Merge branch 'main' into change-proximity-precision-settings

This commit is contained in:
Many the fish 2023-12-18 09:08:47 +01:00 committed by GitHub
commit 9e1b458010
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
55 changed files with 5801 additions and 723 deletions

View file

@ -36,7 +36,7 @@ use crate::routes::{create_all_stats, Stats};
use crate::search::{
FacetSearchResult, MatchingStrategy, SearchQuery, SearchQueryWithIndex, SearchResult,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEMANTIC_RATIO,
};
use crate::Opt;
@ -586,6 +586,11 @@ pub struct SearchAggregator {
// vector
// The maximum number of floats in a vector request
max_vector_size: usize,
// Whether the semantic ratio passed to a hybrid search equals the default ratio.
semantic_ratio: bool,
// Whether a non-default embedder was specified
embedder: bool,
hybrid: bool,
// every time a search is done, we increment the counter linked to the used settings
matching_strategy: HashMap<String, usize>,
@ -639,6 +644,7 @@ impl SearchAggregator {
crop_marker,
matching_strategy,
attributes_to_search_on,
hybrid,
} = query;
let mut ret = Self::default();
@ -712,6 +718,12 @@ impl SearchAggregator {
ret.show_ranking_score = *show_ranking_score;
ret.show_ranking_score_details = *show_ranking_score_details;
if let Some(hybrid) = hybrid {
ret.semantic_ratio = hybrid.semantic_ratio != DEFAULT_SEMANTIC_RATIO();
ret.embedder = hybrid.embedder.is_some();
ret.hybrid = true;
}
ret
}
@ -765,6 +777,9 @@ impl SearchAggregator {
facets_total_number_of_facets,
show_ranking_score,
show_ranking_score_details,
semantic_ratio,
embedder,
hybrid,
} = other;
if self.timestamp.is_none() {
@ -810,6 +825,9 @@ impl SearchAggregator {
// vector
self.max_vector_size = self.max_vector_size.max(max_vector_size);
self.semantic_ratio |= semantic_ratio;
self.hybrid |= hybrid;
self.embedder |= embedder;
// pagination
self.max_limit = self.max_limit.max(max_limit);
@ -878,6 +896,9 @@ impl SearchAggregator {
facets_total_number_of_facets,
show_ranking_score,
show_ranking_score_details,
semantic_ratio,
embedder,
hybrid,
} = self;
if total_received == 0 {
@ -917,6 +938,11 @@ impl SearchAggregator {
"vector": {
"max_vector_size": max_vector_size,
},
"hybrid": {
"enabled": hybrid,
"semantic_ratio": semantic_ratio,
"embedder": embedder,
},
"pagination": {
"max_limit": max_limit,
"max_offset": max_offset,
@ -1012,6 +1038,7 @@ impl MultiSearchAggregator {
crop_marker: _,
matching_strategy: _,
attributes_to_search_on: _,
hybrid: _,
} = query;
index_uid.as_str()
@ -1158,6 +1185,7 @@ impl FacetSearchAggregator {
filter,
matching_strategy,
attributes_to_search_on,
hybrid,
} = query;
let mut ret = Self::default();
@ -1171,7 +1199,8 @@ impl FacetSearchAggregator {
|| vector.is_some()
|| filter.is_some()
|| *matching_strategy != MatchingStrategy::default()
|| attributes_to_search_on.is_some();
|| attributes_to_search_on.is_some()
|| hybrid.is_some();
ret
}

View file

@ -51,6 +51,8 @@ pub enum MeilisearchHttpError {
DocumentFormat(#[from] DocumentFormatError),
#[error(transparent)]
Join(#[from] JoinError),
#[error("Invalid request: missing `hybrid` parameter when both `q` and `vector` are present.")]
MissingSearchHybrid,
}
impl ErrorCode for MeilisearchHttpError {
@ -74,6 +76,7 @@ impl ErrorCode for MeilisearchHttpError {
MeilisearchHttpError::FileStore(_) => Code::Internal,
MeilisearchHttpError::DocumentFormat(e) => e.error_code(),
MeilisearchHttpError::Join(_) => Code::Internal,
MeilisearchHttpError::MissingSearchHybrid => Code::MissingSearchHybrid,
}
}
}

View file

@ -19,7 +19,11 @@ static ALLOC: mimalloc::MiMalloc = mimalloc::MiMalloc;
/// does all the setup before meilisearch is launched
fn setup(opt: &Opt) -> anyhow::Result<()> {
let mut log_builder = env_logger::Builder::new();
log_builder.parse_filters(&opt.log_level.to_string());
let log_filters = format!(
"{},h2=warn,hyper=warn,tokio_util=warn,tracing=warn,rustls=warn,mio=warn,reqwest=warn",
opt.log_level
);
log_builder.parse_filters(&log_filters);
log_builder.init();

View file

@ -13,9 +13,9 @@ use crate::analytics::{Analytics, FacetSearchAggregator};
use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData;
use crate::search::{
add_search_rules, perform_facet_search, MatchingStrategy, SearchQuery, DEFAULT_CROP_LENGTH,
DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG,
DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
add_search_rules, perform_facet_search, HybridQuery, MatchingStrategy, SearchQuery,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
};
pub fn configure(cfg: &mut web::ServiceConfig) {
@ -36,6 +36,8 @@ pub struct FacetSearchQuery {
pub q: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSearchVector>)]
pub vector: Option<Vec<f32>>,
#[deserr(default, error = DeserrJsonError<InvalidHybridQuery>)]
pub hybrid: Option<HybridQuery>,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidSearchMatchingStrategy>, default)]
@ -95,6 +97,7 @@ impl From<FacetSearchQuery> for SearchQuery {
filter,
matching_strategy,
attributes_to_search_on,
hybrid,
} = value;
SearchQuery {
@ -119,6 +122,7 @@ impl From<FacetSearchQuery> for SearchQuery {
matching_strategy,
vector,
attributes_to_search_on,
hybrid,
}
}
}

View file

@ -2,12 +2,14 @@ use actix_web::web::Data;
use actix_web::{web, HttpRequest, HttpResponse};
use deserr::actix_web::{AwebJson, AwebQueryParameter};
use index_scheduler::IndexScheduler;
use log::debug;
use log::{debug, warn};
use meilisearch_types::deserr::query_params::Param;
use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError};
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::ResponseError;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli;
use meilisearch_types::milli::vector::DistributionShift;
use meilisearch_types::serde_cs::vec::CS;
use serde_json::Value;
@ -16,9 +18,9 @@ use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::search::{
add_search_rules, perform_search, MatchingStrategy, SearchQuery, DEFAULT_CROP_LENGTH,
DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG,
DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
add_search_rules, perform_search, HybridQuery, MatchingStrategy, SearchQuery, SemanticRatio,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO,
};
pub fn configure(cfg: &mut web::ServiceConfig) {
@ -74,6 +76,31 @@ pub struct SearchQueryGet {
matching_strategy: MatchingStrategy,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchAttributesToSearchOn>)]
pub attributes_to_search_on: Option<CS<String>>,
#[deserr(default, error = DeserrQueryParamError<InvalidEmbedder>)]
pub hybrid_embedder: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchSemanticRatio>)]
pub hybrid_semantic_ratio: Option<SemanticRatioGet>,
}
#[derive(Debug, Clone, Copy, Default, PartialEq, deserr::Deserr)]
#[deserr(try_from(String) = TryFrom::try_from -> InvalidSearchSemanticRatio)]
pub struct SemanticRatioGet(SemanticRatio);
impl std::convert::TryFrom<String> for SemanticRatioGet {
type Error = InvalidSearchSemanticRatio;
fn try_from(s: String) -> Result<Self, Self::Error> {
let f: f32 = s.parse().map_err(|_| InvalidSearchSemanticRatio)?;
Ok(SemanticRatioGet(SemanticRatio::try_from(f)?))
}
}
impl std::ops::Deref for SemanticRatioGet {
type Target = SemanticRatio;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl From<SearchQueryGet> for SearchQuery {
@ -86,6 +113,20 @@ impl From<SearchQueryGet> for SearchQuery {
None => None,
};
let hybrid = match (other.hybrid_embedder, other.hybrid_semantic_ratio) {
(None, None) => None,
(None, Some(semantic_ratio)) => {
Some(HybridQuery { semantic_ratio: *semantic_ratio, embedder: None })
}
(Some(embedder), None) => Some(HybridQuery {
semantic_ratio: DEFAULT_SEMANTIC_RATIO(),
embedder: Some(embedder),
}),
(Some(embedder), Some(semantic_ratio)) => {
Some(HybridQuery { semantic_ratio: *semantic_ratio, embedder: Some(embedder) })
}
};
Self {
q: other.q,
vector: other.vector.map(CS::into_inner),
@ -108,6 +149,7 @@ impl From<SearchQueryGet> for SearchQuery {
crop_marker: other.crop_marker,
matching_strategy: other.matching_strategy,
attributes_to_search_on: other.attributes_to_search_on.map(|o| o.into_iter().collect()),
hybrid,
}
}
}
@ -158,8 +200,12 @@ pub async fn search_with_url_query(
let index = index_scheduler.index(&index_uid)?;
let features = index_scheduler.features();
let distribution = embed(&mut query, index_scheduler.get_ref(), &index).await?;
let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, features)).await?;
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution))
.await?;
if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result);
}
@ -193,8 +239,12 @@ pub async fn search_with_post(
let index = index_scheduler.index(&index_uid)?;
let features = index_scheduler.features();
let distribution = embed(&mut query, index_scheduler.get_ref(), &index).await?;
let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, features)).await?;
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution))
.await?;
if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result);
}
@ -206,6 +256,80 @@ pub async fn search_with_post(
Ok(HttpResponse::Ok().json(search_result))
}
pub async fn embed(
query: &mut SearchQuery,
index_scheduler: &IndexScheduler,
index: &milli::Index,
) -> Result<Option<DistributionShift>, ResponseError> {
match (&query.hybrid, &query.vector, &query.q) {
(Some(HybridQuery { semantic_ratio: _, embedder }), None, Some(q))
if !q.trim().is_empty() =>
{
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
let embedders = index_scheduler.embedders(embedder_configs)?;
let embedder = if let Some(embedder_name) = embedder {
embedders.get(embedder_name)
} else {
embedders.get_default()
};
let embedder = embedder
.ok_or(milli::UserError::InvalidEmbedder("default".to_owned()))
.map_err(milli::Error::from)?
.0;
let distribution = embedder.distribution();
let embeddings = embedder
.embed(vec![q.to_owned()])
.await
.map_err(milli::vector::Error::from)
.map_err(milli::Error::from)?
.pop()
.expect("No vector returned from embedding");
if embeddings.iter().nth(1).is_some() {
warn!("Ignoring embeddings past the first one in long search query");
query.vector = Some(embeddings.iter().next().unwrap().to_vec());
} else {
query.vector = Some(embeddings.into_inner());
}
Ok(distribution)
}
(Some(hybrid), vector, _) => {
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
let embedders = index_scheduler.embedders(embedder_configs)?;
let embedder = if let Some(embedder_name) = &hybrid.embedder {
embedders.get(embedder_name)
} else {
embedders.get_default()
};
let embedder = embedder
.ok_or(milli::UserError::InvalidEmbedder("default".to_owned()))
.map_err(milli::Error::from)?
.0;
if let Some(vector) = vector {
if vector.len() != embedder.dimensions() {
return Err(meilisearch_types::milli::Error::UserError(
meilisearch_types::milli::UserError::InvalidVectorDimensions {
expected: embedder.dimensions(),
found: vector.len(),
},
)
.into());
}
}
Ok(embedder.distribution())
}
_ => Ok(None),
}
}
#[cfg(test)]
mod test {
use super::*;

View file

@ -7,6 +7,7 @@ use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::ResponseError;
use meilisearch_types::facet_values_sort::FacetValuesSort;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::update::Setting;
use meilisearch_types::settings::{settings, RankingRuleView, Settings, Unchecked};
use meilisearch_types::tasks::KindWithContent;
use serde_json::json;
@ -546,6 +547,67 @@ make_setting_route!(
}
);
make_setting_route!(
"/embedders",
patch,
std::collections::BTreeMap<String, Setting<meilisearch_types::milli::vector::settings::EmbeddingSettings>>,
meilisearch_types::deserr::DeserrJsonError<
meilisearch_types::error::deserr_codes::InvalidSettingsEmbedders,
>,
embedders,
"embedders",
analytics,
|setting: &Option<std::collections::BTreeMap<String, Setting<meilisearch_types::milli::vector::settings::EmbeddingSettings>>>, req: &HttpRequest| {
analytics.publish(
"Embedders Updated".to_string(),
serde_json::json!({"embedders": crate::routes::indexes::settings::embedder_analytics(setting.as_ref())}),
Some(req),
);
}
);
fn embedder_analytics(
setting: Option<
&std::collections::BTreeMap<
String,
Setting<meilisearch_types::milli::vector::settings::EmbeddingSettings>,
>,
>,
) -> serde_json::Value {
let mut sources = std::collections::HashSet::new();
if let Some(s) = &setting {
for source in s
.values()
.filter_map(|config| config.clone().set())
.filter_map(|config| config.embedder_options.set())
{
use meilisearch_types::milli::vector::settings::EmbedderSettings;
match source {
EmbedderSettings::OpenAi(_) => sources.insert("openAi"),
EmbedderSettings::HuggingFace(_) => sources.insert("huggingFace"),
EmbedderSettings::UserProvided(_) => sources.insert("userProvided"),
};
}
};
let document_template_used = setting.as_ref().map(|map| {
map.values()
.filter_map(|config| config.clone().set())
.any(|config| config.document_template.set().is_some())
});
json!(
{
"total": setting.as_ref().map(|s| s.len()),
"sources": sources,
"document_template_used": document_template_used,
}
)
}
macro_rules! generate_configure {
($($mod:ident),*) => {
pub fn configure(cfg: &mut web::ServiceConfig) {
@ -575,7 +637,8 @@ generate_configure!(
ranking_rules,
typo_tolerance,
pagination,
faceting
faceting,
embedders
);
pub async fn update_all(
@ -682,6 +745,7 @@ pub async fn update_all(
"synonyms": {
"total": new_settings.synonyms.as_ref().set().map(|synonyms| synonyms.len()),
},
"embedders": crate::routes::indexes::settings::embedder_analytics(new_settings.embedders.as_ref().set())
}),
Some(&req),
);

View file

@ -13,6 +13,7 @@ use crate::analytics::{Analytics, MultiSearchAggregator};
use crate::extractors::authentication::policies::ActionPolicy;
use crate::extractors::authentication::{AuthenticationError, GuardedData};
use crate::extractors::sequential_extractor::SeqHandler;
use crate::routes::indexes::search::embed;
use crate::search::{
add_search_rules, perform_search, SearchQueryWithIndex, SearchResultWithIndex,
};
@ -74,10 +75,15 @@ pub async fn multi_search_with_post(
})
.with_index(query_index)?;
let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, features))
.await
.with_index(query_index)?;
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)
.await
.with_index(query_index)?;
let search_result = tokio::task::spawn_blocking(move || {
perform_search(&index, query, features, distribution)
})
.await
.with_index(query_index)?;
search_results.push(SearchResultWithIndex {
index_uid: index_uid.into_inner(),

View file

@ -7,24 +7,21 @@ use deserr::Deserr;
use either::Either;
use index_scheduler::RoFeatures;
use indexmap::IndexMap;
use log::warn;
use meilisearch_auth::IndexSearchRules;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::heed::RoTxn;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::score_details::{ScoreDetails, ScoringStrategy};
use meilisearch_types::milli::{
dot_product_similarity, FacetValueHit, InternalError, OrderBy, SearchForFacetValues,
};
use meilisearch_types::milli::score_details::{self, ScoreDetails, ScoringStrategy};
use meilisearch_types::milli::vector::DistributionShift;
use meilisearch_types::milli::{FacetValueHit, OrderBy, SearchForFacetValues};
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
use meilisearch_types::{milli, Document};
use milli::tokenizer::TokenizerBuilder;
use milli::{
AscDesc, FieldId, FieldsIdsMap, Filter, FormatOptions, Index, MatchBounds, MatcherBuilder,
SortError, TermsMatchingStrategy, VectorOrArrayOfVectors, DEFAULT_VALUES_PER_FACET,
SortError, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
};
use ordered_float::OrderedFloat;
use regex::Regex;
use serde::Serialize;
use serde_json::{json, Value};
@ -39,6 +36,7 @@ pub const DEFAULT_CROP_LENGTH: fn() -> usize = || 10;
pub const DEFAULT_CROP_MARKER: fn() -> String = || "".to_string();
pub const DEFAULT_HIGHLIGHT_PRE_TAG: fn() -> String = || "<em>".to_string();
pub const DEFAULT_HIGHLIGHT_POST_TAG: fn() -> String = || "</em>".to_string();
pub const DEFAULT_SEMANTIC_RATIO: fn() -> SemanticRatio = || SemanticRatio(0.5);
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
@ -47,6 +45,8 @@ pub struct SearchQuery {
pub q: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSearchVector>)]
pub vector: Option<Vec<f32>>,
#[deserr(default, error = DeserrJsonError<InvalidHybridQuery>)]
pub hybrid: Option<HybridQuery>,
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
pub offset: usize,
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSearchLimit>)]
@ -87,6 +87,48 @@ pub struct SearchQuery {
pub attributes_to_search_on: Option<Vec<String>>,
}
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
#[deserr(error = DeserrJsonError<InvalidHybridQuery>, rename_all = camelCase, deny_unknown_fields)]
pub struct HybridQuery {
/// TODO validate that sementic ratio is between 0.0 and 1,0
#[deserr(default, error = DeserrJsonError<InvalidSearchSemanticRatio>, default)]
pub semantic_ratio: SemanticRatio,
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
pub embedder: Option<String>,
}
#[derive(Debug, Clone, Copy, PartialEq, Deserr)]
#[deserr(try_from(f32) = TryFrom::try_from -> InvalidSearchSemanticRatio)]
pub struct SemanticRatio(f32);
impl Default for SemanticRatio {
fn default() -> Self {
DEFAULT_SEMANTIC_RATIO()
}
}
impl std::convert::TryFrom<f32> for SemanticRatio {
type Error = InvalidSearchSemanticRatio;
fn try_from(f: f32) -> Result<Self, Self::Error> {
// the suggested "fix" is: `!(0.0..=1.0).contains(&f)`` which is allegedly less readable
#[allow(clippy::manual_range_contains)]
if f > 1.0 || f < 0.0 {
Err(InvalidSearchSemanticRatio)
} else {
Ok(SemanticRatio(f))
}
}
}
impl std::ops::Deref for SemanticRatio {
type Target = f32;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl SearchQuery {
pub fn is_finite_pagination(&self) -> bool {
self.page.or(self.hits_per_page).is_some()
@ -106,6 +148,8 @@ pub struct SearchQueryWithIndex {
pub q: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSearchQ>)]
pub vector: Option<Vec<f32>>,
#[deserr(default, error = DeserrJsonError<InvalidHybridQuery>)]
pub hybrid: Option<HybridQuery>,
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
pub offset: usize,
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSearchLimit>)]
@ -171,6 +215,7 @@ impl SearchQueryWithIndex {
crop_marker,
matching_strategy,
attributes_to_search_on,
hybrid,
} = self;
(
index_uid,
@ -196,6 +241,7 @@ impl SearchQueryWithIndex {
crop_marker,
matching_strategy,
attributes_to_search_on,
hybrid,
// do not use ..Default::default() here,
// rather add any missing field from `SearchQuery` to `SearchQueryWithIndex`
},
@ -335,19 +381,44 @@ fn prepare_search<'t>(
rtxn: &'t RoTxn,
query: &'t SearchQuery,
features: RoFeatures,
distribution: Option<DistributionShift>,
) -> Result<(milli::Search<'t>, bool, usize, usize), MeilisearchHttpError> {
let mut search = index.search(rtxn);
if query.vector.is_some() && query.q.is_some() {
warn!("Ignoring the query string `q` when used with the `vector` parameter.");
if query.vector.is_some() {
features.check_vector("Passing `vector` as a query parameter")?;
}
if query.hybrid.is_some() {
features.check_vector("Passing `hybrid` as a query parameter")?;
}
if query.hybrid.is_none() && query.q.is_some() && query.vector.is_some() {
return Err(MeilisearchHttpError::MissingSearchHybrid);
}
search.distribution_shift(distribution);
if let Some(ref vector) = query.vector {
search.vector(vector.clone());
match &query.hybrid {
// If semantic ratio is 0.0, only the query search will impact the search results,
// skip the vector
Some(hybrid) if *hybrid.semantic_ratio == 0.0 => (),
_otherwise => {
search.vector(vector.clone());
}
}
}
if let Some(ref query) = query.q {
search.query(query);
if let Some(ref q) = query.q {
match &query.hybrid {
// If semantic ratio is 1.0, only the vector search will impact the search results,
// skip the query
Some(hybrid) if *hybrid.semantic_ratio == 1.0 => (),
_otherwise => {
search.query(q);
}
}
}
if let Some(ref searchable) = query.attributes_to_search_on {
@ -374,8 +445,8 @@ fn prepare_search<'t>(
features.check_score_details()?;
}
if query.vector.is_some() {
features.check_vector()?;
if let Some(HybridQuery { embedder: Some(embedder), .. }) = &query.hybrid {
search.embedder_name(embedder);
}
// compute the offset on the limit depending on the pagination mode.
@ -421,15 +492,22 @@ pub fn perform_search(
index: &Index,
query: SearchQuery,
features: RoFeatures,
distribution: Option<DistributionShift>,
) -> Result<SearchResult, MeilisearchHttpError> {
let before_search = Instant::now();
let rtxn = index.read_txn()?;
let (search, is_finite_pagination, max_total_hits, offset) =
prepare_search(index, &rtxn, &query, features)?;
prepare_search(index, &rtxn, &query, features, distribution)?;
let milli::SearchResult { documents_ids, matching_words, candidates, document_scores, .. } =
search.execute()?;
match &query.hybrid {
Some(hybrid) => match *hybrid.semantic_ratio {
ratio if ratio == 0.0 || ratio == 1.0 => search.execute()?,
ratio => search.execute_hybrid(ratio)?,
},
None => search.execute()?,
};
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
@ -538,13 +616,17 @@ pub fn perform_search(
insert_geo_distance(sort, &mut document);
}
let semantic_score = match query.vector.as_ref() {
Some(vector) => match extract_field("_vectors", &fields_ids_map, obkv)? {
Some(vectors) => compute_semantic_score(vector, vectors)?,
None => None,
},
None => None,
};
let mut semantic_score = None;
for details in &score {
if let ScoreDetails::Vector(score_details::Vector {
target_vector: _,
value_similarity: Some((_matching_vector, similarity)),
}) = details
{
semantic_score = Some(*similarity);
break;
}
}
let ranking_score =
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
@ -647,8 +729,9 @@ pub fn perform_facet_search(
let before_search = Instant::now();
let rtxn = index.read_txn()?;
let (search, _, _, _) = prepare_search(index, &rtxn, &search_query, features)?;
let mut facet_search = SearchForFacetValues::new(facet_name, search);
let (search, _, _, _) = prepare_search(index, &rtxn, &search_query, features, None)?;
let mut facet_search =
SearchForFacetValues::new(facet_name, search, search_query.hybrid.is_some());
if let Some(facet_query) = &facet_query {
facet_search.query(facet_query);
}
@ -676,18 +759,6 @@ fn insert_geo_distance(sorts: &[String], document: &mut Document) {
}
}
fn compute_semantic_score(query: &[f32], vectors: Value) -> milli::Result<Option<f32>> {
let vectors = serde_json::from_value(vectors)
.map(VectorOrArrayOfVectors::into_array_of_vectors)
.map_err(InternalError::SerdeJson)?;
Ok(vectors
.into_iter()
.flatten()
.map(|v| OrderedFloat(dot_product_similarity(query, &v)))
.max()
.map(OrderedFloat::into_inner))
}
fn compute_formatted_options(
attr_to_highlight: &HashSet<String>,
attr_to_crop: &[String],
@ -815,22 +886,6 @@ fn make_document(
Ok(document)
}
/// Extract the JSON value under the field name specified
/// but doesn't support nested objects.
fn extract_field(
field_name: &str,
field_ids_map: &FieldsIdsMap,
obkv: obkv::KvReaderU16,
) -> Result<Option<serde_json::Value>, MeilisearchHttpError> {
match field_ids_map.id(field_name) {
Some(fid) => match obkv.get(fid) {
Some(value) => Ok(serde_json::from_slice(value).map(Some)?),
None => Ok(None),
},
None => Ok(None),
}
}
fn format_fields<'a>(
document: &Document,
field_ids_map: &FieldsIdsMap,

View file

@ -77,7 +77,8 @@ async fn import_dump_v1_movie_raw() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -238,7 +239,8 @@ async fn import_dump_v1_movie_with_settings() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -385,7 +387,8 @@ async fn import_dump_v1_rubygems_with_settings() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -518,7 +521,8 @@ async fn import_dump_v2_movie_raw() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -663,7 +667,8 @@ async fn import_dump_v2_movie_with_settings() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -807,7 +812,8 @@ async fn import_dump_v2_rubygems_with_settings() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -940,7 +946,8 @@ async fn import_dump_v3_movie_raw() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -1085,7 +1092,8 @@ async fn import_dump_v3_movie_with_settings() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -1229,7 +1237,8 @@ async fn import_dump_v3_rubygems_with_settings() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -1362,7 +1371,8 @@ async fn import_dump_v4_movie_raw() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -1507,7 +1517,8 @@ async fn import_dump_v4_movie_with_settings() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -1651,7 +1662,8 @@ async fn import_dump_v4_rubygems_with_settings() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###
);
@ -1895,7 +1907,8 @@ async fn import_dump_v6_containing_experimental_features() {
},
"pagination": {
"maxTotalHits": 1000
}
},
"embedders": {}
}
"###);

View file

@ -0,0 +1,152 @@
use meili_snap::snapshot;
use once_cell::sync::Lazy;
use crate::common::index::Index;
use crate::common::{Server, Value};
use crate::json;
async fn index_with_documents<'a>(server: &'a Server, documents: &Value) -> Index<'a> {
let index = server.index("test");
let (response, code) = server.set_features(json!({"vectorStore": true})).await;
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"scoreDetails": false,
"vectorStore": true,
"metrics": false,
"exportPuffinReports": false,
"proximityPrecision": false
}
"###);
let (response, code) = index
.update_settings(
json!({ "embedders": {"default": {"source": {"userProvided": {"dimensions": 2}}}} }),
)
.await;
assert_eq!(202, code, "{:?}", response);
index.wait_task(response.uid()).await;
let (response, code) = index.add_documents(documents.clone(), None).await;
assert_eq!(202, code, "{:?}", response);
index.wait_task(response.uid()).await;
index
}
static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([
{
"title": "Shazam!",
"desc": "a Captain Marvel ersatz",
"id": "1",
"_vectors": {"default": [1.0, 3.0]},
},
{
"title": "Captain Planet",
"desc": "He's not part of the Marvel Cinematic Universe",
"id": "2",
"_vectors": {"default": [1.0, 2.0]},
},
{
"title": "Captain Marvel",
"desc": "a Shazam ersatz",
"id": "3",
"_vectors": {"default": [2.0, 3.0]},
}])
});
#[actix_rt::test]
async fn simple_search() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2}}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]}},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]}}]"###);
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8}}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_semanticScore":0.9472136}]"###);
}
#[actix_rt::test]
async fn invalid_semantic_ratio() {
let server = Server::new().await;
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 1.2}}),
)
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Invalid value at `.hybrid.semanticRatio`: the value of `semanticRatio` is invalid, expected a float between `0.0` and `1.0`.",
"code": "invalid_search_semantic_ratio",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_semantic_ratio"
}
"###);
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": -0.8}}),
)
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Invalid value at `.hybrid.semanticRatio`: the value of `semanticRatio` is invalid, expected a float between `0.0` and `1.0`.",
"code": "invalid_search_semantic_ratio",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_semantic_ratio"
}
"###);
let (response, code) = index
.search_get(
&yaup::to_string(
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridSemanticRatio": 1.2}),
)
.unwrap(),
)
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Invalid value in parameter `hybridSemanticRatio`: the value of `semanticRatio` is invalid, expected a float between `0.0` and `1.0`.",
"code": "invalid_search_semantic_ratio",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_semantic_ratio"
}
"###);
let (response, code) = index
.search_get(
&yaup::to_string(
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridSemanticRatio": -0.2}),
)
.unwrap(),
)
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "Invalid value in parameter `hybridSemanticRatio`: the value of `semanticRatio` is invalid, expected a float between `0.0` and `1.0`.",
"code": "invalid_search_semantic_ratio",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_semantic_ratio"
}
"###);
}

View file

@ -6,6 +6,7 @@ mod errors;
mod facet_search;
mod formatted;
mod geo;
mod hybrid;
mod multi;
mod pagination;
mod restrict_searchable;
@ -20,22 +21,27 @@ static DOCUMENTS: Lazy<Value> = Lazy::new(|| {
{
"title": "Shazam!",
"id": "287947",
"_vectors": { "manual": [1, 2, 3]},
},
{
"title": "Captain Marvel",
"id": "299537",
"_vectors": { "manual": [1, 2, 54] },
},
{
"title": "Escape Room",
"id": "522681",
"_vectors": { "manual": [10, -23, 32] },
},
{
"title": "How to Train Your Dragon: The Hidden World",
"id": "166428",
"_vectors": { "manual": [-100, 231, 32] },
},
{
"title": "Gläss",
"id": "450465",
"_vectors": { "manual": [-100, 340, 90] },
}
])
});
@ -57,6 +63,7 @@ static NESTED_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
},
],
"cattos": "pésti",
"_vectors": { "manual": [1, 2, 3]},
},
{
"id": 654,
@ -69,12 +76,14 @@ static NESTED_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
},
],
"cattos": ["simba", "pestiféré"],
"_vectors": { "manual": [1, 2, 54] },
},
{
"id": 750,
"father": "romain",
"mother": "michelle",
"cattos": ["enigma"],
"_vectors": { "manual": [10, 23, 32] },
},
{
"id": 951,
@ -91,6 +100,7 @@ static NESTED_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
},
],
"cattos": ["moumoute", "gomez"],
"_vectors": { "manual": [10, 23, 32] },
},
])
});
@ -802,6 +812,13 @@ async fn experimental_feature_score_details() {
{
"title": "How to Train Your Dragon: The Hidden World",
"id": "166428",
"_vectors": {
"manual": [
-100,
231,
32
]
},
"_rankingScoreDetails": {
"words": {
"order": 0,
@ -823,7 +840,7 @@ async fn experimental_feature_score_details() {
"order": 3,
"attributeRankingOrderScore": 1.0,
"queryWordDistanceScore": 0.8095238095238095,
"score": 0.9365079365079364
"score": 0.9727891156462584
},
"exactness": {
"order": 4,
@ -870,13 +887,92 @@ async fn experimental_feature_vector_store() {
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(response["vectorStore"], @"true");
let (response, code) = index
.update_settings(json!({"embedders": {
"manual": {
"source": {
"userProvided": {"dimensions": 3}
}
}
}}))
.await;
meili_snap::snapshot!(code, @"202 Accepted");
let response = index.wait_task(response.uid()).await;
meili_snap::snapshot!(meili_snap::json_string!(response["status"]), @"\"succeeded\"");
let (response, code) = index
.search_post(json!({
"vector": [1.0, 2.0, 3.0],
}))
.await;
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["hits"]), @"[]");
// vector search returns all documents that don't have vectors in the last bucket, like all sorts
meili_snap::snapshot!(meili_snap::json_string!(response["hits"]), @r###"
[
{
"title": "Shazam!",
"id": "287947",
"_vectors": {
"manual": [
1,
2,
3
]
},
"_semanticScore": 1.0
},
{
"title": "Captain Marvel",
"id": "299537",
"_vectors": {
"manual": [
1,
2,
54
]
},
"_semanticScore": 0.9129112
},
{
"title": "Gläss",
"id": "450465",
"_vectors": {
"manual": [
-100,
340,
90
]
},
"_semanticScore": 0.8106413
},
{
"title": "How to Train Your Dragon: The Hidden World",
"id": "166428",
"_vectors": {
"manual": [
-100,
231,
32
]
},
"_semanticScore": 0.74120104
},
{
"title": "Escape Room",
"id": "522681",
"_vectors": {
"manual": [
10,
-23,
32
]
}
}
]
"###);
}
#[cfg(feature = "default")]
@ -1126,7 +1222,14 @@ async fn simple_search_with_strange_synonyms() {
[
{
"title": "How to Train Your Dragon: The Hidden World",
"id": "166428"
"id": "166428",
"_vectors": {
"manual": [
-100,
231,
32
]
}
}
]
"###);
@ -1140,7 +1243,14 @@ async fn simple_search_with_strange_synonyms() {
[
{
"title": "How to Train Your Dragon: The Hidden World",
"id": "166428"
"id": "166428",
"_vectors": {
"manual": [
-100,
231,
32
]
}
}
]
"###);
@ -1154,7 +1264,14 @@ async fn simple_search_with_strange_synonyms() {
[
{
"title": "How to Train Your Dragon: The Hidden World",
"id": "166428"
"id": "166428",
"_vectors": {
"manual": [
-100,
231,
32
]
}
}
]
"###);

View file

@ -72,7 +72,14 @@ async fn simple_search_single_index() {
"hits": [
{
"title": "Gläss",
"id": "450465"
"id": "450465",
"_vectors": {
"manual": [
-100,
340,
90
]
}
}
],
"query": "glass",
@ -86,7 +93,14 @@ async fn simple_search_single_index() {
"hits": [
{
"title": "Captain Marvel",
"id": "299537"
"id": "299537",
"_vectors": {
"manual": [
1,
2,
54
]
}
}
],
"query": "captain",
@ -177,7 +191,14 @@ async fn simple_search_two_indexes() {
"hits": [
{
"title": "Gläss",
"id": "450465"
"id": "450465",
"_vectors": {
"manual": [
-100,
340,
90
]
}
}
],
"query": "glass",
@ -203,7 +224,14 @@ async fn simple_search_two_indexes() {
"age": 4
}
],
"cattos": "pésti"
"cattos": "pésti",
"_vectors": {
"manual": [
1,
2,
3
]
}
},
{
"id": 654,
@ -218,7 +246,14 @@ async fn simple_search_two_indexes() {
"cattos": [
"simba",
"pestiféré"
]
],
"_vectors": {
"manual": [
1,
2,
54
]
}
}
],
"query": "pésti",

View file

@ -54,7 +54,7 @@ async fn get_settings() {
let (response, code) = index.settings().await;
assert_eq!(code, 200);
let settings = response.as_object().unwrap();
assert_eq!(settings.keys().len(), 15);
assert_eq!(settings.keys().len(), 16);
assert_eq!(settings["displayedAttributes"], json!(["*"]));
assert_eq!(settings["searchableAttributes"], json!(["*"]));
assert_eq!(settings["filterableAttributes"], json!([]));
@ -83,6 +83,7 @@ async fn get_settings() {
"maxTotalHits": 1000,
})
);
assert_eq!(settings["embedders"], json!({}));
}
#[actix_rt::test]