mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-01-23 03:37:28 +01:00
Introduce an optimized version of the euclidean distance function
This commit is contained in:
parent
268a9ef416
commit
5816008139
@ -1,6 +1,13 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
use space::Metric;
|
||||
|
||||
#[cfg(any(
|
||||
target_arch = "x86",
|
||||
target_arch = "x86_64",
|
||||
all(target_arch = "aarch64", target_feature = "neon")
|
||||
))]
|
||||
const MIN_DIM_SIZE_SIMD: usize = 16;
|
||||
|
||||
#[derive(Debug, Default, Clone, Copy, Serialize, Deserialize)]
|
||||
pub struct DotProduct;
|
||||
|
||||
@ -26,9 +33,58 @@ impl Metric<Vec<f32>> for Euclidean {
|
||||
type Unit = u32;
|
||||
|
||||
fn distance(&self, a: &Vec<f32>, b: &Vec<f32>) -> Self::Unit {
|
||||
#[cfg(all(target_arch = "aarch64", target_feature = "neon"))]
|
||||
{
|
||||
if std::arch::is_aarch64_feature_detected!("neon") && a.len() >= MIN_DIM_SIZE_SIMD {
|
||||
let squared = unsafe { squared_euclid_neon(&a, &b) };
|
||||
let dist = squared.sqrt();
|
||||
debug_assert!(!dist.is_nan());
|
||||
return dist.to_bits();
|
||||
}
|
||||
}
|
||||
|
||||
let squared: f32 = a.iter().zip(b).map(|(a, b)| (a - b).powi(2)).sum();
|
||||
let dist = squared.sqrt();
|
||||
debug_assert!(!dist.is_nan());
|
||||
dist.to_bits()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(target_feature = "neon")]
|
||||
use std::arch::aarch64::*;
|
||||
|
||||
#[cfg(target_feature = "neon")]
|
||||
pub(crate) unsafe fn squared_euclid_neon(v1: &[f32], v2: &[f32]) -> f32 {
|
||||
let n = v1.len();
|
||||
let m = n - (n % 16);
|
||||
let mut ptr1: *const f32 = v1.as_ptr();
|
||||
let mut ptr2: *const f32 = v2.as_ptr();
|
||||
let mut sum1 = vdupq_n_f32(0.);
|
||||
let mut sum2 = vdupq_n_f32(0.);
|
||||
let mut sum3 = vdupq_n_f32(0.);
|
||||
let mut sum4 = vdupq_n_f32(0.);
|
||||
|
||||
let mut i: usize = 0;
|
||||
while i < m {
|
||||
let sub1 = vsubq_f32(vld1q_f32(ptr1), vld1q_f32(ptr2));
|
||||
sum1 = vfmaq_f32(sum1, sub1, sub1);
|
||||
|
||||
let sub2 = vsubq_f32(vld1q_f32(ptr1.add(4)), vld1q_f32(ptr2.add(4)));
|
||||
sum2 = vfmaq_f32(sum2, sub2, sub2);
|
||||
|
||||
let sub3 = vsubq_f32(vld1q_f32(ptr1.add(8)), vld1q_f32(ptr2.add(8)));
|
||||
sum3 = vfmaq_f32(sum3, sub3, sub3);
|
||||
|
||||
let sub4 = vsubq_f32(vld1q_f32(ptr1.add(12)), vld1q_f32(ptr2.add(12)));
|
||||
sum4 = vfmaq_f32(sum4, sub4, sub4);
|
||||
|
||||
ptr1 = ptr1.add(16);
|
||||
ptr2 = ptr2.add(16);
|
||||
i += 16;
|
||||
}
|
||||
let mut result = vaddvq_f32(sum1) + vaddvq_f32(sum2) + vaddvq_f32(sum3) + vaddvq_f32(sum4);
|
||||
for i in 0..n - m {
|
||||
result += (*ptr1.add(i) - *ptr2.add(i)).powi(2);
|
||||
}
|
||||
result
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user