have the max cost: this ensures that the score is independent from the dataset
- the Position ranking rule now takes into account the distance to the position of the word in the query instead of the distance to the position 0.
- modified proximity ranking rule cost calculation so that the cost is 0 for documents that are perfectly matching the query
- Add a new `milli::score_details` module containing all the types that are involved in score computation.
- Make it so a bucket of result now contains a `ScoreDetails` and changed the ranking rules to produce their `ScoreDetails`.
- Expose the scores in the REST API.
- Add very light analytics for scoring.
- Update the search tests to add the expected scores.

Co-authored-by: Louis Dureuil <louis@meilisearch.com>
2023-06-26 09:32:43 +00:00
meili-bors[bot]
040b5a5b6f
Merge #3842
3842: fix some typos r=dureuill a=cuishuang

# Pull Request

## Related issue
Fixes #<issue_number>

## What does this PR do?
- fix some typos

## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?

Thank you so much for contributing to Meilisearch!


Co-authored-by: cui fliter <imcusg@gmail.com>
2023-06-22 18:01:10 +00:00
cui fliter
530a3e2df3 fix some typos
Signed-off-by: cui fliter <imcusg@gmail.com>
2023-06-22 21:59:00 +08:00
Louis Dureuil
d26e9a96ec
Add score details to new search tests 2023-06-22 12:39:14 +02:00
Louis Dureuil
49c8bc4de6
Fix tests 2023-06-22 12:39:14 +02:00
Louis Dureuil
da833eb095
Expose the scores and detailed scores in the API 2023-06-22 12:39:14 +02:00
Louis Dureuil
701d44bd91
Store the scores for each bucket
Remove optimization where ranking rules are not executed on buckets of a single document
when the score needs to be computed
2023-06-22 12:39:14 +02:00
Louis Dureuil
c621a250a7
Score for graph based ranking rules
Count phrases in matchingWords and maxMatchingWords
2023-06-22 12:39:14 +02:00
Louis Dureuil
8939e85f60
Add rank_to_score for graph based ranking rules 2023-06-22 12:39:14 +02:00
Louis Dureuil
fa41d2489e
Score for sort 2023-06-22 12:39:14 +02:00
Louis Dureuil
59c5b992c2
Score for geosort 2023-06-22 12:39:14 +02:00
Louis Dureuil
2ea8194c18
Score for exact_attributes 2023-06-22 12:39:14 +02:00
Louis Dureuil
421df64602
RankingRuleOutput now contains a Score 2023-06-22 12:39:14 +02:00
Louis Dureuil
c0fca6f884
Add score_details 2023-06-22 12:39:14 +02:00
Louis Dureuil
f050634b1e
add virtual conditions to fid and position to always have the max cost 2023-06-20 10:07:18 +02:00
Louis Dureuil
becf1f066a
Change how the cost of removing words is computed 2023-06-20 09:45:43 +02:00
Louis Dureuil
701d299369
Remove out-of-date comment 2023-06-20 09:45:42 +02:00
Louis Dureuil
a20e4d447c
Position now takes into account the distance to the position of the word in the query
it used to be based on the distance to the position 0
2023-06-20 09:45:42 +02:00
Louis Dureuil
af57c3c577
Proximity costs 0 for documents that are perfectly matching 2023-06-20 09:45:42 +02:00
Louis Dureuil
0c40ef6911
Fix sort id 2023-06-20 09:45:42 +02:00
meili-bors[bot]
45636d315c
Merge #3670
3670: Fix addition deletion bug r=irevoire a=irevoire

The first commit of this PR is a revert of https://github.com/meilisearch/meilisearch/pull/3667. It re-enable the auto-batching of addition and deletion of tasks. No new changes have been introduced outside of `milli`. So all the changes you see on the autobatcher have actually already been reviewed.

It fixes https://github.com/meilisearch/meilisearch/issues/3440.

### What was happening?

The issue was that the `external_documents_ids` generated in the `transform` were used in a very strange way that wasn’t compatible with the deletion of documents.
Instead of doing a clear merge between the external document IDs of the DB and the one returned by the transform + writing it on disk, we were doing some weird tricks with the soft-deleted to avoid writing the fst on disk as much as possible.
The new algorithm may be a bit slower but is way more straightforward and doesn’t change depending on if the soft deletion was used or not. Here is a list of the changes introduced:
1. We now do a clear distinction between the `new_external_documents_ids` coming from the transform and only held on RAM and the `external_documents_ids` coming from the DB.
2. The `new_external_documents_ids` (coming out of the transform) are now represented as an `fst`. We don't need to struggle with the hard, soft distinction + the soft_deleted => That's easier to understand
3. When indexing documents, we merge the `external_documents_ids` coming from the DB and the `new_external_documents_ids` coming from the transform.

### Other things introduced in this  PR

Since we constantly have to write small, very specialized fuzzers for this kind of bug, we decided to push the one used to reproduce this bug.
It's not perfect, but it's easy to improve in the future.
It'll also run for as long as possible on every merge on the main branch.

Co-authored-by: Tamo <tamo@meilisearch.com>
Co-authored-by: Loïc Lecrenier <loic.lecrenier@icloud.com>
2023-06-19 09:09:30 +00:00
meili-bors[bot]
cb9d78fc7f
Merge #3835
3835: Add more documentation to graph-based ranking rule algorithms + comment cleanup r=Kerollmops a=loiclec

In addition to documenting the `cheapest_path.rs` file, this PR cleans up a few outdated comments as well as some TODOs. These TODOs have been moved to https://github.com/meilisearch/meilisearch/issues/3776



Co-authored-by: Loïc Lecrenier <loic.lecrenier@icloud.com>
2023-06-15 15:30:24 +00:00
Louis Dureuil
e0c4682758
Fix tests 2023-06-14 13:30:52 +02:00
Louis Dureuil
d9b4b39922
Add trailing pipe to the snapshots so it doesn't end with trailing whitespace 2023-06-14 13:30:52 +02:00
Loïc Lecrenier
2da86b31a6 Remove comments and add documentation 2023-06-14 12:39:42 +02:00
Louis Dureuil
a2a3b8c973
Fix offset difference between query and indexing for hard separators 2023-06-08 12:07:12 +02:00
Louis Dureuil
9f37b61666
DB BREAKING: raise limit of word count from 10 to 30. 2023-06-08 12:07:12 +02:00
Louis Dureuil
c15c076da9
DB BREAKING: Count the number of words in field_id_word_count_docids 2023-06-08 12:07:11 +02:00
Loïc Lecrenier
8628a0c856 Remove docid_word_positions_db + fix deletion bug
That would happen when a word was deleted from all exact attributes
but not all regular attributes.
2023-06-07 10:52:50 +02:00
Clémentine U. - curqui
f3e2f79290
Merge branch 'main' into tmp-release-v1.2.0 2023-06-05 18:36:28 +02:00
Kerollmops
da04edff8c
Better use deserialize_unchecked_from to reduce the deserialization time 2023-05-30 14:58:30 +02:00
Louis Dureuil
1dfc4038ab
Add test that fails before PR and passes now 2023-05-29 11:58:26 +02:00