mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-12-22 20:50:04 +01:00
Merge #4226
4226: Hybrid search r=dureuill a=dureuill Allows to perform hybrid search requests that combine the results of semantic and keyword search and automatically generate embeddings. ## How to use See [feature description](https://meilisearch.notion.site/v1-6-Hybrid-Search-Embedders-ea42c82f90cc4bc0be1eeb917c1118c8) ## Changes - work is based on #4213 - milli::new search now takes an input universe directly, rather than computing it from a filter. This adds flexibility to require results on a subset of documents - vector search is now a regular ranking rule (akin to sort and geosort) and reports its score as a ScoreDetail - separate keyword search and vector search functions, vector search now respects (geo)sort ranking rules - add automatic embedding - add hybrid search Co-authored-by: Louis Dureuil <louis@meilisearch.com> Co-authored-by: ManyTheFish <many@meilisearch.com>
This commit is contained in:
commit
2aede03bc2
1118
Cargo.lock
generated
1118
Cargo.lock
generated
File diff suppressed because it is too large
Load Diff
@ -276,6 +276,7 @@ pub(crate) mod test {
|
||||
),
|
||||
}),
|
||||
pagination: Setting::NotSet,
|
||||
embedders: Setting::NotSet,
|
||||
_kind: std::marker::PhantomData,
|
||||
};
|
||||
settings.check()
|
||||
|
@ -378,6 +378,7 @@ impl<T> From<v5::Settings<T>> for v6::Settings<v6::Unchecked> {
|
||||
v5::Setting::Reset => v6::Setting::Reset,
|
||||
v5::Setting::NotSet => v6::Setting::NotSet,
|
||||
},
|
||||
embedders: v6::Setting::NotSet,
|
||||
_kind: std::marker::PhantomData,
|
||||
}
|
||||
}
|
||||
|
@ -1202,6 +1202,10 @@ impl IndexScheduler {
|
||||
|
||||
let config = IndexDocumentsConfig { update_method: method, ..Default::default() };
|
||||
|
||||
let embedder_configs = index.embedding_configs(index_wtxn)?;
|
||||
// TODO: consider Arc'ing the map too (we only need read access + we'll be cloning it multiple times, so really makes sense)
|
||||
let embedders = self.embedders(embedder_configs)?;
|
||||
|
||||
let mut builder = milli::update::IndexDocuments::new(
|
||||
index_wtxn,
|
||||
index,
|
||||
@ -1220,6 +1224,8 @@ impl IndexScheduler {
|
||||
let (new_builder, user_result) = builder.add_documents(reader)?;
|
||||
builder = new_builder;
|
||||
|
||||
builder = builder.with_embedders(embedders.clone());
|
||||
|
||||
let received_documents =
|
||||
if let Some(Details::DocumentAdditionOrUpdate {
|
||||
received_documents,
|
||||
@ -1345,6 +1351,9 @@ impl IndexScheduler {
|
||||
|
||||
for (task, (_, settings)) in tasks.iter_mut().zip(settings) {
|
||||
let checked_settings = settings.clone().check();
|
||||
if matches!(checked_settings.embedders, milli::update::Setting::Set(_)) {
|
||||
self.features().check_vector("Passing `embedders` in settings")?
|
||||
}
|
||||
if checked_settings.proximity_precision.set().is_some() {
|
||||
self.features.features().check_proximity_precision()?;
|
||||
}
|
||||
|
@ -56,12 +56,12 @@ impl RoFeatures {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn check_vector(&self) -> Result<()> {
|
||||
pub fn check_vector(&self, disabled_action: &'static str) -> Result<()> {
|
||||
if self.runtime.vector_store {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(FeatureNotEnabledError {
|
||||
disabled_action: "Passing `vector` as a query parameter",
|
||||
disabled_action,
|
||||
feature: "vector store",
|
||||
issue_link: "https://github.com/meilisearch/product/discussions/677",
|
||||
}
|
||||
|
@ -41,6 +41,7 @@ pub fn snapshot_index_scheduler(scheduler: &IndexScheduler) -> String {
|
||||
planned_failures: _,
|
||||
run_loop_iteration: _,
|
||||
currently_updating_index: _,
|
||||
embedders: _,
|
||||
} = scheduler;
|
||||
|
||||
let rtxn = env.read_txn().unwrap();
|
||||
|
@ -52,6 +52,7 @@ use meilisearch_types::heed::types::{SerdeBincode, SerdeJson, Str, I128};
|
||||
use meilisearch_types::heed::{self, Database, Env, PutFlags, RoTxn, RwTxn};
|
||||
use meilisearch_types::milli::documents::DocumentsBatchBuilder;
|
||||
use meilisearch_types::milli::update::IndexerConfig;
|
||||
use meilisearch_types::milli::vector::{Embedder, EmbedderOptions, EmbeddingConfigs};
|
||||
use meilisearch_types::milli::{self, CboRoaringBitmapCodec, Index, RoaringBitmapCodec, BEU32};
|
||||
use meilisearch_types::tasks::{Kind, KindWithContent, Status, Task};
|
||||
use puffin::FrameView;
|
||||
@ -341,6 +342,8 @@ pub struct IndexScheduler {
|
||||
/// so that a handle to the index is available from other threads (search) in an optimized manner.
|
||||
currently_updating_index: Arc<RwLock<Option<(String, Index)>>>,
|
||||
|
||||
embedders: Arc<RwLock<HashMap<EmbedderOptions, Arc<Embedder>>>>,
|
||||
|
||||
// ================= test
|
||||
// The next entry is dedicated to the tests.
|
||||
/// Provide a way to set a breakpoint in multiple part of the scheduler.
|
||||
@ -386,6 +389,7 @@ impl IndexScheduler {
|
||||
auth_path: self.auth_path.clone(),
|
||||
version_file_path: self.version_file_path.clone(),
|
||||
currently_updating_index: self.currently_updating_index.clone(),
|
||||
embedders: self.embedders.clone(),
|
||||
#[cfg(test)]
|
||||
test_breakpoint_sdr: self.test_breakpoint_sdr.clone(),
|
||||
#[cfg(test)]
|
||||
@ -484,6 +488,7 @@ impl IndexScheduler {
|
||||
auth_path: options.auth_path,
|
||||
version_file_path: options.version_file_path,
|
||||
currently_updating_index: Arc::new(RwLock::new(None)),
|
||||
embedders: Default::default(),
|
||||
|
||||
#[cfg(test)]
|
||||
test_breakpoint_sdr,
|
||||
@ -1333,6 +1338,40 @@ impl IndexScheduler {
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: consider using a type alias or a struct embedder/template
|
||||
pub fn embedders(
|
||||
&self,
|
||||
embedding_configs: Vec<(String, milli::vector::EmbeddingConfig)>,
|
||||
) -> Result<EmbeddingConfigs> {
|
||||
let res: Result<_> = embedding_configs
|
||||
.into_iter()
|
||||
.map(|(name, milli::vector::EmbeddingConfig { embedder_options, prompt })| {
|
||||
let prompt =
|
||||
Arc::new(prompt.try_into().map_err(meilisearch_types::milli::Error::from)?);
|
||||
// optimistically return existing embedder
|
||||
{
|
||||
let embedders = self.embedders.read().unwrap();
|
||||
if let Some(embedder) = embedders.get(&embedder_options) {
|
||||
return Ok((name, (embedder.clone(), prompt)));
|
||||
}
|
||||
}
|
||||
|
||||
// add missing embedder
|
||||
let embedder = Arc::new(
|
||||
Embedder::new(embedder_options.clone())
|
||||
.map_err(meilisearch_types::milli::vector::Error::from)
|
||||
.map_err(meilisearch_types::milli::Error::from)?,
|
||||
);
|
||||
{
|
||||
let mut embedders = self.embedders.write().unwrap();
|
||||
embedders.insert(embedder_options, embedder.clone());
|
||||
}
|
||||
Ok((name, (embedder, prompt)))
|
||||
})
|
||||
.collect();
|
||||
res.map(EmbeddingConfigs::new)
|
||||
}
|
||||
|
||||
/// Blocks the thread until the test handle asks to progress to/through this breakpoint.
|
||||
///
|
||||
/// Two messages are sent through the channel for each breakpoint.
|
||||
|
@ -188,3 +188,4 @@ merge_with_error_impl_take_error_message!(ParseOffsetDateTimeError);
|
||||
merge_with_error_impl_take_error_message!(ParseTaskKindError);
|
||||
merge_with_error_impl_take_error_message!(ParseTaskStatusError);
|
||||
merge_with_error_impl_take_error_message!(IndexUidFormatError);
|
||||
merge_with_error_impl_take_error_message!(InvalidSearchSemanticRatio);
|
||||
|
@ -222,6 +222,8 @@ InvalidVectorsType , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidDocumentId , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidDocumentLimit , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidDocumentOffset , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidEmbedder , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidHybridQuery , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidIndexLimit , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidIndexOffset , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidIndexPrimaryKey , InvalidRequest , BAD_REQUEST ;
|
||||
@ -233,6 +235,7 @@ InvalidSearchAttributesToRetrieve , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchCropLength , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchCropMarker , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchFacets , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchSemanticRatio , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidFacetSearchFacetName , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchFilter , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSearchHighlightPostTag , InvalidRequest , BAD_REQUEST ;
|
||||
@ -256,6 +259,7 @@ InvalidSettingsProximityPrecision , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSettingsFaceting , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSettingsFilterableAttributes , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSettingsPagination , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSettingsEmbedders , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSettingsRankingRules , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSettingsSearchableAttributes , InvalidRequest , BAD_REQUEST ;
|
||||
InvalidSettingsSortableAttributes , InvalidRequest , BAD_REQUEST ;
|
||||
@ -295,15 +299,18 @@ MissingFacetSearchFacetName , InvalidRequest , BAD_REQUEST ;
|
||||
MissingIndexUid , InvalidRequest , BAD_REQUEST ;
|
||||
MissingMasterKey , Auth , UNAUTHORIZED ;
|
||||
MissingPayload , InvalidRequest , BAD_REQUEST ;
|
||||
MissingSearchHybrid , InvalidRequest , BAD_REQUEST ;
|
||||
MissingSwapIndexes , InvalidRequest , BAD_REQUEST ;
|
||||
MissingTaskFilters , InvalidRequest , BAD_REQUEST ;
|
||||
NoSpaceLeftOnDevice , System , UNPROCESSABLE_ENTITY;
|
||||
PayloadTooLarge , InvalidRequest , PAYLOAD_TOO_LARGE ;
|
||||
TaskNotFound , InvalidRequest , NOT_FOUND ;
|
||||
TooManyOpenFiles , System , UNPROCESSABLE_ENTITY ;
|
||||
TooManyVectors , InvalidRequest , BAD_REQUEST ;
|
||||
UnretrievableDocument , Internal , BAD_REQUEST ;
|
||||
UnretrievableErrorCode , InvalidRequest , BAD_REQUEST ;
|
||||
UnsupportedMediaType , InvalidRequest , UNSUPPORTED_MEDIA_TYPE
|
||||
UnsupportedMediaType , InvalidRequest , UNSUPPORTED_MEDIA_TYPE ;
|
||||
VectorEmbeddingError , InvalidRequest , BAD_REQUEST
|
||||
}
|
||||
|
||||
impl ErrorCode for JoinError {
|
||||
@ -336,6 +343,10 @@ impl ErrorCode for milli::Error {
|
||||
UserError::InvalidDocumentId { .. } | UserError::TooManyDocumentIds { .. } => {
|
||||
Code::InvalidDocumentId
|
||||
}
|
||||
UserError::MissingDocumentField(_) => Code::InvalidDocumentFields,
|
||||
UserError::InvalidPrompt(_) => Code::InvalidSettingsEmbedders,
|
||||
UserError::TooManyEmbedders(_) => Code::InvalidSettingsEmbedders,
|
||||
UserError::InvalidPromptForEmbeddings(..) => Code::InvalidSettingsEmbedders,
|
||||
UserError::NoPrimaryKeyCandidateFound => Code::IndexPrimaryKeyNoCandidateFound,
|
||||
UserError::MultiplePrimaryKeyCandidatesFound { .. } => {
|
||||
Code::IndexPrimaryKeyMultipleCandidatesFound
|
||||
@ -353,11 +364,15 @@ impl ErrorCode for milli::Error {
|
||||
UserError::CriterionError(_) => Code::InvalidSettingsRankingRules,
|
||||
UserError::InvalidGeoField { .. } => Code::InvalidDocumentGeoField,
|
||||
UserError::InvalidVectorDimensions { .. } => Code::InvalidVectorDimensions,
|
||||
UserError::InvalidVectorsMapType { .. } => Code::InvalidVectorsType,
|
||||
UserError::InvalidVectorsType { .. } => Code::InvalidVectorsType,
|
||||
UserError::TooManyVectors(_, _) => Code::TooManyVectors,
|
||||
UserError::SortError(_) => Code::InvalidSearchSort,
|
||||
UserError::InvalidMinTypoWordLenSetting(_, _) => {
|
||||
Code::InvalidSettingsTypoTolerance
|
||||
}
|
||||
UserError::InvalidEmbedder(_) => Code::InvalidEmbedder,
|
||||
UserError::VectorEmbeddingError(_) => Code::VectorEmbeddingError,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -445,6 +460,15 @@ impl fmt::Display for DeserrParseIntError {
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for deserr_codes::InvalidSearchSemanticRatio {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(
|
||||
f,
|
||||
"the value of `semanticRatio` is invalid, expected a float between `0.0` and `1.0`."
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! internal_error {
|
||||
($target:ty : $($other:path), *) => {
|
||||
|
@ -199,6 +199,10 @@ pub struct Settings<T> {
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSettingsPagination>)]
|
||||
pub pagination: Setting<PaginationSettings>,
|
||||
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSettingsEmbedders>)]
|
||||
pub embedders: Setting<BTreeMap<String, Setting<milli::vector::settings::EmbeddingSettings>>>,
|
||||
|
||||
#[serde(skip)]
|
||||
#[deserr(skip)]
|
||||
pub _kind: PhantomData<T>,
|
||||
@ -222,6 +226,7 @@ impl Settings<Checked> {
|
||||
typo_tolerance: Setting::Reset,
|
||||
faceting: Setting::Reset,
|
||||
pagination: Setting::Reset,
|
||||
embedders: Setting::Reset,
|
||||
_kind: PhantomData,
|
||||
}
|
||||
}
|
||||
@ -243,6 +248,7 @@ impl Settings<Checked> {
|
||||
typo_tolerance,
|
||||
faceting,
|
||||
pagination,
|
||||
embedders,
|
||||
..
|
||||
} = self;
|
||||
|
||||
@ -262,6 +268,7 @@ impl Settings<Checked> {
|
||||
typo_tolerance,
|
||||
faceting,
|
||||
pagination,
|
||||
embedders,
|
||||
_kind: PhantomData,
|
||||
}
|
||||
}
|
||||
@ -307,6 +314,7 @@ impl Settings<Unchecked> {
|
||||
typo_tolerance: self.typo_tolerance,
|
||||
faceting: self.faceting,
|
||||
pagination: self.pagination,
|
||||
embedders: self.embedders,
|
||||
_kind: PhantomData,
|
||||
}
|
||||
}
|
||||
@ -490,6 +498,12 @@ pub fn apply_settings_to_builder(
|
||||
Setting::Reset => builder.reset_pagination_max_total_hits(),
|
||||
Setting::NotSet => (),
|
||||
}
|
||||
|
||||
match settings.embedders.clone() {
|
||||
Setting::Set(value) => builder.set_embedder_settings(value),
|
||||
Setting::Reset => builder.reset_embedder_settings(),
|
||||
Setting::NotSet => (),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn settings(
|
||||
@ -571,6 +585,12 @@ pub fn settings(
|
||||
),
|
||||
};
|
||||
|
||||
let embedders = index
|
||||
.embedding_configs(rtxn)?
|
||||
.into_iter()
|
||||
.map(|(name, config)| (name, Setting::Set(config.into())))
|
||||
.collect();
|
||||
|
||||
Ok(Settings {
|
||||
displayed_attributes: match displayed_attributes {
|
||||
Some(attrs) => Setting::Set(attrs),
|
||||
@ -599,6 +619,7 @@ pub fn settings(
|
||||
typo_tolerance: Setting::Set(typo_tolerance),
|
||||
faceting: Setting::Set(faceting),
|
||||
pagination: Setting::Set(pagination),
|
||||
embedders: Setting::Set(embedders),
|
||||
_kind: PhantomData,
|
||||
})
|
||||
}
|
||||
@ -747,6 +768,7 @@ pub(crate) mod test {
|
||||
typo_tolerance: Setting::NotSet,
|
||||
faceting: Setting::NotSet,
|
||||
pagination: Setting::NotSet,
|
||||
embedders: Setting::NotSet,
|
||||
_kind: PhantomData::<Unchecked>,
|
||||
};
|
||||
|
||||
@ -772,6 +794,7 @@ pub(crate) mod test {
|
||||
typo_tolerance: Setting::NotSet,
|
||||
faceting: Setting::NotSet,
|
||||
pagination: Setting::NotSet,
|
||||
embedders: Setting::NotSet,
|
||||
_kind: PhantomData::<Unchecked>,
|
||||
};
|
||||
|
||||
|
@ -36,7 +36,7 @@ use crate::routes::{create_all_stats, Stats};
|
||||
use crate::search::{
|
||||
FacetSearchResult, MatchingStrategy, SearchQuery, SearchQueryWithIndex, SearchResult,
|
||||
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
|
||||
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
|
||||
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEMANTIC_RATIO,
|
||||
};
|
||||
use crate::Opt;
|
||||
|
||||
@ -586,6 +586,11 @@ pub struct SearchAggregator {
|
||||
// vector
|
||||
// The maximum number of floats in a vector request
|
||||
max_vector_size: usize,
|
||||
// Whether the semantic ratio passed to a hybrid search equals the default ratio.
|
||||
semantic_ratio: bool,
|
||||
// Whether a non-default embedder was specified
|
||||
embedder: bool,
|
||||
hybrid: bool,
|
||||
|
||||
// every time a search is done, we increment the counter linked to the used settings
|
||||
matching_strategy: HashMap<String, usize>,
|
||||
@ -639,6 +644,7 @@ impl SearchAggregator {
|
||||
crop_marker,
|
||||
matching_strategy,
|
||||
attributes_to_search_on,
|
||||
hybrid,
|
||||
} = query;
|
||||
|
||||
let mut ret = Self::default();
|
||||
@ -712,6 +718,12 @@ impl SearchAggregator {
|
||||
ret.show_ranking_score = *show_ranking_score;
|
||||
ret.show_ranking_score_details = *show_ranking_score_details;
|
||||
|
||||
if let Some(hybrid) = hybrid {
|
||||
ret.semantic_ratio = hybrid.semantic_ratio != DEFAULT_SEMANTIC_RATIO();
|
||||
ret.embedder = hybrid.embedder.is_some();
|
||||
ret.hybrid = true;
|
||||
}
|
||||
|
||||
ret
|
||||
}
|
||||
|
||||
@ -765,6 +777,9 @@ impl SearchAggregator {
|
||||
facets_total_number_of_facets,
|
||||
show_ranking_score,
|
||||
show_ranking_score_details,
|
||||
semantic_ratio,
|
||||
embedder,
|
||||
hybrid,
|
||||
} = other;
|
||||
|
||||
if self.timestamp.is_none() {
|
||||
@ -810,6 +825,9 @@ impl SearchAggregator {
|
||||
|
||||
// vector
|
||||
self.max_vector_size = self.max_vector_size.max(max_vector_size);
|
||||
self.semantic_ratio |= semantic_ratio;
|
||||
self.hybrid |= hybrid;
|
||||
self.embedder |= embedder;
|
||||
|
||||
// pagination
|
||||
self.max_limit = self.max_limit.max(max_limit);
|
||||
@ -878,6 +896,9 @@ impl SearchAggregator {
|
||||
facets_total_number_of_facets,
|
||||
show_ranking_score,
|
||||
show_ranking_score_details,
|
||||
semantic_ratio,
|
||||
embedder,
|
||||
hybrid,
|
||||
} = self;
|
||||
|
||||
if total_received == 0 {
|
||||
@ -917,6 +938,11 @@ impl SearchAggregator {
|
||||
"vector": {
|
||||
"max_vector_size": max_vector_size,
|
||||
},
|
||||
"hybrid": {
|
||||
"enabled": hybrid,
|
||||
"semantic_ratio": semantic_ratio,
|
||||
"embedder": embedder,
|
||||
},
|
||||
"pagination": {
|
||||
"max_limit": max_limit,
|
||||
"max_offset": max_offset,
|
||||
@ -1012,6 +1038,7 @@ impl MultiSearchAggregator {
|
||||
crop_marker: _,
|
||||
matching_strategy: _,
|
||||
attributes_to_search_on: _,
|
||||
hybrid: _,
|
||||
} = query;
|
||||
|
||||
index_uid.as_str()
|
||||
@ -1158,6 +1185,7 @@ impl FacetSearchAggregator {
|
||||
filter,
|
||||
matching_strategy,
|
||||
attributes_to_search_on,
|
||||
hybrid,
|
||||
} = query;
|
||||
|
||||
let mut ret = Self::default();
|
||||
@ -1171,7 +1199,8 @@ impl FacetSearchAggregator {
|
||||
|| vector.is_some()
|
||||
|| filter.is_some()
|
||||
|| *matching_strategy != MatchingStrategy::default()
|
||||
|| attributes_to_search_on.is_some();
|
||||
|| attributes_to_search_on.is_some()
|
||||
|| hybrid.is_some();
|
||||
|
||||
ret
|
||||
}
|
||||
|
@ -51,6 +51,8 @@ pub enum MeilisearchHttpError {
|
||||
DocumentFormat(#[from] DocumentFormatError),
|
||||
#[error(transparent)]
|
||||
Join(#[from] JoinError),
|
||||
#[error("Invalid request: missing `hybrid` parameter when both `q` and `vector` are present.")]
|
||||
MissingSearchHybrid,
|
||||
}
|
||||
|
||||
impl ErrorCode for MeilisearchHttpError {
|
||||
@ -74,6 +76,7 @@ impl ErrorCode for MeilisearchHttpError {
|
||||
MeilisearchHttpError::FileStore(_) => Code::Internal,
|
||||
MeilisearchHttpError::DocumentFormat(e) => e.error_code(),
|
||||
MeilisearchHttpError::Join(_) => Code::Internal,
|
||||
MeilisearchHttpError::MissingSearchHybrid => Code::MissingSearchHybrid,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -19,7 +19,11 @@ static ALLOC: mimalloc::MiMalloc = mimalloc::MiMalloc;
|
||||
/// does all the setup before meilisearch is launched
|
||||
fn setup(opt: &Opt) -> anyhow::Result<()> {
|
||||
let mut log_builder = env_logger::Builder::new();
|
||||
log_builder.parse_filters(&opt.log_level.to_string());
|
||||
let log_filters = format!(
|
||||
"{},h2=warn,hyper=warn,tokio_util=warn,tracing=warn,rustls=warn,mio=warn,reqwest=warn",
|
||||
opt.log_level
|
||||
);
|
||||
log_builder.parse_filters(&log_filters);
|
||||
|
||||
log_builder.init();
|
||||
|
||||
|
@ -13,9 +13,9 @@ use crate::analytics::{Analytics, FacetSearchAggregator};
|
||||
use crate::extractors::authentication::policies::*;
|
||||
use crate::extractors::authentication::GuardedData;
|
||||
use crate::search::{
|
||||
add_search_rules, perform_facet_search, MatchingStrategy, SearchQuery, DEFAULT_CROP_LENGTH,
|
||||
DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG,
|
||||
DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
|
||||
add_search_rules, perform_facet_search, HybridQuery, MatchingStrategy, SearchQuery,
|
||||
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
|
||||
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
|
||||
};
|
||||
|
||||
pub fn configure(cfg: &mut web::ServiceConfig) {
|
||||
@ -36,6 +36,8 @@ pub struct FacetSearchQuery {
|
||||
pub q: Option<String>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchVector>)]
|
||||
pub vector: Option<Vec<f32>>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidHybridQuery>)]
|
||||
pub hybrid: Option<HybridQuery>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
|
||||
pub filter: Option<Value>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchMatchingStrategy>, default)]
|
||||
@ -95,6 +97,7 @@ impl From<FacetSearchQuery> for SearchQuery {
|
||||
filter,
|
||||
matching_strategy,
|
||||
attributes_to_search_on,
|
||||
hybrid,
|
||||
} = value;
|
||||
|
||||
SearchQuery {
|
||||
@ -119,6 +122,7 @@ impl From<FacetSearchQuery> for SearchQuery {
|
||||
matching_strategy,
|
||||
vector,
|
||||
attributes_to_search_on,
|
||||
hybrid,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -2,12 +2,14 @@ use actix_web::web::Data;
|
||||
use actix_web::{web, HttpRequest, HttpResponse};
|
||||
use deserr::actix_web::{AwebJson, AwebQueryParameter};
|
||||
use index_scheduler::IndexScheduler;
|
||||
use log::debug;
|
||||
use log::{debug, warn};
|
||||
use meilisearch_types::deserr::query_params::Param;
|
||||
use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError};
|
||||
use meilisearch_types::error::deserr_codes::*;
|
||||
use meilisearch_types::error::ResponseError;
|
||||
use meilisearch_types::index_uid::IndexUid;
|
||||
use meilisearch_types::milli;
|
||||
use meilisearch_types::milli::vector::DistributionShift;
|
||||
use meilisearch_types::serde_cs::vec::CS;
|
||||
use serde_json::Value;
|
||||
|
||||
@ -16,9 +18,9 @@ use crate::extractors::authentication::policies::*;
|
||||
use crate::extractors::authentication::GuardedData;
|
||||
use crate::extractors::sequential_extractor::SeqHandler;
|
||||
use crate::search::{
|
||||
add_search_rules, perform_search, MatchingStrategy, SearchQuery, DEFAULT_CROP_LENGTH,
|
||||
DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG,
|
||||
DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
|
||||
add_search_rules, perform_search, HybridQuery, MatchingStrategy, SearchQuery, SemanticRatio,
|
||||
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
|
||||
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO,
|
||||
};
|
||||
|
||||
pub fn configure(cfg: &mut web::ServiceConfig) {
|
||||
@ -74,6 +76,31 @@ pub struct SearchQueryGet {
|
||||
matching_strategy: MatchingStrategy,
|
||||
#[deserr(default, error = DeserrQueryParamError<InvalidSearchAttributesToSearchOn>)]
|
||||
pub attributes_to_search_on: Option<CS<String>>,
|
||||
#[deserr(default, error = DeserrQueryParamError<InvalidEmbedder>)]
|
||||
pub hybrid_embedder: Option<String>,
|
||||
#[deserr(default, error = DeserrQueryParamError<InvalidSearchSemanticRatio>)]
|
||||
pub hybrid_semantic_ratio: Option<SemanticRatioGet>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default, PartialEq, deserr::Deserr)]
|
||||
#[deserr(try_from(String) = TryFrom::try_from -> InvalidSearchSemanticRatio)]
|
||||
pub struct SemanticRatioGet(SemanticRatio);
|
||||
|
||||
impl std::convert::TryFrom<String> for SemanticRatioGet {
|
||||
type Error = InvalidSearchSemanticRatio;
|
||||
|
||||
fn try_from(s: String) -> Result<Self, Self::Error> {
|
||||
let f: f32 = s.parse().map_err(|_| InvalidSearchSemanticRatio)?;
|
||||
Ok(SemanticRatioGet(SemanticRatio::try_from(f)?))
|
||||
}
|
||||
}
|
||||
|
||||
impl std::ops::Deref for SemanticRatioGet {
|
||||
type Target = SemanticRatio;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl From<SearchQueryGet> for SearchQuery {
|
||||
@ -86,6 +113,20 @@ impl From<SearchQueryGet> for SearchQuery {
|
||||
None => None,
|
||||
};
|
||||
|
||||
let hybrid = match (other.hybrid_embedder, other.hybrid_semantic_ratio) {
|
||||
(None, None) => None,
|
||||
(None, Some(semantic_ratio)) => {
|
||||
Some(HybridQuery { semantic_ratio: *semantic_ratio, embedder: None })
|
||||
}
|
||||
(Some(embedder), None) => Some(HybridQuery {
|
||||
semantic_ratio: DEFAULT_SEMANTIC_RATIO(),
|
||||
embedder: Some(embedder),
|
||||
}),
|
||||
(Some(embedder), Some(semantic_ratio)) => {
|
||||
Some(HybridQuery { semantic_ratio: *semantic_ratio, embedder: Some(embedder) })
|
||||
}
|
||||
};
|
||||
|
||||
Self {
|
||||
q: other.q,
|
||||
vector: other.vector.map(CS::into_inner),
|
||||
@ -108,6 +149,7 @@ impl From<SearchQueryGet> for SearchQuery {
|
||||
crop_marker: other.crop_marker,
|
||||
matching_strategy: other.matching_strategy,
|
||||
attributes_to_search_on: other.attributes_to_search_on.map(|o| o.into_iter().collect()),
|
||||
hybrid,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -158,8 +200,12 @@ pub async fn search_with_url_query(
|
||||
|
||||
let index = index_scheduler.index(&index_uid)?;
|
||||
let features = index_scheduler.features();
|
||||
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index).await?;
|
||||
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features)).await?;
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution))
|
||||
.await?;
|
||||
if let Ok(ref search_result) = search_result {
|
||||
aggregate.succeed(search_result);
|
||||
}
|
||||
@ -193,8 +239,12 @@ pub async fn search_with_post(
|
||||
let index = index_scheduler.index(&index_uid)?;
|
||||
|
||||
let features = index_scheduler.features();
|
||||
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index).await?;
|
||||
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features)).await?;
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features, distribution))
|
||||
.await?;
|
||||
if let Ok(ref search_result) = search_result {
|
||||
aggregate.succeed(search_result);
|
||||
}
|
||||
@ -206,6 +256,80 @@ pub async fn search_with_post(
|
||||
Ok(HttpResponse::Ok().json(search_result))
|
||||
}
|
||||
|
||||
pub async fn embed(
|
||||
query: &mut SearchQuery,
|
||||
index_scheduler: &IndexScheduler,
|
||||
index: &milli::Index,
|
||||
) -> Result<Option<DistributionShift>, ResponseError> {
|
||||
match (&query.hybrid, &query.vector, &query.q) {
|
||||
(Some(HybridQuery { semantic_ratio: _, embedder }), None, Some(q))
|
||||
if !q.trim().is_empty() =>
|
||||
{
|
||||
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
|
||||
let embedders = index_scheduler.embedders(embedder_configs)?;
|
||||
|
||||
let embedder = if let Some(embedder_name) = embedder {
|
||||
embedders.get(embedder_name)
|
||||
} else {
|
||||
embedders.get_default()
|
||||
};
|
||||
|
||||
let embedder = embedder
|
||||
.ok_or(milli::UserError::InvalidEmbedder("default".to_owned()))
|
||||
.map_err(milli::Error::from)?
|
||||
.0;
|
||||
|
||||
let distribution = embedder.distribution();
|
||||
|
||||
let embeddings = embedder
|
||||
.embed(vec![q.to_owned()])
|
||||
.await
|
||||
.map_err(milli::vector::Error::from)
|
||||
.map_err(milli::Error::from)?
|
||||
.pop()
|
||||
.expect("No vector returned from embedding");
|
||||
|
||||
if embeddings.iter().nth(1).is_some() {
|
||||
warn!("Ignoring embeddings past the first one in long search query");
|
||||
query.vector = Some(embeddings.iter().next().unwrap().to_vec());
|
||||
} else {
|
||||
query.vector = Some(embeddings.into_inner());
|
||||
}
|
||||
Ok(distribution)
|
||||
}
|
||||
(Some(hybrid), vector, _) => {
|
||||
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
|
||||
let embedders = index_scheduler.embedders(embedder_configs)?;
|
||||
|
||||
let embedder = if let Some(embedder_name) = &hybrid.embedder {
|
||||
embedders.get(embedder_name)
|
||||
} else {
|
||||
embedders.get_default()
|
||||
};
|
||||
|
||||
let embedder = embedder
|
||||
.ok_or(milli::UserError::InvalidEmbedder("default".to_owned()))
|
||||
.map_err(milli::Error::from)?
|
||||
.0;
|
||||
|
||||
if let Some(vector) = vector {
|
||||
if vector.len() != embedder.dimensions() {
|
||||
return Err(meilisearch_types::milli::Error::UserError(
|
||||
meilisearch_types::milli::UserError::InvalidVectorDimensions {
|
||||
expected: embedder.dimensions(),
|
||||
found: vector.len(),
|
||||
},
|
||||
)
|
||||
.into());
|
||||
}
|
||||
}
|
||||
|
||||
Ok(embedder.distribution())
|
||||
}
|
||||
_ => Ok(None),
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
@ -7,6 +7,7 @@ use meilisearch_types::deserr::DeserrJsonError;
|
||||
use meilisearch_types::error::ResponseError;
|
||||
use meilisearch_types::facet_values_sort::FacetValuesSort;
|
||||
use meilisearch_types::index_uid::IndexUid;
|
||||
use meilisearch_types::milli::update::Setting;
|
||||
use meilisearch_types::settings::{settings, RankingRuleView, Settings, Unchecked};
|
||||
use meilisearch_types::tasks::KindWithContent;
|
||||
use serde_json::json;
|
||||
@ -545,6 +546,67 @@ make_setting_route!(
|
||||
}
|
||||
);
|
||||
|
||||
make_setting_route!(
|
||||
"/embedders",
|
||||
patch,
|
||||
std::collections::BTreeMap<String, Setting<meilisearch_types::milli::vector::settings::EmbeddingSettings>>,
|
||||
meilisearch_types::deserr::DeserrJsonError<
|
||||
meilisearch_types::error::deserr_codes::InvalidSettingsEmbedders,
|
||||
>,
|
||||
embedders,
|
||||
"embedders",
|
||||
analytics,
|
||||
|setting: &Option<std::collections::BTreeMap<String, Setting<meilisearch_types::milli::vector::settings::EmbeddingSettings>>>, req: &HttpRequest| {
|
||||
|
||||
|
||||
analytics.publish(
|
||||
"Embedders Updated".to_string(),
|
||||
serde_json::json!({"embedders": crate::routes::indexes::settings::embedder_analytics(setting.as_ref())}),
|
||||
Some(req),
|
||||
);
|
||||
}
|
||||
);
|
||||
|
||||
fn embedder_analytics(
|
||||
setting: Option<
|
||||
&std::collections::BTreeMap<
|
||||
String,
|
||||
Setting<meilisearch_types::milli::vector::settings::EmbeddingSettings>,
|
||||
>,
|
||||
>,
|
||||
) -> serde_json::Value {
|
||||
let mut sources = std::collections::HashSet::new();
|
||||
|
||||
if let Some(s) = &setting {
|
||||
for source in s
|
||||
.values()
|
||||
.filter_map(|config| config.clone().set())
|
||||
.filter_map(|config| config.embedder_options.set())
|
||||
{
|
||||
use meilisearch_types::milli::vector::settings::EmbedderSettings;
|
||||
match source {
|
||||
EmbedderSettings::OpenAi(_) => sources.insert("openAi"),
|
||||
EmbedderSettings::HuggingFace(_) => sources.insert("huggingFace"),
|
||||
EmbedderSettings::UserProvided(_) => sources.insert("userProvided"),
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
let document_template_used = setting.as_ref().map(|map| {
|
||||
map.values()
|
||||
.filter_map(|config| config.clone().set())
|
||||
.any(|config| config.document_template.set().is_some())
|
||||
});
|
||||
|
||||
json!(
|
||||
{
|
||||
"total": setting.as_ref().map(|s| s.len()),
|
||||
"sources": sources,
|
||||
"document_template_used": document_template_used,
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
macro_rules! generate_configure {
|
||||
($($mod:ident),*) => {
|
||||
pub fn configure(cfg: &mut web::ServiceConfig) {
|
||||
@ -574,7 +636,8 @@ generate_configure!(
|
||||
ranking_rules,
|
||||
typo_tolerance,
|
||||
pagination,
|
||||
faceting
|
||||
faceting,
|
||||
embedders
|
||||
);
|
||||
|
||||
pub async fn update_all(
|
||||
@ -681,6 +744,7 @@ pub async fn update_all(
|
||||
"synonyms": {
|
||||
"total": new_settings.synonyms.as_ref().set().map(|synonyms| synonyms.len()),
|
||||
},
|
||||
"embedders": crate::routes::indexes::settings::embedder_analytics(new_settings.embedders.as_ref().set())
|
||||
}),
|
||||
Some(&req),
|
||||
);
|
||||
|
@ -13,6 +13,7 @@ use crate::analytics::{Analytics, MultiSearchAggregator};
|
||||
use crate::extractors::authentication::policies::ActionPolicy;
|
||||
use crate::extractors::authentication::{AuthenticationError, GuardedData};
|
||||
use crate::extractors::sequential_extractor::SeqHandler;
|
||||
use crate::routes::indexes::search::embed;
|
||||
use crate::search::{
|
||||
add_search_rules, perform_search, SearchQueryWithIndex, SearchResultWithIndex,
|
||||
};
|
||||
@ -74,10 +75,15 @@ pub async fn multi_search_with_post(
|
||||
})
|
||||
.with_index(query_index)?;
|
||||
|
||||
let search_result =
|
||||
tokio::task::spawn_blocking(move || perform_search(&index, query, features))
|
||||
.await
|
||||
.with_index(query_index)?;
|
||||
let distribution = embed(&mut query, index_scheduler.get_ref(), &index)
|
||||
.await
|
||||
.with_index(query_index)?;
|
||||
|
||||
let search_result = tokio::task::spawn_blocking(move || {
|
||||
perform_search(&index, query, features, distribution)
|
||||
})
|
||||
.await
|
||||
.with_index(query_index)?;
|
||||
|
||||
search_results.push(SearchResultWithIndex {
|
||||
index_uid: index_uid.into_inner(),
|
||||
|
@ -7,24 +7,21 @@ use deserr::Deserr;
|
||||
use either::Either;
|
||||
use index_scheduler::RoFeatures;
|
||||
use indexmap::IndexMap;
|
||||
use log::warn;
|
||||
use meilisearch_auth::IndexSearchRules;
|
||||
use meilisearch_types::deserr::DeserrJsonError;
|
||||
use meilisearch_types::error::deserr_codes::*;
|
||||
use meilisearch_types::heed::RoTxn;
|
||||
use meilisearch_types::index_uid::IndexUid;
|
||||
use meilisearch_types::milli::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use meilisearch_types::milli::{
|
||||
dot_product_similarity, FacetValueHit, InternalError, OrderBy, SearchForFacetValues,
|
||||
};
|
||||
use meilisearch_types::milli::score_details::{self, ScoreDetails, ScoringStrategy};
|
||||
use meilisearch_types::milli::vector::DistributionShift;
|
||||
use meilisearch_types::milli::{FacetValueHit, OrderBy, SearchForFacetValues};
|
||||
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
|
||||
use meilisearch_types::{milli, Document};
|
||||
use milli::tokenizer::TokenizerBuilder;
|
||||
use milli::{
|
||||
AscDesc, FieldId, FieldsIdsMap, Filter, FormatOptions, Index, MatchBounds, MatcherBuilder,
|
||||
SortError, TermsMatchingStrategy, VectorOrArrayOfVectors, DEFAULT_VALUES_PER_FACET,
|
||||
SortError, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
|
||||
};
|
||||
use ordered_float::OrderedFloat;
|
||||
use regex::Regex;
|
||||
use serde::Serialize;
|
||||
use serde_json::{json, Value};
|
||||
@ -39,6 +36,7 @@ pub const DEFAULT_CROP_LENGTH: fn() -> usize = || 10;
|
||||
pub const DEFAULT_CROP_MARKER: fn() -> String = || "…".to_string();
|
||||
pub const DEFAULT_HIGHLIGHT_PRE_TAG: fn() -> String = || "<em>".to_string();
|
||||
pub const DEFAULT_HIGHLIGHT_POST_TAG: fn() -> String = || "</em>".to_string();
|
||||
pub const DEFAULT_SEMANTIC_RATIO: fn() -> SemanticRatio = || SemanticRatio(0.5);
|
||||
|
||||
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
|
||||
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
|
||||
@ -47,6 +45,8 @@ pub struct SearchQuery {
|
||||
pub q: Option<String>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchVector>)]
|
||||
pub vector: Option<Vec<f32>>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidHybridQuery>)]
|
||||
pub hybrid: Option<HybridQuery>,
|
||||
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
|
||||
pub offset: usize,
|
||||
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSearchLimit>)]
|
||||
@ -87,6 +87,48 @@ pub struct SearchQuery {
|
||||
pub attributes_to_search_on: Option<Vec<String>>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
|
||||
#[deserr(error = DeserrJsonError<InvalidHybridQuery>, rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct HybridQuery {
|
||||
/// TODO validate that sementic ratio is between 0.0 and 1,0
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchSemanticRatio>, default)]
|
||||
pub semantic_ratio: SemanticRatio,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
|
||||
pub embedder: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Deserr)]
|
||||
#[deserr(try_from(f32) = TryFrom::try_from -> InvalidSearchSemanticRatio)]
|
||||
pub struct SemanticRatio(f32);
|
||||
|
||||
impl Default for SemanticRatio {
|
||||
fn default() -> Self {
|
||||
DEFAULT_SEMANTIC_RATIO()
|
||||
}
|
||||
}
|
||||
|
||||
impl std::convert::TryFrom<f32> for SemanticRatio {
|
||||
type Error = InvalidSearchSemanticRatio;
|
||||
|
||||
fn try_from(f: f32) -> Result<Self, Self::Error> {
|
||||
// the suggested "fix" is: `!(0.0..=1.0).contains(&f)`` which is allegedly less readable
|
||||
#[allow(clippy::manual_range_contains)]
|
||||
if f > 1.0 || f < 0.0 {
|
||||
Err(InvalidSearchSemanticRatio)
|
||||
} else {
|
||||
Ok(SemanticRatio(f))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl std::ops::Deref for SemanticRatio {
|
||||
type Target = f32;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl SearchQuery {
|
||||
pub fn is_finite_pagination(&self) -> bool {
|
||||
self.page.or(self.hits_per_page).is_some()
|
||||
@ -106,6 +148,8 @@ pub struct SearchQueryWithIndex {
|
||||
pub q: Option<String>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchQ>)]
|
||||
pub vector: Option<Vec<f32>>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidHybridQuery>)]
|
||||
pub hybrid: Option<HybridQuery>,
|
||||
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
|
||||
pub offset: usize,
|
||||
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSearchLimit>)]
|
||||
@ -171,6 +215,7 @@ impl SearchQueryWithIndex {
|
||||
crop_marker,
|
||||
matching_strategy,
|
||||
attributes_to_search_on,
|
||||
hybrid,
|
||||
} = self;
|
||||
(
|
||||
index_uid,
|
||||
@ -196,6 +241,7 @@ impl SearchQueryWithIndex {
|
||||
crop_marker,
|
||||
matching_strategy,
|
||||
attributes_to_search_on,
|
||||
hybrid,
|
||||
// do not use ..Default::default() here,
|
||||
// rather add any missing field from `SearchQuery` to `SearchQueryWithIndex`
|
||||
},
|
||||
@ -335,19 +381,44 @@ fn prepare_search<'t>(
|
||||
rtxn: &'t RoTxn,
|
||||
query: &'t SearchQuery,
|
||||
features: RoFeatures,
|
||||
distribution: Option<DistributionShift>,
|
||||
) -> Result<(milli::Search<'t>, bool, usize, usize), MeilisearchHttpError> {
|
||||
let mut search = index.search(rtxn);
|
||||
|
||||
if query.vector.is_some() && query.q.is_some() {
|
||||
warn!("Ignoring the query string `q` when used with the `vector` parameter.");
|
||||
if query.vector.is_some() {
|
||||
features.check_vector("Passing `vector` as a query parameter")?;
|
||||
}
|
||||
|
||||
if query.hybrid.is_some() {
|
||||
features.check_vector("Passing `hybrid` as a query parameter")?;
|
||||
}
|
||||
|
||||
if query.hybrid.is_none() && query.q.is_some() && query.vector.is_some() {
|
||||
return Err(MeilisearchHttpError::MissingSearchHybrid);
|
||||
}
|
||||
|
||||
search.distribution_shift(distribution);
|
||||
|
||||
if let Some(ref vector) = query.vector {
|
||||
search.vector(vector.clone());
|
||||
match &query.hybrid {
|
||||
// If semantic ratio is 0.0, only the query search will impact the search results,
|
||||
// skip the vector
|
||||
Some(hybrid) if *hybrid.semantic_ratio == 0.0 => (),
|
||||
_otherwise => {
|
||||
search.vector(vector.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(ref query) = query.q {
|
||||
search.query(query);
|
||||
if let Some(ref q) = query.q {
|
||||
match &query.hybrid {
|
||||
// If semantic ratio is 1.0, only the vector search will impact the search results,
|
||||
// skip the query
|
||||
Some(hybrid) if *hybrid.semantic_ratio == 1.0 => (),
|
||||
_otherwise => {
|
||||
search.query(q);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(ref searchable) = query.attributes_to_search_on {
|
||||
@ -374,8 +445,8 @@ fn prepare_search<'t>(
|
||||
features.check_score_details()?;
|
||||
}
|
||||
|
||||
if query.vector.is_some() {
|
||||
features.check_vector()?;
|
||||
if let Some(HybridQuery { embedder: Some(embedder), .. }) = &query.hybrid {
|
||||
search.embedder_name(embedder);
|
||||
}
|
||||
|
||||
// compute the offset on the limit depending on the pagination mode.
|
||||
@ -421,15 +492,22 @@ pub fn perform_search(
|
||||
index: &Index,
|
||||
query: SearchQuery,
|
||||
features: RoFeatures,
|
||||
distribution: Option<DistributionShift>,
|
||||
) -> Result<SearchResult, MeilisearchHttpError> {
|
||||
let before_search = Instant::now();
|
||||
let rtxn = index.read_txn()?;
|
||||
|
||||
let (search, is_finite_pagination, max_total_hits, offset) =
|
||||
prepare_search(index, &rtxn, &query, features)?;
|
||||
prepare_search(index, &rtxn, &query, features, distribution)?;
|
||||
|
||||
let milli::SearchResult { documents_ids, matching_words, candidates, document_scores, .. } =
|
||||
search.execute()?;
|
||||
match &query.hybrid {
|
||||
Some(hybrid) => match *hybrid.semantic_ratio {
|
||||
ratio if ratio == 0.0 || ratio == 1.0 => search.execute()?,
|
||||
ratio => search.execute_hybrid(ratio)?,
|
||||
},
|
||||
None => search.execute()?,
|
||||
};
|
||||
|
||||
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
|
||||
|
||||
@ -538,13 +616,17 @@ pub fn perform_search(
|
||||
insert_geo_distance(sort, &mut document);
|
||||
}
|
||||
|
||||
let semantic_score = match query.vector.as_ref() {
|
||||
Some(vector) => match extract_field("_vectors", &fields_ids_map, obkv)? {
|
||||
Some(vectors) => compute_semantic_score(vector, vectors)?,
|
||||
None => None,
|
||||
},
|
||||
None => None,
|
||||
};
|
||||
let mut semantic_score = None;
|
||||
for details in &score {
|
||||
if let ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: _,
|
||||
value_similarity: Some((_matching_vector, similarity)),
|
||||
}) = details
|
||||
{
|
||||
semantic_score = Some(*similarity);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let ranking_score =
|
||||
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
|
||||
@ -647,8 +729,9 @@ pub fn perform_facet_search(
|
||||
let before_search = Instant::now();
|
||||
let rtxn = index.read_txn()?;
|
||||
|
||||
let (search, _, _, _) = prepare_search(index, &rtxn, &search_query, features)?;
|
||||
let mut facet_search = SearchForFacetValues::new(facet_name, search);
|
||||
let (search, _, _, _) = prepare_search(index, &rtxn, &search_query, features, None)?;
|
||||
let mut facet_search =
|
||||
SearchForFacetValues::new(facet_name, search, search_query.hybrid.is_some());
|
||||
if let Some(facet_query) = &facet_query {
|
||||
facet_search.query(facet_query);
|
||||
}
|
||||
@ -676,18 +759,6 @@ fn insert_geo_distance(sorts: &[String], document: &mut Document) {
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_semantic_score(query: &[f32], vectors: Value) -> milli::Result<Option<f32>> {
|
||||
let vectors = serde_json::from_value(vectors)
|
||||
.map(VectorOrArrayOfVectors::into_array_of_vectors)
|
||||
.map_err(InternalError::SerdeJson)?;
|
||||
Ok(vectors
|
||||
.into_iter()
|
||||
.flatten()
|
||||
.map(|v| OrderedFloat(dot_product_similarity(query, &v)))
|
||||
.max()
|
||||
.map(OrderedFloat::into_inner))
|
||||
}
|
||||
|
||||
fn compute_formatted_options(
|
||||
attr_to_highlight: &HashSet<String>,
|
||||
attr_to_crop: &[String],
|
||||
@ -815,22 +886,6 @@ fn make_document(
|
||||
Ok(document)
|
||||
}
|
||||
|
||||
/// Extract the JSON value under the field name specified
|
||||
/// but doesn't support nested objects.
|
||||
fn extract_field(
|
||||
field_name: &str,
|
||||
field_ids_map: &FieldsIdsMap,
|
||||
obkv: obkv::KvReaderU16,
|
||||
) -> Result<Option<serde_json::Value>, MeilisearchHttpError> {
|
||||
match field_ids_map.id(field_name) {
|
||||
Some(fid) => match obkv.get(fid) {
|
||||
Some(value) => Ok(serde_json::from_slice(value).map(Some)?),
|
||||
None => Ok(None),
|
||||
},
|
||||
None => Ok(None),
|
||||
}
|
||||
}
|
||||
|
||||
fn format_fields<'a>(
|
||||
document: &Document,
|
||||
field_ids_map: &FieldsIdsMap,
|
||||
|
@ -77,7 +77,8 @@ async fn import_dump_v1_movie_raw() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -238,7 +239,8 @@ async fn import_dump_v1_movie_with_settings() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -385,7 +387,8 @@ async fn import_dump_v1_rubygems_with_settings() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -518,7 +521,8 @@ async fn import_dump_v2_movie_raw() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -663,7 +667,8 @@ async fn import_dump_v2_movie_with_settings() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -807,7 +812,8 @@ async fn import_dump_v2_rubygems_with_settings() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -940,7 +946,8 @@ async fn import_dump_v3_movie_raw() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -1085,7 +1092,8 @@ async fn import_dump_v3_movie_with_settings() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -1229,7 +1237,8 @@ async fn import_dump_v3_rubygems_with_settings() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -1362,7 +1371,8 @@ async fn import_dump_v4_movie_raw() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -1507,7 +1517,8 @@ async fn import_dump_v4_movie_with_settings() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -1651,7 +1662,8 @@ async fn import_dump_v4_rubygems_with_settings() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###
|
||||
);
|
||||
@ -1896,7 +1908,8 @@ async fn import_dump_v6_containing_experimental_features() {
|
||||
},
|
||||
"pagination": {
|
||||
"maxTotalHits": 1000
|
||||
}
|
||||
},
|
||||
"embedders": {}
|
||||
}
|
||||
"###);
|
||||
|
||||
|
152
meilisearch/tests/search/hybrid.rs
Normal file
152
meilisearch/tests/search/hybrid.rs
Normal file
@ -0,0 +1,152 @@
|
||||
use meili_snap::snapshot;
|
||||
use once_cell::sync::Lazy;
|
||||
|
||||
use crate::common::index::Index;
|
||||
use crate::common::{Server, Value};
|
||||
use crate::json;
|
||||
|
||||
async fn index_with_documents<'a>(server: &'a Server, documents: &Value) -> Index<'a> {
|
||||
let index = server.index("test");
|
||||
|
||||
let (response, code) = server.set_features(json!({"vectorStore": true})).await;
|
||||
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
|
||||
{
|
||||
"scoreDetails": false,
|
||||
"vectorStore": true,
|
||||
"metrics": false,
|
||||
"exportPuffinReports": false,
|
||||
"proximityPrecision": false
|
||||
}
|
||||
"###);
|
||||
|
||||
let (response, code) = index
|
||||
.update_settings(
|
||||
json!({ "embedders": {"default": {"source": {"userProvided": {"dimensions": 2}}}} }),
|
||||
)
|
||||
.await;
|
||||
assert_eq!(202, code, "{:?}", response);
|
||||
index.wait_task(response.uid()).await;
|
||||
|
||||
let (response, code) = index.add_documents(documents.clone(), None).await;
|
||||
assert_eq!(202, code, "{:?}", response);
|
||||
index.wait_task(response.uid()).await;
|
||||
index
|
||||
}
|
||||
|
||||
static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
|
||||
json!([
|
||||
{
|
||||
"title": "Shazam!",
|
||||
"desc": "a Captain Marvel ersatz",
|
||||
"id": "1",
|
||||
"_vectors": {"default": [1.0, 3.0]},
|
||||
},
|
||||
{
|
||||
"title": "Captain Planet",
|
||||
"desc": "He's not part of the Marvel Cinematic Universe",
|
||||
"id": "2",
|
||||
"_vectors": {"default": [1.0, 2.0]},
|
||||
},
|
||||
{
|
||||
"title": "Captain Marvel",
|
||||
"desc": "a Shazam ersatz",
|
||||
"id": "3",
|
||||
"_vectors": {"default": [2.0, 3.0]},
|
||||
}])
|
||||
});
|
||||
|
||||
#[actix_rt::test]
|
||||
async fn simple_search() {
|
||||
let server = Server::new().await;
|
||||
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(
|
||||
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2}}),
|
||||
)
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]}},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]}}]"###);
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(
|
||||
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8}}),
|
||||
)
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_semanticScore":0.99029034},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_semanticScore":0.97434163},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_semanticScore":0.9472136}]"###);
|
||||
}
|
||||
|
||||
#[actix_rt::test]
|
||||
async fn invalid_semantic_ratio() {
|
||||
let server = Server::new().await;
|
||||
let index = index_with_documents(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(
|
||||
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 1.2}}),
|
||||
)
|
||||
.await;
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Invalid value at `.hybrid.semanticRatio`: the value of `semanticRatio` is invalid, expected a float between `0.0` and `1.0`.",
|
||||
"code": "invalid_search_semantic_ratio",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#invalid_search_semantic_ratio"
|
||||
}
|
||||
"###);
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(
|
||||
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": -0.8}}),
|
||||
)
|
||||
.await;
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Invalid value at `.hybrid.semanticRatio`: the value of `semanticRatio` is invalid, expected a float between `0.0` and `1.0`.",
|
||||
"code": "invalid_search_semantic_ratio",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#invalid_search_semantic_ratio"
|
||||
}
|
||||
"###);
|
||||
|
||||
let (response, code) = index
|
||||
.search_get(
|
||||
&yaup::to_string(
|
||||
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridSemanticRatio": 1.2}),
|
||||
)
|
||||
.unwrap(),
|
||||
)
|
||||
.await;
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Invalid value in parameter `hybridSemanticRatio`: the value of `semanticRatio` is invalid, expected a float between `0.0` and `1.0`.",
|
||||
"code": "invalid_search_semantic_ratio",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#invalid_search_semantic_ratio"
|
||||
}
|
||||
"###);
|
||||
|
||||
let (response, code) = index
|
||||
.search_get(
|
||||
&yaup::to_string(
|
||||
&json!({"q": "Captain", "vector": [1.0, 1.0], "hybridSemanticRatio": -0.2}),
|
||||
)
|
||||
.unwrap(),
|
||||
)
|
||||
.await;
|
||||
snapshot!(code, @"400 Bad Request");
|
||||
snapshot!(response, @r###"
|
||||
{
|
||||
"message": "Invalid value in parameter `hybridSemanticRatio`: the value of `semanticRatio` is invalid, expected a float between `0.0` and `1.0`.",
|
||||
"code": "invalid_search_semantic_ratio",
|
||||
"type": "invalid_request",
|
||||
"link": "https://docs.meilisearch.com/errors#invalid_search_semantic_ratio"
|
||||
}
|
||||
"###);
|
||||
}
|
@ -6,6 +6,7 @@ mod errors;
|
||||
mod facet_search;
|
||||
mod formatted;
|
||||
mod geo;
|
||||
mod hybrid;
|
||||
mod multi;
|
||||
mod pagination;
|
||||
mod restrict_searchable;
|
||||
@ -20,22 +21,27 @@ static DOCUMENTS: Lazy<Value> = Lazy::new(|| {
|
||||
{
|
||||
"title": "Shazam!",
|
||||
"id": "287947",
|
||||
"_vectors": { "manual": [1, 2, 3]},
|
||||
},
|
||||
{
|
||||
"title": "Captain Marvel",
|
||||
"id": "299537",
|
||||
"_vectors": { "manual": [1, 2, 54] },
|
||||
},
|
||||
{
|
||||
"title": "Escape Room",
|
||||
"id": "522681",
|
||||
"_vectors": { "manual": [10, -23, 32] },
|
||||
},
|
||||
{
|
||||
"title": "How to Train Your Dragon: The Hidden World",
|
||||
"id": "166428",
|
||||
"_vectors": { "manual": [-100, 231, 32] },
|
||||
},
|
||||
{
|
||||
"title": "Gläss",
|
||||
"id": "450465",
|
||||
"_vectors": { "manual": [-100, 340, 90] },
|
||||
}
|
||||
])
|
||||
});
|
||||
@ -57,6 +63,7 @@ static NESTED_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
|
||||
},
|
||||
],
|
||||
"cattos": "pésti",
|
||||
"_vectors": { "manual": [1, 2, 3]},
|
||||
},
|
||||
{
|
||||
"id": 654,
|
||||
@ -69,12 +76,14 @@ static NESTED_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
|
||||
},
|
||||
],
|
||||
"cattos": ["simba", "pestiféré"],
|
||||
"_vectors": { "manual": [1, 2, 54] },
|
||||
},
|
||||
{
|
||||
"id": 750,
|
||||
"father": "romain",
|
||||
"mother": "michelle",
|
||||
"cattos": ["enigma"],
|
||||
"_vectors": { "manual": [10, 23, 32] },
|
||||
},
|
||||
{
|
||||
"id": 951,
|
||||
@ -91,6 +100,7 @@ static NESTED_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
|
||||
},
|
||||
],
|
||||
"cattos": ["moumoute", "gomez"],
|
||||
"_vectors": { "manual": [10, 23, 32] },
|
||||
},
|
||||
])
|
||||
});
|
||||
@ -802,6 +812,13 @@ async fn experimental_feature_score_details() {
|
||||
{
|
||||
"title": "How to Train Your Dragon: The Hidden World",
|
||||
"id": "166428",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
-100,
|
||||
231,
|
||||
32
|
||||
]
|
||||
},
|
||||
"_rankingScoreDetails": {
|
||||
"words": {
|
||||
"order": 0,
|
||||
@ -823,7 +840,7 @@ async fn experimental_feature_score_details() {
|
||||
"order": 3,
|
||||
"attributeRankingOrderScore": 1.0,
|
||||
"queryWordDistanceScore": 0.8095238095238095,
|
||||
"score": 0.9365079365079364
|
||||
"score": 0.9727891156462584
|
||||
},
|
||||
"exactness": {
|
||||
"order": 4,
|
||||
@ -870,13 +887,92 @@ async fn experimental_feature_vector_store() {
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(response["vectorStore"], @"true");
|
||||
|
||||
let (response, code) = index
|
||||
.update_settings(json!({"embedders": {
|
||||
"manual": {
|
||||
"source": {
|
||||
"userProvided": {"dimensions": 3}
|
||||
}
|
||||
}
|
||||
}}))
|
||||
.await;
|
||||
|
||||
meili_snap::snapshot!(code, @"202 Accepted");
|
||||
let response = index.wait_task(response.uid()).await;
|
||||
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response["status"]), @"\"succeeded\"");
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(json!({
|
||||
"vector": [1.0, 2.0, 3.0],
|
||||
}))
|
||||
.await;
|
||||
|
||||
meili_snap::snapshot!(code, @"200 OK");
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response["hits"]), @"[]");
|
||||
// vector search returns all documents that don't have vectors in the last bucket, like all sorts
|
||||
meili_snap::snapshot!(meili_snap::json_string!(response["hits"]), @r###"
|
||||
[
|
||||
{
|
||||
"title": "Shazam!",
|
||||
"id": "287947",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
1,
|
||||
2,
|
||||
3
|
||||
]
|
||||
},
|
||||
"_semanticScore": 1.0
|
||||
},
|
||||
{
|
||||
"title": "Captain Marvel",
|
||||
"id": "299537",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
1,
|
||||
2,
|
||||
54
|
||||
]
|
||||
},
|
||||
"_semanticScore": 0.9129112
|
||||
},
|
||||
{
|
||||
"title": "Gläss",
|
||||
"id": "450465",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
-100,
|
||||
340,
|
||||
90
|
||||
]
|
||||
},
|
||||
"_semanticScore": 0.8106413
|
||||
},
|
||||
{
|
||||
"title": "How to Train Your Dragon: The Hidden World",
|
||||
"id": "166428",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
-100,
|
||||
231,
|
||||
32
|
||||
]
|
||||
},
|
||||
"_semanticScore": 0.74120104
|
||||
},
|
||||
{
|
||||
"title": "Escape Room",
|
||||
"id": "522681",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
10,
|
||||
-23,
|
||||
32
|
||||
]
|
||||
}
|
||||
}
|
||||
]
|
||||
"###);
|
||||
}
|
||||
|
||||
#[cfg(feature = "default")]
|
||||
@ -1126,7 +1222,14 @@ async fn simple_search_with_strange_synonyms() {
|
||||
[
|
||||
{
|
||||
"title": "How to Train Your Dragon: The Hidden World",
|
||||
"id": "166428"
|
||||
"id": "166428",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
-100,
|
||||
231,
|
||||
32
|
||||
]
|
||||
}
|
||||
}
|
||||
]
|
||||
"###);
|
||||
@ -1140,7 +1243,14 @@ async fn simple_search_with_strange_synonyms() {
|
||||
[
|
||||
{
|
||||
"title": "How to Train Your Dragon: The Hidden World",
|
||||
"id": "166428"
|
||||
"id": "166428",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
-100,
|
||||
231,
|
||||
32
|
||||
]
|
||||
}
|
||||
}
|
||||
]
|
||||
"###);
|
||||
@ -1154,7 +1264,14 @@ async fn simple_search_with_strange_synonyms() {
|
||||
[
|
||||
{
|
||||
"title": "How to Train Your Dragon: The Hidden World",
|
||||
"id": "166428"
|
||||
"id": "166428",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
-100,
|
||||
231,
|
||||
32
|
||||
]
|
||||
}
|
||||
}
|
||||
]
|
||||
"###);
|
||||
|
@ -72,7 +72,14 @@ async fn simple_search_single_index() {
|
||||
"hits": [
|
||||
{
|
||||
"title": "Gläss",
|
||||
"id": "450465"
|
||||
"id": "450465",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
-100,
|
||||
340,
|
||||
90
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"query": "glass",
|
||||
@ -86,7 +93,14 @@ async fn simple_search_single_index() {
|
||||
"hits": [
|
||||
{
|
||||
"title": "Captain Marvel",
|
||||
"id": "299537"
|
||||
"id": "299537",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
1,
|
||||
2,
|
||||
54
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"query": "captain",
|
||||
@ -177,7 +191,14 @@ async fn simple_search_two_indexes() {
|
||||
"hits": [
|
||||
{
|
||||
"title": "Gläss",
|
||||
"id": "450465"
|
||||
"id": "450465",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
-100,
|
||||
340,
|
||||
90
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"query": "glass",
|
||||
@ -203,7 +224,14 @@ async fn simple_search_two_indexes() {
|
||||
"age": 4
|
||||
}
|
||||
],
|
||||
"cattos": "pésti"
|
||||
"cattos": "pésti",
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
1,
|
||||
2,
|
||||
3
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": 654,
|
||||
@ -218,7 +246,14 @@ async fn simple_search_two_indexes() {
|
||||
"cattos": [
|
||||
"simba",
|
||||
"pestiféré"
|
||||
]
|
||||
],
|
||||
"_vectors": {
|
||||
"manual": [
|
||||
1,
|
||||
2,
|
||||
54
|
||||
]
|
||||
}
|
||||
}
|
||||
],
|
||||
"query": "pésti",
|
||||
|
@ -54,7 +54,7 @@ async fn get_settings() {
|
||||
let (response, code) = index.settings().await;
|
||||
assert_eq!(code, 200);
|
||||
let settings = response.as_object().unwrap();
|
||||
assert_eq!(settings.keys().len(), 15);
|
||||
assert_eq!(settings.keys().len(), 16);
|
||||
assert_eq!(settings["displayedAttributes"], json!(["*"]));
|
||||
assert_eq!(settings["searchableAttributes"], json!(["*"]));
|
||||
assert_eq!(settings["filterableAttributes"], json!([]));
|
||||
@ -83,6 +83,7 @@ async fn get_settings() {
|
||||
"maxTotalHits": 1000,
|
||||
})
|
||||
);
|
||||
assert_eq!(settings["embedders"], json!({}));
|
||||
}
|
||||
|
||||
#[actix_rt::test]
|
||||
|
@ -27,13 +27,15 @@ fst = "0.4.7"
|
||||
fxhash = "0.2.1"
|
||||
geoutils = "0.5.1"
|
||||
grenad = { version = "0.4.5", default-features = false, features = [
|
||||
"rayon", "tempfile"
|
||||
"rayon",
|
||||
"tempfile",
|
||||
] }
|
||||
heed = { version = "0.20.0-alpha.9", default-features = false, features = [
|
||||
"serde-json", "serde-bincode", "read-txn-no-tls"
|
||||
"serde-json",
|
||||
"serde-bincode",
|
||||
"read-txn-no-tls",
|
||||
] }
|
||||
indexmap = { version = "2.0.0", features = ["serde"] }
|
||||
instant-distance = { version = "0.6.1", features = ["with-serde"] }
|
||||
json-depth-checker = { path = "../json-depth-checker" }
|
||||
levenshtein_automata = { version = "0.2.1", features = ["fst_automaton"] }
|
||||
memmap2 = "0.7.1"
|
||||
@ -72,6 +74,23 @@ puffin = "0.16.0"
|
||||
log = "0.4.17"
|
||||
logging_timer = "1.1.0"
|
||||
csv = "1.2.1"
|
||||
candle-core = { git = "https://github.com/huggingface/candle.git", version = "0.3.1" }
|
||||
candle-transformers = { git = "https://github.com/huggingface/candle.git", version = "0.3.1" }
|
||||
candle-nn = { git = "https://github.com/huggingface/candle.git", version = "0.3.1" }
|
||||
tokenizers = { git = "https://github.com/huggingface/tokenizers.git", tag = "v0.14.1", version = "0.14.1" }
|
||||
hf-hub = { git = "https://github.com/dureuill/hf-hub.git", branch = "rust_tls", default_features = false, features = [
|
||||
"online",
|
||||
] }
|
||||
tokio = { version = "1.34.0", features = ["rt"] }
|
||||
futures = "0.3.29"
|
||||
reqwest = { version = "0.11.16", features = [
|
||||
"rustls-tls",
|
||||
"json",
|
||||
], default-features = false }
|
||||
tiktoken-rs = "0.5.7"
|
||||
liquid = "0.26.4"
|
||||
arroy = { git = "https://github.com/meilisearch/arroy.git", version = "0.1.0" }
|
||||
rand = "0.8.5"
|
||||
|
||||
[dev-dependencies]
|
||||
mimalloc = { version = "0.1.37", default-features = false }
|
||||
@ -83,7 +102,15 @@ meili-snap = { path = "../meili-snap" }
|
||||
rand = { version = "0.8.5", features = ["small_rng"] }
|
||||
|
||||
[features]
|
||||
all-tokenizations = ["charabia/chinese", "charabia/hebrew", "charabia/japanese", "charabia/thai", "charabia/korean", "charabia/greek", "charabia/khmer"]
|
||||
all-tokenizations = [
|
||||
"charabia/chinese",
|
||||
"charabia/hebrew",
|
||||
"charabia/japanese",
|
||||
"charabia/thai",
|
||||
"charabia/korean",
|
||||
"charabia/greek",
|
||||
"charabia/khmer",
|
||||
]
|
||||
|
||||
# Use POSIX semaphores instead of SysV semaphores in LMDB
|
||||
# For more information on this feature, see heed's Cargo.toml
|
||||
|
@ -5,8 +5,8 @@ use std::time::Instant;
|
||||
|
||||
use heed::EnvOpenOptions;
|
||||
use milli::{
|
||||
execute_search, DefaultSearchLogger, GeoSortStrategy, Index, SearchContext, SearchLogger,
|
||||
TermsMatchingStrategy,
|
||||
execute_search, filtered_universe, DefaultSearchLogger, GeoSortStrategy, Index, SearchContext,
|
||||
SearchLogger, TermsMatchingStrategy,
|
||||
};
|
||||
|
||||
#[global_allocator]
|
||||
@ -49,14 +49,15 @@ fn main() -> Result<(), Box<dyn Error>> {
|
||||
let start = Instant::now();
|
||||
|
||||
let mut ctx = SearchContext::new(&index, &txn);
|
||||
let universe = filtered_universe(&ctx, &None)?;
|
||||
|
||||
let docs = execute_search(
|
||||
&mut ctx,
|
||||
&(!query.trim().is_empty()).then(|| query.trim().to_owned()),
|
||||
&None,
|
||||
(!query.trim().is_empty()).then(|| query.trim()),
|
||||
TermsMatchingStrategy::Last,
|
||||
milli::score_details::ScoringStrategy::Skip,
|
||||
false,
|
||||
&None,
|
||||
universe,
|
||||
&None,
|
||||
GeoSortStrategy::default(),
|
||||
0,
|
||||
|
@ -1,41 +0,0 @@
|
||||
use std::ops;
|
||||
|
||||
use instant_distance::Point;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::normalize_vector;
|
||||
|
||||
#[derive(Debug, Default, Clone, Serialize, Deserialize)]
|
||||
pub struct NDotProductPoint(Vec<f32>);
|
||||
|
||||
impl NDotProductPoint {
|
||||
pub fn new(point: Vec<f32>) -> Self {
|
||||
NDotProductPoint(normalize_vector(point))
|
||||
}
|
||||
|
||||
pub fn into_inner(self) -> Vec<f32> {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Deref for NDotProductPoint {
|
||||
type Target = [f32];
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
self.0.as_slice()
|
||||
}
|
||||
}
|
||||
|
||||
impl Point for NDotProductPoint {
|
||||
fn distance(&self, other: &Self) -> f32 {
|
||||
let dist = 1.0 - dot_product_similarity(&self.0, &other.0);
|
||||
debug_assert!(!dist.is_nan());
|
||||
dist
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the dot product similarity score that will between 0.0 and 1.0
|
||||
/// if both vectors are normalized. The higher the more similar the vectors are.
|
||||
pub fn dot_product_similarity(a: &[f32], b: &[f32]) -> f32 {
|
||||
a.iter().zip(b).map(|(a, b)| a * b).sum()
|
||||
}
|
@ -61,6 +61,10 @@ pub enum InternalError {
|
||||
AbortedIndexation,
|
||||
#[error("The matching words list contains at least one invalid member.")]
|
||||
InvalidMatchingWords,
|
||||
#[error(transparent)]
|
||||
ArroyError(#[from] arroy::Error),
|
||||
#[error(transparent)]
|
||||
VectorEmbeddingError(#[from] crate::vector::Error),
|
||||
}
|
||||
|
||||
#[derive(Error, Debug)]
|
||||
@ -110,8 +114,10 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
|
||||
InvalidGeoField(#[from] GeoError),
|
||||
#[error("Invalid vector dimensions: expected: `{}`, found: `{}`.", .expected, .found)]
|
||||
InvalidVectorDimensions { expected: usize, found: usize },
|
||||
#[error("The `_vectors` field in the document with the id: `{document_id}` is not an array. Was expecting an array of floats or an array of arrays of floats but instead got `{value}`.")]
|
||||
InvalidVectorsType { document_id: Value, value: Value },
|
||||
#[error("The `_vectors.{subfield}` field in the document with id: `{document_id}` is not an array. Was expecting an array of floats or an array of arrays of floats but instead got `{value}`.")]
|
||||
InvalidVectorsType { document_id: Value, value: Value, subfield: String },
|
||||
#[error("The `_vectors` field in the document with id: `{document_id}` is not an object. Was expecting an object with a key for each embedder with manually provided vectors, but instead got `{value}`")]
|
||||
InvalidVectorsMapType { document_id: Value, value: Value },
|
||||
#[error("{0}")]
|
||||
InvalidFilter(String),
|
||||
#[error("Invalid type for filter subexpression: expected: {}, found: {1}.", .0.join(", "))]
|
||||
@ -180,6 +186,49 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
|
||||
UnknownInternalDocumentId { document_id: DocumentId },
|
||||
#[error("`minWordSizeForTypos` setting is invalid. `oneTypo` and `twoTypos` fields should be between `0` and `255`, and `twoTypos` should be greater or equals to `oneTypo` but found `oneTypo: {0}` and twoTypos: {1}`.")]
|
||||
InvalidMinTypoWordLenSetting(u8, u8),
|
||||
#[error(transparent)]
|
||||
VectorEmbeddingError(#[from] crate::vector::Error),
|
||||
#[error(transparent)]
|
||||
MissingDocumentField(#[from] crate::prompt::error::RenderPromptError),
|
||||
#[error(transparent)]
|
||||
InvalidPrompt(#[from] crate::prompt::error::NewPromptError),
|
||||
#[error("Invalid prompt in for embeddings with name '{0}': {1}.")]
|
||||
InvalidPromptForEmbeddings(String, crate::prompt::error::NewPromptError),
|
||||
#[error("Too many embedders in the configuration. Found {0}, but limited to 256.")]
|
||||
TooManyEmbedders(usize),
|
||||
#[error("Cannot find embedder with name {0}.")]
|
||||
InvalidEmbedder(String),
|
||||
#[error("Too many vectors for document with id {0}: found {1}, but limited to 256.")]
|
||||
TooManyVectors(String, usize),
|
||||
}
|
||||
|
||||
impl From<crate::vector::Error> for Error {
|
||||
fn from(value: crate::vector::Error) -> Self {
|
||||
match value.fault() {
|
||||
FaultSource::User => Error::UserError(value.into()),
|
||||
FaultSource::Runtime => Error::InternalError(value.into()),
|
||||
FaultSource::Bug => Error::InternalError(value.into()),
|
||||
FaultSource::Undecided => Error::InternalError(value.into()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<arroy::Error> for Error {
|
||||
fn from(value: arroy::Error) -> Self {
|
||||
match value {
|
||||
arroy::Error::Heed(heed) => heed.into(),
|
||||
arroy::Error::Io(io) => io.into(),
|
||||
arroy::Error::InvalidVecDimension { expected, received } => {
|
||||
Error::UserError(UserError::InvalidVectorDimensions { expected, found: received })
|
||||
}
|
||||
arroy::Error::DatabaseFull
|
||||
| arroy::Error::InvalidItemAppend
|
||||
| arroy::Error::UnmatchingDistance { .. }
|
||||
| arroy::Error::MissingMetadata => {
|
||||
Error::InternalError(InternalError::ArroyError(value))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Error, Debug)]
|
||||
@ -336,6 +385,26 @@ impl From<HeedError> for Error {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum FaultSource {
|
||||
User,
|
||||
Runtime,
|
||||
Bug,
|
||||
Undecided,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for FaultSource {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
let s = match self {
|
||||
FaultSource::User => "user error",
|
||||
FaultSource::Runtime => "runtime error",
|
||||
FaultSource::Bug => "coding error",
|
||||
FaultSource::Undecided => "error",
|
||||
};
|
||||
f.write_str(s)
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn conditionally_lookup_for_error_message() {
|
||||
let prefix = "Attribute `name` is not sortable.";
|
||||
|
@ -10,7 +10,6 @@ use roaring::RoaringBitmap;
|
||||
use rstar::RTree;
|
||||
use time::OffsetDateTime;
|
||||
|
||||
use crate::distance::NDotProductPoint;
|
||||
use crate::documents::PrimaryKey;
|
||||
use crate::error::{InternalError, UserError};
|
||||
use crate::fields_ids_map::FieldsIdsMap;
|
||||
@ -22,7 +21,7 @@ use crate::heed_codec::{
|
||||
BEU16StrCodec, FstSetCodec, ScriptLanguageCodec, StrBEU16Codec, StrRefCodec,
|
||||
};
|
||||
use crate::proximity::ProximityPrecision;
|
||||
use crate::readable_slices::ReadableSlices;
|
||||
use crate::vector::EmbeddingConfig;
|
||||
use crate::{
|
||||
default_criteria, CboRoaringBitmapCodec, Criterion, DocumentId, ExternalDocumentsIds,
|
||||
FacetDistribution, FieldDistribution, FieldId, FieldIdWordCountCodec, GeoPoint, ObkvCodec,
|
||||
@ -30,9 +29,6 @@ use crate::{
|
||||
BEU32, BEU64,
|
||||
};
|
||||
|
||||
/// The HNSW data-structure that we serialize, fill and search in.
|
||||
pub type Hnsw = instant_distance::Hnsw<NDotProductPoint>;
|
||||
|
||||
pub const DEFAULT_MIN_WORD_LEN_ONE_TYPO: u8 = 5;
|
||||
pub const DEFAULT_MIN_WORD_LEN_TWO_TYPOS: u8 = 9;
|
||||
|
||||
@ -48,10 +44,6 @@ pub mod main_key {
|
||||
pub const FIELDS_IDS_MAP_KEY: &str = "fields-ids-map";
|
||||
pub const GEO_FACETED_DOCUMENTS_IDS_KEY: &str = "geo-faceted-documents-ids";
|
||||
pub const GEO_RTREE_KEY: &str = "geo-rtree";
|
||||
/// The prefix of the key that is used to store the, potential big, HNSW structure.
|
||||
/// It is concatenated with a big-endian encoded number (non-human readable).
|
||||
/// e.g. vector-hnsw0x0032.
|
||||
pub const VECTOR_HNSW_KEY_PREFIX: &str = "vector-hnsw";
|
||||
pub const PRIMARY_KEY_KEY: &str = "primary-key";
|
||||
pub const SEARCHABLE_FIELDS_KEY: &str = "searchable-fields";
|
||||
pub const USER_DEFINED_SEARCHABLE_FIELDS_KEY: &str = "user-defined-searchable-fields";
|
||||
@ -74,6 +66,7 @@ pub mod main_key {
|
||||
pub const SORT_FACET_VALUES_BY: &str = "sort-facet-values-by";
|
||||
pub const PAGINATION_MAX_TOTAL_HITS: &str = "pagination-max-total-hits";
|
||||
pub const PROXIMITY_PRECISION: &str = "proximity-precision";
|
||||
pub const EMBEDDING_CONFIGS: &str = "embedding_configs";
|
||||
}
|
||||
|
||||
pub mod db_name {
|
||||
@ -99,7 +92,8 @@ pub mod db_name {
|
||||
pub const FACET_ID_STRING_FST: &str = "facet-id-string-fst";
|
||||
pub const FIELD_ID_DOCID_FACET_F64S: &str = "field-id-docid-facet-f64s";
|
||||
pub const FIELD_ID_DOCID_FACET_STRINGS: &str = "field-id-docid-facet-strings";
|
||||
pub const VECTOR_ID_DOCID: &str = "vector-id-docids";
|
||||
pub const VECTOR_EMBEDDER_CATEGORY_ID: &str = "vector-embedder-category-id";
|
||||
pub const VECTOR_ARROY: &str = "vector-arroy";
|
||||
pub const DOCUMENTS: &str = "documents";
|
||||
pub const SCRIPT_LANGUAGE_DOCIDS: &str = "script_language_docids";
|
||||
}
|
||||
@ -166,8 +160,10 @@ pub struct Index {
|
||||
/// Maps the document id, the facet field id and the strings.
|
||||
pub field_id_docid_facet_strings: Database<FieldDocIdFacetStringCodec, Str>,
|
||||
|
||||
/// Maps a vector id to the document id that have it.
|
||||
pub vector_id_docid: Database<BEU32, BEU32>,
|
||||
/// Maps an embedder name to its id in the arroy store.
|
||||
pub embedder_category_id: Database<Str, U8>,
|
||||
/// Vector store based on arroy™.
|
||||
pub vector_arroy: arroy::Database<arroy::distances::Angular>,
|
||||
|
||||
/// Maps the document id to the document as an obkv store.
|
||||
pub(crate) documents: Database<BEU32, ObkvCodec>,
|
||||
@ -182,7 +178,7 @@ impl Index {
|
||||
) -> Result<Index> {
|
||||
use db_name::*;
|
||||
|
||||
options.max_dbs(24);
|
||||
options.max_dbs(25);
|
||||
|
||||
let env = options.open(path)?;
|
||||
let mut wtxn = env.write_txn()?;
|
||||
@ -222,7 +218,11 @@ impl Index {
|
||||
env.create_database(&mut wtxn, Some(FIELD_ID_DOCID_FACET_F64S))?;
|
||||
let field_id_docid_facet_strings =
|
||||
env.create_database(&mut wtxn, Some(FIELD_ID_DOCID_FACET_STRINGS))?;
|
||||
let vector_id_docid = env.create_database(&mut wtxn, Some(VECTOR_ID_DOCID))?;
|
||||
// vector stuff
|
||||
let embedder_category_id =
|
||||
env.create_database(&mut wtxn, Some(VECTOR_EMBEDDER_CATEGORY_ID))?;
|
||||
let vector_arroy = env.create_database(&mut wtxn, Some(VECTOR_ARROY))?;
|
||||
|
||||
let documents = env.create_database(&mut wtxn, Some(DOCUMENTS))?;
|
||||
wtxn.commit()?;
|
||||
|
||||
@ -252,7 +252,8 @@ impl Index {
|
||||
facet_id_is_empty_docids,
|
||||
field_id_docid_facet_f64s,
|
||||
field_id_docid_facet_strings,
|
||||
vector_id_docid,
|
||||
vector_arroy,
|
||||
embedder_category_id,
|
||||
documents,
|
||||
})
|
||||
}
|
||||
@ -475,63 +476,6 @@ impl Index {
|
||||
None => Ok(RoaringBitmap::new()),
|
||||
}
|
||||
}
|
||||
|
||||
/* vector HNSW */
|
||||
|
||||
/// Writes the provided `hnsw`.
|
||||
pub(crate) fn put_vector_hnsw(&self, wtxn: &mut RwTxn, hnsw: &Hnsw) -> heed::Result<()> {
|
||||
// We must delete all the chunks before we write the new HNSW chunks.
|
||||
self.delete_vector_hnsw(wtxn)?;
|
||||
|
||||
let chunk_size = 1024 * 1024 * (1024 + 512); // 1.5 GiB
|
||||
let bytes = bincode::serialize(hnsw).map_err(Into::into).map_err(heed::Error::Encoding)?;
|
||||
for (i, chunk) in bytes.chunks(chunk_size).enumerate() {
|
||||
let i = i as u32;
|
||||
let mut key = main_key::VECTOR_HNSW_KEY_PREFIX.as_bytes().to_vec();
|
||||
key.extend_from_slice(&i.to_be_bytes());
|
||||
self.main.remap_types::<Bytes, Bytes>().put(wtxn, &key, chunk)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Delete the `hnsw`.
|
||||
pub(crate) fn delete_vector_hnsw(&self, wtxn: &mut RwTxn) -> heed::Result<bool> {
|
||||
let mut iter = self
|
||||
.main
|
||||
.remap_types::<Bytes, DecodeIgnore>()
|
||||
.prefix_iter_mut(wtxn, main_key::VECTOR_HNSW_KEY_PREFIX.as_bytes())?;
|
||||
let mut deleted = false;
|
||||
while iter.next().transpose()?.is_some() {
|
||||
// We do not keep a reference to the key or the value.
|
||||
unsafe { deleted |= iter.del_current()? };
|
||||
}
|
||||
Ok(deleted)
|
||||
}
|
||||
|
||||
/// Returns the `hnsw`.
|
||||
pub fn vector_hnsw(&self, rtxn: &RoTxn) -> Result<Option<Hnsw>> {
|
||||
let mut slices = Vec::new();
|
||||
for result in self
|
||||
.main
|
||||
.remap_types::<Str, Bytes>()
|
||||
.prefix_iter(rtxn, main_key::VECTOR_HNSW_KEY_PREFIX)?
|
||||
{
|
||||
let (_, slice) = result?;
|
||||
slices.push(slice);
|
||||
}
|
||||
|
||||
if slices.is_empty() {
|
||||
Ok(None)
|
||||
} else {
|
||||
let readable_slices: ReadableSlices<_> = slices.into_iter().collect();
|
||||
Ok(Some(
|
||||
bincode::deserialize_from(readable_slices)
|
||||
.map_err(Into::into)
|
||||
.map_err(heed::Error::Decoding)?,
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
/* field distribution */
|
||||
|
||||
/// Writes the field distribution which associates every field name with
|
||||
@ -1528,6 +1472,41 @@ impl Index {
|
||||
|
||||
Ok(script_language)
|
||||
}
|
||||
|
||||
pub(crate) fn put_embedding_configs(
|
||||
&self,
|
||||
wtxn: &mut RwTxn<'_>,
|
||||
configs: Vec<(String, EmbeddingConfig)>,
|
||||
) -> heed::Result<()> {
|
||||
self.main.remap_types::<Str, SerdeJson<Vec<(String, EmbeddingConfig)>>>().put(
|
||||
wtxn,
|
||||
main_key::EMBEDDING_CONFIGS,
|
||||
&configs,
|
||||
)
|
||||
}
|
||||
|
||||
pub(crate) fn delete_embedding_configs(&self, wtxn: &mut RwTxn<'_>) -> heed::Result<bool> {
|
||||
self.main.remap_key_type::<Str>().delete(wtxn, main_key::EMBEDDING_CONFIGS)
|
||||
}
|
||||
|
||||
pub fn embedding_configs(
|
||||
&self,
|
||||
rtxn: &RoTxn<'_>,
|
||||
) -> Result<Vec<(String, crate::vector::EmbeddingConfig)>> {
|
||||
Ok(self
|
||||
.main
|
||||
.remap_types::<Str, SerdeJson<Vec<(String, EmbeddingConfig)>>>()
|
||||
.get(rtxn, main_key::EMBEDDING_CONFIGS)?
|
||||
.unwrap_or_default())
|
||||
}
|
||||
|
||||
pub fn default_embedding_name(&self, rtxn: &RoTxn<'_>) -> Result<String> {
|
||||
let configs = self.embedding_configs(rtxn)?;
|
||||
Ok(match configs.as_slice() {
|
||||
[(ref first_name, _)] => first_name.clone(),
|
||||
_ => "default".to_owned(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
@ -10,18 +10,18 @@ pub mod documents;
|
||||
|
||||
mod asc_desc;
|
||||
mod criterion;
|
||||
pub mod distance;
|
||||
mod error;
|
||||
mod external_documents_ids;
|
||||
pub mod facet;
|
||||
mod fields_ids_map;
|
||||
pub mod heed_codec;
|
||||
pub mod index;
|
||||
pub mod prompt;
|
||||
pub mod proximity;
|
||||
mod readable_slices;
|
||||
pub mod score_details;
|
||||
mod search;
|
||||
pub mod update;
|
||||
pub mod vector;
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
@ -32,13 +32,12 @@ use std::convert::{TryFrom, TryInto};
|
||||
use std::hash::BuildHasherDefault;
|
||||
|
||||
use charabia::normalizer::{CharNormalizer, CompatibilityDecompositionNormalizer};
|
||||
pub use distance::dot_product_similarity;
|
||||
pub use filter_parser::{Condition, FilterCondition, Span, Token};
|
||||
use fxhash::{FxHasher32, FxHasher64};
|
||||
pub use grenad::CompressionType;
|
||||
pub use search::new::{
|
||||
execute_search, DefaultSearchLogger, GeoSortStrategy, SearchContext, SearchLogger,
|
||||
VisualSearchLogger,
|
||||
execute_search, filtered_universe, DefaultSearchLogger, GeoSortStrategy, SearchContext,
|
||||
SearchLogger, VisualSearchLogger,
|
||||
};
|
||||
use serde_json::Value;
|
||||
pub use {charabia as tokenizer, heed};
|
||||
|
97
milli/src/prompt/context.rs
Normal file
97
milli/src/prompt/context.rs
Normal file
@ -0,0 +1,97 @@
|
||||
use liquid::model::{
|
||||
ArrayView, DisplayCow, KStringCow, ObjectRender, ObjectSource, State, Value as LiquidValue,
|
||||
};
|
||||
use liquid::{ObjectView, ValueView};
|
||||
|
||||
use super::document::Document;
|
||||
use super::fields::Fields;
|
||||
use crate::FieldsIdsMap;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Context<'a> {
|
||||
document: &'a Document<'a>,
|
||||
fields: Fields<'a>,
|
||||
}
|
||||
|
||||
impl<'a> Context<'a> {
|
||||
pub fn new(document: &'a Document<'a>, field_id_map: &'a FieldsIdsMap) -> Self {
|
||||
Self { document, fields: Fields::new(document, field_id_map) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ObjectView for Context<'a> {
|
||||
fn as_value(&self) -> &dyn ValueView {
|
||||
self
|
||||
}
|
||||
|
||||
fn size(&self) -> i64 {
|
||||
2
|
||||
}
|
||||
|
||||
fn keys<'k>(&'k self) -> Box<dyn Iterator<Item = KStringCow<'k>> + 'k> {
|
||||
Box::new(["doc", "fields"].iter().map(|s| KStringCow::from_static(s)))
|
||||
}
|
||||
|
||||
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
|
||||
Box::new(
|
||||
std::iter::once(self.document.as_value())
|
||||
.chain(std::iter::once(self.fields.as_value())),
|
||||
)
|
||||
}
|
||||
|
||||
fn iter<'k>(&'k self) -> Box<dyn Iterator<Item = (KStringCow<'k>, &'k dyn ValueView)> + 'k> {
|
||||
Box::new(self.keys().zip(self.values()))
|
||||
}
|
||||
|
||||
fn contains_key(&self, index: &str) -> bool {
|
||||
index == "doc" || index == "fields"
|
||||
}
|
||||
|
||||
fn get<'s>(&'s self, index: &str) -> Option<&'s dyn ValueView> {
|
||||
match index {
|
||||
"doc" => Some(self.document.as_value()),
|
||||
"fields" => Some(self.fields.as_value()),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ValueView for Context<'a> {
|
||||
fn as_debug(&self) -> &dyn std::fmt::Debug {
|
||||
self
|
||||
}
|
||||
|
||||
fn render(&self) -> liquid::model::DisplayCow<'_> {
|
||||
DisplayCow::Owned(Box::new(ObjectRender::new(self)))
|
||||
}
|
||||
|
||||
fn source(&self) -> liquid::model::DisplayCow<'_> {
|
||||
DisplayCow::Owned(Box::new(ObjectSource::new(self)))
|
||||
}
|
||||
|
||||
fn type_name(&self) -> &'static str {
|
||||
"object"
|
||||
}
|
||||
|
||||
fn query_state(&self, state: liquid::model::State) -> bool {
|
||||
match state {
|
||||
State::Truthy => true,
|
||||
State::DefaultValue | State::Empty | State::Blank => false,
|
||||
}
|
||||
}
|
||||
|
||||
fn to_kstr(&self) -> liquid::model::KStringCow<'_> {
|
||||
let s = ObjectRender::new(self).to_string();
|
||||
KStringCow::from_string(s)
|
||||
}
|
||||
|
||||
fn to_value(&self) -> LiquidValue {
|
||||
LiquidValue::Object(
|
||||
self.iter().map(|(k, x)| (k.to_string().into(), x.to_value())).collect(),
|
||||
)
|
||||
}
|
||||
|
||||
fn as_object(&self) -> Option<&dyn ObjectView> {
|
||||
Some(self)
|
||||
}
|
||||
}
|
131
milli/src/prompt/document.rs
Normal file
131
milli/src/prompt/document.rs
Normal file
@ -0,0 +1,131 @@
|
||||
use std::cell::OnceCell;
|
||||
use std::collections::BTreeMap;
|
||||
|
||||
use liquid::model::{
|
||||
DisplayCow, KString, KStringCow, ObjectRender, ObjectSource, State, Value as LiquidValue,
|
||||
};
|
||||
use liquid::{ObjectView, ValueView};
|
||||
|
||||
use crate::update::del_add::{DelAdd, KvReaderDelAdd};
|
||||
use crate::FieldsIdsMap;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Document<'a>(BTreeMap<&'a str, (&'a [u8], ParsedValue)>);
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct ParsedValue(std::cell::OnceCell<LiquidValue>);
|
||||
|
||||
impl ParsedValue {
|
||||
fn empty() -> ParsedValue {
|
||||
ParsedValue(OnceCell::new())
|
||||
}
|
||||
|
||||
fn get(&self, raw: &[u8]) -> &LiquidValue {
|
||||
self.0.get_or_init(|| {
|
||||
let value: serde_json::Value = serde_json::from_slice(raw).unwrap();
|
||||
liquid::model::to_value(&value).unwrap()
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Document<'a> {
|
||||
pub fn new(
|
||||
data: obkv::KvReaderU16<'a>,
|
||||
side: DelAdd,
|
||||
inverted_field_map: &'a FieldsIdsMap,
|
||||
) -> Self {
|
||||
let mut out_data = BTreeMap::new();
|
||||
for (fid, raw) in data {
|
||||
let obkv = KvReaderDelAdd::new(raw);
|
||||
let Some(raw) = obkv.get(side) else {
|
||||
continue;
|
||||
};
|
||||
let Some(name) = inverted_field_map.name(fid) else {
|
||||
continue;
|
||||
};
|
||||
out_data.insert(name, (raw, ParsedValue::empty()));
|
||||
}
|
||||
Self(out_data)
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
self.0.is_empty()
|
||||
}
|
||||
|
||||
fn len(&self) -> usize {
|
||||
self.0.len()
|
||||
}
|
||||
|
||||
fn iter(&self) -> impl Iterator<Item = (KString, LiquidValue)> + '_ {
|
||||
self.0.iter().map(|(&k, (raw, data))| (k.to_owned().into(), data.get(raw).to_owned()))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ObjectView for Document<'a> {
|
||||
fn as_value(&self) -> &dyn ValueView {
|
||||
self
|
||||
}
|
||||
|
||||
fn size(&self) -> i64 {
|
||||
self.len() as i64
|
||||
}
|
||||
|
||||
fn keys<'k>(&'k self) -> Box<dyn Iterator<Item = KStringCow<'k>> + 'k> {
|
||||
let keys = BTreeMap::keys(&self.0).map(|&s| s.into());
|
||||
Box::new(keys)
|
||||
}
|
||||
|
||||
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
|
||||
Box::new(self.0.values().map(|(raw, v)| v.get(raw) as &dyn ValueView))
|
||||
}
|
||||
|
||||
fn iter<'k>(&'k self) -> Box<dyn Iterator<Item = (KStringCow<'k>, &'k dyn ValueView)> + 'k> {
|
||||
Box::new(self.0.iter().map(|(&k, (raw, data))| (k.into(), data.get(raw) as &dyn ValueView)))
|
||||
}
|
||||
|
||||
fn contains_key(&self, index: &str) -> bool {
|
||||
self.0.contains_key(index)
|
||||
}
|
||||
|
||||
fn get<'s>(&'s self, index: &str) -> Option<&'s dyn ValueView> {
|
||||
self.0.get(index).map(|(raw, v)| v.get(raw) as &dyn ValueView)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ValueView for Document<'a> {
|
||||
fn as_debug(&self) -> &dyn std::fmt::Debug {
|
||||
self
|
||||
}
|
||||
|
||||
fn render(&self) -> liquid::model::DisplayCow<'_> {
|
||||
DisplayCow::Owned(Box::new(ObjectRender::new(self)))
|
||||
}
|
||||
|
||||
fn source(&self) -> liquid::model::DisplayCow<'_> {
|
||||
DisplayCow::Owned(Box::new(ObjectSource::new(self)))
|
||||
}
|
||||
|
||||
fn type_name(&self) -> &'static str {
|
||||
"object"
|
||||
}
|
||||
|
||||
fn query_state(&self, state: liquid::model::State) -> bool {
|
||||
match state {
|
||||
State::Truthy => true,
|
||||
State::DefaultValue | State::Empty | State::Blank => self.is_empty(),
|
||||
}
|
||||
}
|
||||
|
||||
fn to_kstr(&self) -> liquid::model::KStringCow<'_> {
|
||||
let s = ObjectRender::new(self).to_string();
|
||||
KStringCow::from_string(s)
|
||||
}
|
||||
|
||||
fn to_value(&self) -> LiquidValue {
|
||||
LiquidValue::Object(self.iter().collect())
|
||||
}
|
||||
|
||||
fn as_object(&self) -> Option<&dyn ObjectView> {
|
||||
Some(self)
|
||||
}
|
||||
}
|
56
milli/src/prompt/error.rs
Normal file
56
milli/src/prompt/error.rs
Normal file
@ -0,0 +1,56 @@
|
||||
use crate::error::FaultSource;
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("{fault}: {kind}")]
|
||||
pub struct NewPromptError {
|
||||
pub kind: NewPromptErrorKind,
|
||||
pub fault: FaultSource,
|
||||
}
|
||||
|
||||
impl From<NewPromptError> for crate::Error {
|
||||
fn from(value: NewPromptError) -> Self {
|
||||
crate::Error::UserError(crate::UserError::InvalidPrompt(value))
|
||||
}
|
||||
}
|
||||
|
||||
impl NewPromptError {
|
||||
pub(crate) fn cannot_parse_template(inner: liquid::Error) -> NewPromptError {
|
||||
Self { kind: NewPromptErrorKind::CannotParseTemplate(inner), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn invalid_fields_in_template(inner: liquid::Error) -> NewPromptError {
|
||||
Self { kind: NewPromptErrorKind::InvalidFieldsInTemplate(inner), fault: FaultSource::User }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
pub enum NewPromptErrorKind {
|
||||
#[error("cannot parse template: {0}")]
|
||||
CannotParseTemplate(liquid::Error),
|
||||
#[error("template contains invalid fields: {0}. Only `doc.*`, `fields[i].name`, `fields[i].value` are supported")]
|
||||
InvalidFieldsInTemplate(liquid::Error),
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("{fault}: {kind}")]
|
||||
pub struct RenderPromptError {
|
||||
pub kind: RenderPromptErrorKind,
|
||||
pub fault: FaultSource,
|
||||
}
|
||||
impl RenderPromptError {
|
||||
pub(crate) fn missing_context(inner: liquid::Error) -> RenderPromptError {
|
||||
Self { kind: RenderPromptErrorKind::MissingContext(inner), fault: FaultSource::User }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
pub enum RenderPromptErrorKind {
|
||||
#[error("missing field in document: {0}")]
|
||||
MissingContext(liquid::Error),
|
||||
}
|
||||
|
||||
impl From<RenderPromptError> for crate::Error {
|
||||
fn from(value: RenderPromptError) -> Self {
|
||||
crate::Error::UserError(crate::UserError::MissingDocumentField(value))
|
||||
}
|
||||
}
|
172
milli/src/prompt/fields.rs
Normal file
172
milli/src/prompt/fields.rs
Normal file
@ -0,0 +1,172 @@
|
||||
use liquid::model::{
|
||||
ArrayView, DisplayCow, KStringCow, ObjectRender, ObjectSource, State, Value as LiquidValue,
|
||||
};
|
||||
use liquid::{ObjectView, ValueView};
|
||||
|
||||
use super::document::Document;
|
||||
use crate::FieldsIdsMap;
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Fields<'a>(Vec<FieldValue<'a>>);
|
||||
|
||||
impl<'a> Fields<'a> {
|
||||
pub fn new(document: &'a Document<'a>, field_id_map: &'a FieldsIdsMap) -> Self {
|
||||
Self(
|
||||
std::iter::repeat(document)
|
||||
.zip(field_id_map.iter())
|
||||
.map(|(document, (_fid, name))| FieldValue { document, name })
|
||||
.collect(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct FieldValue<'a> {
|
||||
name: &'a str,
|
||||
document: &'a Document<'a>,
|
||||
}
|
||||
|
||||
impl<'a> ValueView for FieldValue<'a> {
|
||||
fn as_debug(&self) -> &dyn std::fmt::Debug {
|
||||
self
|
||||
}
|
||||
|
||||
fn render(&self) -> liquid::model::DisplayCow<'_> {
|
||||
DisplayCow::Owned(Box::new(ObjectRender::new(self)))
|
||||
}
|
||||
|
||||
fn source(&self) -> liquid::model::DisplayCow<'_> {
|
||||
DisplayCow::Owned(Box::new(ObjectSource::new(self)))
|
||||
}
|
||||
|
||||
fn type_name(&self) -> &'static str {
|
||||
"object"
|
||||
}
|
||||
|
||||
fn query_state(&self, state: liquid::model::State) -> bool {
|
||||
match state {
|
||||
State::Truthy => true,
|
||||
State::DefaultValue | State::Empty | State::Blank => self.is_empty(),
|
||||
}
|
||||
}
|
||||
|
||||
fn to_kstr(&self) -> liquid::model::KStringCow<'_> {
|
||||
let s = ObjectRender::new(self).to_string();
|
||||
KStringCow::from_string(s)
|
||||
}
|
||||
|
||||
fn to_value(&self) -> LiquidValue {
|
||||
LiquidValue::Object(
|
||||
self.iter().map(|(k, v)| (k.to_string().into(), v.to_value())).collect(),
|
||||
)
|
||||
}
|
||||
|
||||
fn as_object(&self) -> Option<&dyn ObjectView> {
|
||||
Some(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> FieldValue<'a> {
|
||||
pub fn name(&self) -> &&'a str {
|
||||
&self.name
|
||||
}
|
||||
|
||||
pub fn value(&self) -> &dyn ValueView {
|
||||
self.document.get(self.name).unwrap_or(&LiquidValue::Nil)
|
||||
}
|
||||
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.size() == 0
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ObjectView for FieldValue<'a> {
|
||||
fn as_value(&self) -> &dyn ValueView {
|
||||
self
|
||||
}
|
||||
|
||||
fn size(&self) -> i64 {
|
||||
2
|
||||
}
|
||||
|
||||
fn keys<'k>(&'k self) -> Box<dyn Iterator<Item = KStringCow<'k>> + 'k> {
|
||||
Box::new(["name", "value"].iter().map(|&x| KStringCow::from_static(x)))
|
||||
}
|
||||
|
||||
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
|
||||
Box::new(
|
||||
std::iter::once(self.name() as &dyn ValueView).chain(std::iter::once(self.value())),
|
||||
)
|
||||
}
|
||||
|
||||
fn iter<'k>(&'k self) -> Box<dyn Iterator<Item = (KStringCow<'k>, &'k dyn ValueView)> + 'k> {
|
||||
Box::new(self.keys().zip(self.values()))
|
||||
}
|
||||
|
||||
fn contains_key(&self, index: &str) -> bool {
|
||||
index == "name" || index == "value"
|
||||
}
|
||||
|
||||
fn get<'s>(&'s self, index: &str) -> Option<&'s dyn ValueView> {
|
||||
match index {
|
||||
"name" => Some(self.name()),
|
||||
"value" => Some(self.value()),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ArrayView for Fields<'a> {
|
||||
fn as_value(&self) -> &dyn ValueView {
|
||||
self.0.as_value()
|
||||
}
|
||||
|
||||
fn size(&self) -> i64 {
|
||||
self.0.len() as i64
|
||||
}
|
||||
|
||||
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
|
||||
self.0.values()
|
||||
}
|
||||
|
||||
fn contains_key(&self, index: i64) -> bool {
|
||||
self.0.contains_key(index)
|
||||
}
|
||||
|
||||
fn get(&self, index: i64) -> Option<&dyn ValueView> {
|
||||
ArrayView::get(&self.0, index)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> ValueView for Fields<'a> {
|
||||
fn as_debug(&self) -> &dyn std::fmt::Debug {
|
||||
self
|
||||
}
|
||||
|
||||
fn render(&self) -> liquid::model::DisplayCow<'_> {
|
||||
self.0.render()
|
||||
}
|
||||
|
||||
fn source(&self) -> liquid::model::DisplayCow<'_> {
|
||||
self.0.source()
|
||||
}
|
||||
|
||||
fn type_name(&self) -> &'static str {
|
||||
self.0.type_name()
|
||||
}
|
||||
|
||||
fn query_state(&self, state: liquid::model::State) -> bool {
|
||||
self.0.query_state(state)
|
||||
}
|
||||
|
||||
fn to_kstr(&self) -> liquid::model::KStringCow<'_> {
|
||||
self.0.to_kstr()
|
||||
}
|
||||
|
||||
fn to_value(&self) -> LiquidValue {
|
||||
self.0.to_value()
|
||||
}
|
||||
|
||||
fn as_array(&self) -> Option<&dyn ArrayView> {
|
||||
Some(self)
|
||||
}
|
||||
}
|
176
milli/src/prompt/mod.rs
Normal file
176
milli/src/prompt/mod.rs
Normal file
@ -0,0 +1,176 @@
|
||||
mod context;
|
||||
mod document;
|
||||
pub(crate) mod error;
|
||||
mod fields;
|
||||
mod template_checker;
|
||||
|
||||
use std::convert::TryFrom;
|
||||
|
||||
use error::{NewPromptError, RenderPromptError};
|
||||
|
||||
use self::context::Context;
|
||||
use self::document::Document;
|
||||
use crate::update::del_add::DelAdd;
|
||||
use crate::FieldsIdsMap;
|
||||
|
||||
pub struct Prompt {
|
||||
template: liquid::Template,
|
||||
template_text: String,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
|
||||
pub struct PromptData {
|
||||
pub template: String,
|
||||
}
|
||||
|
||||
impl From<Prompt> for PromptData {
|
||||
fn from(value: Prompt) -> Self {
|
||||
Self { template: value.template_text }
|
||||
}
|
||||
}
|
||||
|
||||
impl TryFrom<PromptData> for Prompt {
|
||||
type Error = NewPromptError;
|
||||
|
||||
fn try_from(value: PromptData) -> Result<Self, Self::Error> {
|
||||
Prompt::new(value.template)
|
||||
}
|
||||
}
|
||||
|
||||
impl Clone for Prompt {
|
||||
fn clone(&self) -> Self {
|
||||
let template_text = self.template_text.clone();
|
||||
Self { template: new_template(&template_text).unwrap(), template_text }
|
||||
}
|
||||
}
|
||||
|
||||
fn new_template(text: &str) -> Result<liquid::Template, liquid::Error> {
|
||||
liquid::ParserBuilder::with_stdlib().build().unwrap().parse(text)
|
||||
}
|
||||
|
||||
fn default_template() -> liquid::Template {
|
||||
new_template(default_template_text()).unwrap()
|
||||
}
|
||||
|
||||
fn default_template_text() -> &'static str {
|
||||
"{% for field in fields %} \
|
||||
{{ field.name }}: {{ field.value }}\n\
|
||||
{% endfor %}"
|
||||
}
|
||||
|
||||
impl Default for Prompt {
|
||||
fn default() -> Self {
|
||||
Self { template: default_template(), template_text: default_template_text().into() }
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for PromptData {
|
||||
fn default() -> Self {
|
||||
Self { template: default_template_text().into() }
|
||||
}
|
||||
}
|
||||
|
||||
impl Prompt {
|
||||
pub fn new(template: String) -> Result<Self, NewPromptError> {
|
||||
let this = Self {
|
||||
template: liquid::ParserBuilder::with_stdlib()
|
||||
.build()
|
||||
.unwrap()
|
||||
.parse(&template)
|
||||
.map_err(NewPromptError::cannot_parse_template)?,
|
||||
template_text: template,
|
||||
};
|
||||
|
||||
// render template with special object that's OK with `doc.*` and `fields.*`
|
||||
this.template
|
||||
.render(&template_checker::TemplateChecker)
|
||||
.map_err(NewPromptError::invalid_fields_in_template)?;
|
||||
|
||||
Ok(this)
|
||||
}
|
||||
|
||||
pub fn render(
|
||||
&self,
|
||||
document: obkv::KvReaderU16<'_>,
|
||||
side: DelAdd,
|
||||
field_id_map: &FieldsIdsMap,
|
||||
) -> Result<String, RenderPromptError> {
|
||||
let document = Document::new(document, side, field_id_map);
|
||||
let context = Context::new(&document, field_id_map);
|
||||
|
||||
self.template.render(&context).map_err(RenderPromptError::missing_context)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::Prompt;
|
||||
use crate::error::FaultSource;
|
||||
use crate::prompt::error::{NewPromptError, NewPromptErrorKind};
|
||||
|
||||
#[test]
|
||||
fn default_template() {
|
||||
// does not panic
|
||||
Prompt::default();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn empty_template() {
|
||||
Prompt::new("".into()).unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn template_ok() {
|
||||
Prompt::new("{{doc.title}}: {{doc.overview}}".into()).unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn template_syntax() {
|
||||
assert!(matches!(
|
||||
Prompt::new("{{doc.title: {{doc.overview}}".into()),
|
||||
Err(NewPromptError {
|
||||
kind: NewPromptErrorKind::CannotParseTemplate(_),
|
||||
fault: FaultSource::User
|
||||
})
|
||||
));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn template_missing_doc() {
|
||||
assert!(matches!(
|
||||
Prompt::new("{{title}}: {{overview}}".into()),
|
||||
Err(NewPromptError {
|
||||
kind: NewPromptErrorKind::InvalidFieldsInTemplate(_),
|
||||
fault: FaultSource::User
|
||||
})
|
||||
));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn template_nested_doc() {
|
||||
Prompt::new("{{doc.actor.firstName}}: {{doc.actor.lastName}}".into()).unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn template_fields() {
|
||||
Prompt::new("{% for field in fields %}{{field}}{% endfor %}".into()).unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn template_fields_ok() {
|
||||
Prompt::new("{% for field in fields %}{{field.name}}: {{field.value}}{% endfor %}".into())
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn template_fields_invalid() {
|
||||
assert!(matches!(
|
||||
// intentionally garbled field
|
||||
Prompt::new("{% for field in fields %}{{field.vaelu}} {% endfor %}".into()),
|
||||
Err(NewPromptError {
|
||||
kind: NewPromptErrorKind::InvalidFieldsInTemplate(_),
|
||||
fault: FaultSource::User
|
||||
})
|
||||
));
|
||||
}
|
||||
}
|
301
milli/src/prompt/template_checker.rs
Normal file
301
milli/src/prompt/template_checker.rs
Normal file
@ -0,0 +1,301 @@
|
||||
use liquid::model::{
|
||||
ArrayView, DisplayCow, KStringCow, ObjectRender, ObjectSource, State, Value as LiquidValue,
|
||||
};
|
||||
use liquid::{Object, ObjectView, ValueView};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct TemplateChecker;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct DummyDoc;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct DummyFields;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct DummyField;
|
||||
|
||||
const DUMMY_VALUE: &LiquidValue = &LiquidValue::Nil;
|
||||
|
||||
impl ObjectView for DummyField {
|
||||
fn as_value(&self) -> &dyn ValueView {
|
||||
self
|
||||
}
|
||||
|
||||
fn size(&self) -> i64 {
|
||||
2
|
||||
}
|
||||
|
||||
fn keys<'k>(&'k self) -> Box<dyn Iterator<Item = KStringCow<'k>> + 'k> {
|
||||
Box::new(["name", "value"].iter().map(|s| KStringCow::from_static(s)))
|
||||
}
|
||||
|
||||
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
|
||||
Box::new(vec![DUMMY_VALUE.as_view(), DUMMY_VALUE.as_view()].into_iter())
|
||||
}
|
||||
|
||||
fn iter<'k>(&'k self) -> Box<dyn Iterator<Item = (KStringCow<'k>, &'k dyn ValueView)> + 'k> {
|
||||
Box::new(self.keys().zip(self.values()))
|
||||
}
|
||||
|
||||
fn contains_key(&self, index: &str) -> bool {
|
||||
index == "name" || index == "value"
|
||||
}
|
||||
|
||||
fn get<'s>(&'s self, index: &str) -> Option<&'s dyn ValueView> {
|
||||
if self.contains_key(index) {
|
||||
Some(DUMMY_VALUE.as_view())
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ValueView for DummyField {
|
||||
fn as_debug(&self) -> &dyn std::fmt::Debug {
|
||||
self
|
||||
}
|
||||
|
||||
fn render(&self) -> DisplayCow<'_> {
|
||||
DUMMY_VALUE.render()
|
||||
}
|
||||
|
||||
fn source(&self) -> DisplayCow<'_> {
|
||||
DUMMY_VALUE.source()
|
||||
}
|
||||
|
||||
fn type_name(&self) -> &'static str {
|
||||
"object"
|
||||
}
|
||||
|
||||
fn query_state(&self, state: State) -> bool {
|
||||
match state {
|
||||
State::Truthy => true,
|
||||
State::DefaultValue => false,
|
||||
State::Empty => false,
|
||||
State::Blank => false,
|
||||
}
|
||||
}
|
||||
|
||||
fn to_kstr(&self) -> KStringCow<'_> {
|
||||
DUMMY_VALUE.to_kstr()
|
||||
}
|
||||
|
||||
fn to_value(&self) -> LiquidValue {
|
||||
let mut this = Object::new();
|
||||
this.insert("name".into(), LiquidValue::Nil);
|
||||
this.insert("value".into(), LiquidValue::Nil);
|
||||
LiquidValue::Object(this)
|
||||
}
|
||||
|
||||
fn as_object(&self) -> Option<&dyn ObjectView> {
|
||||
Some(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl ValueView for DummyFields {
|
||||
fn as_debug(&self) -> &dyn std::fmt::Debug {
|
||||
self
|
||||
}
|
||||
|
||||
fn render(&self) -> DisplayCow<'_> {
|
||||
DUMMY_VALUE.render()
|
||||
}
|
||||
|
||||
fn source(&self) -> DisplayCow<'_> {
|
||||
DUMMY_VALUE.source()
|
||||
}
|
||||
|
||||
fn type_name(&self) -> &'static str {
|
||||
"array"
|
||||
}
|
||||
|
||||
fn query_state(&self, state: State) -> bool {
|
||||
match state {
|
||||
State::Truthy => true,
|
||||
State::DefaultValue => false,
|
||||
State::Empty => false,
|
||||
State::Blank => false,
|
||||
}
|
||||
}
|
||||
|
||||
fn to_kstr(&self) -> KStringCow<'_> {
|
||||
DUMMY_VALUE.to_kstr()
|
||||
}
|
||||
|
||||
fn to_value(&self) -> LiquidValue {
|
||||
LiquidValue::Array(vec![DummyField.to_value()])
|
||||
}
|
||||
|
||||
fn as_array(&self) -> Option<&dyn ArrayView> {
|
||||
Some(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl ArrayView for DummyFields {
|
||||
fn as_value(&self) -> &dyn ValueView {
|
||||
self
|
||||
}
|
||||
|
||||
fn size(&self) -> i64 {
|
||||
u16::MAX as i64
|
||||
}
|
||||
|
||||
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
|
||||
Box::new(std::iter::once(DummyField.as_value()))
|
||||
}
|
||||
|
||||
fn contains_key(&self, index: i64) -> bool {
|
||||
index < self.size()
|
||||
}
|
||||
|
||||
fn get(&self, _index: i64) -> Option<&dyn ValueView> {
|
||||
Some(DummyField.as_value())
|
||||
}
|
||||
}
|
||||
|
||||
impl ObjectView for DummyDoc {
|
||||
fn as_value(&self) -> &dyn ValueView {
|
||||
self
|
||||
}
|
||||
|
||||
fn size(&self) -> i64 {
|
||||
1000
|
||||
}
|
||||
|
||||
fn keys<'k>(&'k self) -> Box<dyn Iterator<Item = KStringCow<'k>> + 'k> {
|
||||
Box::new(std::iter::empty())
|
||||
}
|
||||
|
||||
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
|
||||
Box::new(std::iter::empty())
|
||||
}
|
||||
|
||||
fn iter<'k>(&'k self) -> Box<dyn Iterator<Item = (KStringCow<'k>, &'k dyn ValueView)> + 'k> {
|
||||
Box::new(std::iter::empty())
|
||||
}
|
||||
|
||||
fn contains_key(&self, _index: &str) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn get<'s>(&'s self, _index: &str) -> Option<&'s dyn ValueView> {
|
||||
// Recursively sends itself
|
||||
Some(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl ValueView for DummyDoc {
|
||||
fn as_debug(&self) -> &dyn std::fmt::Debug {
|
||||
self
|
||||
}
|
||||
|
||||
fn render(&self) -> DisplayCow<'_> {
|
||||
DUMMY_VALUE.render()
|
||||
}
|
||||
|
||||
fn source(&self) -> DisplayCow<'_> {
|
||||
DUMMY_VALUE.source()
|
||||
}
|
||||
|
||||
fn type_name(&self) -> &'static str {
|
||||
"object"
|
||||
}
|
||||
|
||||
fn query_state(&self, state: State) -> bool {
|
||||
match state {
|
||||
State::Truthy => true,
|
||||
State::DefaultValue => false,
|
||||
State::Empty => false,
|
||||
State::Blank => false,
|
||||
}
|
||||
}
|
||||
|
||||
fn to_kstr(&self) -> KStringCow<'_> {
|
||||
DUMMY_VALUE.to_kstr()
|
||||
}
|
||||
|
||||
fn to_value(&self) -> LiquidValue {
|
||||
LiquidValue::Nil
|
||||
}
|
||||
|
||||
fn as_object(&self) -> Option<&dyn ObjectView> {
|
||||
Some(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl ObjectView for TemplateChecker {
|
||||
fn as_value(&self) -> &dyn ValueView {
|
||||
self
|
||||
}
|
||||
|
||||
fn size(&self) -> i64 {
|
||||
2
|
||||
}
|
||||
|
||||
fn keys<'k>(&'k self) -> Box<dyn Iterator<Item = KStringCow<'k>> + 'k> {
|
||||
Box::new(["doc", "fields"].iter().map(|s| KStringCow::from_static(s)))
|
||||
}
|
||||
|
||||
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
|
||||
Box::new(
|
||||
std::iter::once(DummyDoc.as_value()).chain(std::iter::once(DummyFields.as_value())),
|
||||
)
|
||||
}
|
||||
|
||||
fn iter<'k>(&'k self) -> Box<dyn Iterator<Item = (KStringCow<'k>, &'k dyn ValueView)> + 'k> {
|
||||
Box::new(self.keys().zip(self.values()))
|
||||
}
|
||||
|
||||
fn contains_key(&self, index: &str) -> bool {
|
||||
index == "doc" || index == "fields"
|
||||
}
|
||||
|
||||
fn get<'s>(&'s self, index: &str) -> Option<&'s dyn ValueView> {
|
||||
match index {
|
||||
"doc" => Some(DummyDoc.as_value()),
|
||||
"fields" => Some(DummyFields.as_value()),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ValueView for TemplateChecker {
|
||||
fn as_debug(&self) -> &dyn std::fmt::Debug {
|
||||
self
|
||||
}
|
||||
|
||||
fn render(&self) -> liquid::model::DisplayCow<'_> {
|
||||
DisplayCow::Owned(Box::new(ObjectRender::new(self)))
|
||||
}
|
||||
|
||||
fn source(&self) -> liquid::model::DisplayCow<'_> {
|
||||
DisplayCow::Owned(Box::new(ObjectSource::new(self)))
|
||||
}
|
||||
|
||||
fn type_name(&self) -> &'static str {
|
||||
"object"
|
||||
}
|
||||
|
||||
fn query_state(&self, state: liquid::model::State) -> bool {
|
||||
match state {
|
||||
State::Truthy => true,
|
||||
State::DefaultValue | State::Empty | State::Blank => false,
|
||||
}
|
||||
}
|
||||
|
||||
fn to_kstr(&self) -> liquid::model::KStringCow<'_> {
|
||||
let s = ObjectRender::new(self).to_string();
|
||||
KStringCow::from_string(s)
|
||||
}
|
||||
|
||||
fn to_value(&self) -> LiquidValue {
|
||||
LiquidValue::Object(
|
||||
self.iter().map(|(k, x)| (k.to_string().into(), x.to_value())).collect(),
|
||||
)
|
||||
}
|
||||
|
||||
fn as_object(&self) -> Option<&dyn ObjectView> {
|
||||
Some(self)
|
||||
}
|
||||
}
|
@ -1,85 +0,0 @@
|
||||
use std::io::{self, Read};
|
||||
use std::iter::FromIterator;
|
||||
|
||||
pub struct ReadableSlices<A> {
|
||||
inner: Vec<A>,
|
||||
pos: u64,
|
||||
}
|
||||
|
||||
impl<A> FromIterator<A> for ReadableSlices<A> {
|
||||
fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
|
||||
ReadableSlices { inner: iter.into_iter().collect(), pos: 0 }
|
||||
}
|
||||
}
|
||||
|
||||
impl<A: AsRef<[u8]>> Read for ReadableSlices<A> {
|
||||
fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
|
||||
let original_buf_len = buf.len();
|
||||
|
||||
// We explore the list of slices to find the one where we must start reading.
|
||||
let mut pos = self.pos;
|
||||
let index = match self
|
||||
.inner
|
||||
.iter()
|
||||
.map(|s| s.as_ref().len() as u64)
|
||||
.position(|size| pos.checked_sub(size).map(|p| pos = p).is_none())
|
||||
{
|
||||
Some(index) => index,
|
||||
None => return Ok(0),
|
||||
};
|
||||
|
||||
let mut inner_pos = pos as usize;
|
||||
for slice in &self.inner[index..] {
|
||||
let slice = &slice.as_ref()[inner_pos..];
|
||||
|
||||
if buf.len() > slice.len() {
|
||||
// We must exhaust the current slice and go to the next one there is not enough here.
|
||||
buf[..slice.len()].copy_from_slice(slice);
|
||||
buf = &mut buf[slice.len()..];
|
||||
inner_pos = 0;
|
||||
} else {
|
||||
// There is enough in this slice to fill the remaining bytes of the buffer.
|
||||
// Let's break just after filling it.
|
||||
buf.copy_from_slice(&slice[..buf.len()]);
|
||||
buf = &mut [];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let written = original_buf_len - buf.len();
|
||||
self.pos += written as u64;
|
||||
Ok(written)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use std::io::Read;
|
||||
|
||||
use super::ReadableSlices;
|
||||
|
||||
#[test]
|
||||
fn basic() {
|
||||
let data: Vec<_> = (0..100).collect();
|
||||
let splits: Vec<_> = data.chunks(3).collect();
|
||||
let mut rdslices: ReadableSlices<_> = splits.into_iter().collect();
|
||||
|
||||
let mut output = Vec::new();
|
||||
let length = rdslices.read_to_end(&mut output).unwrap();
|
||||
assert_eq!(length, data.len());
|
||||
assert_eq!(output, data);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn small_reads() {
|
||||
let data: Vec<_> = (0..u8::MAX).collect();
|
||||
let splits: Vec<_> = data.chunks(27).collect();
|
||||
let mut rdslices: ReadableSlices<_> = splits.into_iter().collect();
|
||||
|
||||
let buffer = &mut [0; 45];
|
||||
let length = rdslices.read(buffer).unwrap();
|
||||
let expected: Vec<_> = (0..buffer.len() as u8).collect();
|
||||
assert_eq!(length, buffer.len());
|
||||
assert_eq!(buffer, &expected[..]);
|
||||
}
|
||||
}
|
@ -1,3 +1,6 @@
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use itertools::Itertools;
|
||||
use serde::Serialize;
|
||||
|
||||
use crate::distance_between_two_points;
|
||||
@ -12,9 +15,24 @@ pub enum ScoreDetails {
|
||||
ExactAttribute(ExactAttribute),
|
||||
ExactWords(ExactWords),
|
||||
Sort(Sort),
|
||||
Vector(Vector),
|
||||
GeoSort(GeoSort),
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub enum ScoreValue<'a> {
|
||||
Score(f64),
|
||||
Sort(&'a Sort),
|
||||
GeoSort(&'a GeoSort),
|
||||
}
|
||||
|
||||
enum RankOrValue<'a> {
|
||||
Rank(Rank),
|
||||
Sort(&'a Sort),
|
||||
GeoSort(&'a GeoSort),
|
||||
Score(f64),
|
||||
}
|
||||
|
||||
impl ScoreDetails {
|
||||
pub fn local_score(&self) -> Option<f64> {
|
||||
self.rank().map(Rank::local_score)
|
||||
@ -31,11 +49,55 @@ impl ScoreDetails {
|
||||
ScoreDetails::ExactWords(details) => Some(details.rank()),
|
||||
ScoreDetails::Sort(_) => None,
|
||||
ScoreDetails::GeoSort(_) => None,
|
||||
ScoreDetails::Vector(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn global_score<'a>(details: impl Iterator<Item = &'a Self>) -> f64 {
|
||||
Rank::global_score(details.filter_map(Self::rank))
|
||||
pub fn global_score<'a>(details: impl Iterator<Item = &'a Self> + 'a) -> f64 {
|
||||
Self::score_values(details)
|
||||
.find_map(|x| {
|
||||
let ScoreValue::Score(score) = x else {
|
||||
return None;
|
||||
};
|
||||
Some(score)
|
||||
})
|
||||
.unwrap_or(1.0f64)
|
||||
}
|
||||
|
||||
pub fn score_values<'a>(
|
||||
details: impl Iterator<Item = &'a Self> + 'a,
|
||||
) -> impl Iterator<Item = ScoreValue<'a>> + 'a {
|
||||
details
|
||||
.map(ScoreDetails::rank_or_value)
|
||||
.coalesce(|left, right| match (left, right) {
|
||||
(RankOrValue::Rank(left), RankOrValue::Rank(right)) => {
|
||||
Ok(RankOrValue::Rank(Rank::merge(left, right)))
|
||||
}
|
||||
(left, right) => Err((left, right)),
|
||||
})
|
||||
.map(|rank_or_value| match rank_or_value {
|
||||
RankOrValue::Rank(r) => ScoreValue::Score(r.local_score()),
|
||||
RankOrValue::Sort(s) => ScoreValue::Sort(s),
|
||||
RankOrValue::GeoSort(g) => ScoreValue::GeoSort(g),
|
||||
RankOrValue::Score(s) => ScoreValue::Score(s),
|
||||
})
|
||||
}
|
||||
|
||||
fn rank_or_value(&self) -> RankOrValue<'_> {
|
||||
match self {
|
||||
ScoreDetails::Words(w) => RankOrValue::Rank(w.rank()),
|
||||
ScoreDetails::Typo(t) => RankOrValue::Rank(t.rank()),
|
||||
ScoreDetails::Proximity(p) => RankOrValue::Rank(*p),
|
||||
ScoreDetails::Fid(f) => RankOrValue::Rank(*f),
|
||||
ScoreDetails::Position(p) => RankOrValue::Rank(*p),
|
||||
ScoreDetails::ExactAttribute(e) => RankOrValue::Rank(e.rank()),
|
||||
ScoreDetails::ExactWords(e) => RankOrValue::Rank(e.rank()),
|
||||
ScoreDetails::Sort(sort) => RankOrValue::Sort(sort),
|
||||
ScoreDetails::GeoSort(geosort) => RankOrValue::GeoSort(geosort),
|
||||
ScoreDetails::Vector(vector) => RankOrValue::Score(
|
||||
vector.value_similarity.as_ref().map(|(_, s)| *s as f64).unwrap_or(0.0f64),
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
/// Panics
|
||||
@ -181,6 +243,19 @@ impl ScoreDetails {
|
||||
details_map.insert(sort, sort_details);
|
||||
order += 1;
|
||||
}
|
||||
ScoreDetails::Vector(s) => {
|
||||
let vector = format!("vectorSort({:?})", s.target_vector);
|
||||
let value = s.value_similarity.as_ref().map(|(v, _)| v);
|
||||
let similarity = s.value_similarity.as_ref().map(|(_, s)| s);
|
||||
|
||||
let details = serde_json::json!({
|
||||
"order": order,
|
||||
"value": value,
|
||||
"similarity": similarity,
|
||||
});
|
||||
details_map.insert(vector, details);
|
||||
order += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
details_map
|
||||
@ -297,15 +372,21 @@ impl Rank {
|
||||
pub fn global_score(details: impl Iterator<Item = Self>) -> f64 {
|
||||
let mut rank = Rank { rank: 1, max_rank: 1 };
|
||||
for inner_rank in details {
|
||||
rank.rank -= 1;
|
||||
|
||||
rank.rank *= inner_rank.max_rank;
|
||||
rank.max_rank *= inner_rank.max_rank;
|
||||
|
||||
rank.rank += inner_rank.rank;
|
||||
rank = Rank::merge(rank, inner_rank);
|
||||
}
|
||||
rank.local_score()
|
||||
}
|
||||
|
||||
pub fn merge(mut outer: Rank, inner: Rank) -> Rank {
|
||||
outer.rank = outer.rank.saturating_sub(1);
|
||||
|
||||
outer.rank *= inner.max_rank;
|
||||
outer.max_rank *= inner.max_rank;
|
||||
|
||||
outer.rank += inner.rank;
|
||||
|
||||
outer
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize)]
|
||||
@ -335,13 +416,78 @@ pub struct Sort {
|
||||
pub value: serde_json::Value,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
|
||||
impl PartialOrd for Sort {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
if self.field_name != other.field_name {
|
||||
return None;
|
||||
}
|
||||
if self.ascending != other.ascending {
|
||||
return None;
|
||||
}
|
||||
match (&self.value, &other.value) {
|
||||
(serde_json::Value::Null, serde_json::Value::Null) => Some(Ordering::Equal),
|
||||
(serde_json::Value::Null, _) => Some(Ordering::Less),
|
||||
(_, serde_json::Value::Null) => Some(Ordering::Greater),
|
||||
// numbers are always before strings
|
||||
(serde_json::Value::Number(_), serde_json::Value::String(_)) => Some(Ordering::Greater),
|
||||
(serde_json::Value::String(_), serde_json::Value::Number(_)) => Some(Ordering::Less),
|
||||
(serde_json::Value::Number(left), serde_json::Value::Number(right)) => {
|
||||
// FIXME: unwrap permitted here?
|
||||
let order = left.as_f64().unwrap().partial_cmp(&right.as_f64().unwrap())?;
|
||||
// 12 < 42, and when ascending, we want to see 12 first, so the smallest.
|
||||
// Hence, when ascending, smaller is better
|
||||
Some(if self.ascending { order.reverse() } else { order })
|
||||
}
|
||||
(serde_json::Value::String(left), serde_json::Value::String(right)) => {
|
||||
let order = left.cmp(right);
|
||||
// Taking e.g. "a" and "z"
|
||||
// "a" < "z", and when ascending, we want to see "a" first, so the smallest.
|
||||
// Hence, when ascending, smaller is better
|
||||
Some(if self.ascending { order.reverse() } else { order })
|
||||
}
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq)]
|
||||
pub struct GeoSort {
|
||||
pub target_point: [f64; 2],
|
||||
pub ascending: bool,
|
||||
pub value: Option<[f64; 2]>,
|
||||
}
|
||||
|
||||
impl PartialOrd for GeoSort {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
if self.target_point != other.target_point {
|
||||
return None;
|
||||
}
|
||||
if self.ascending != other.ascending {
|
||||
return None;
|
||||
}
|
||||
Some(match (self.distance(), other.distance()) {
|
||||
(None, None) => Ordering::Equal,
|
||||
(None, Some(_)) => Ordering::Less,
|
||||
(Some(_), None) => Ordering::Greater,
|
||||
(Some(left), Some(right)) => {
|
||||
let order = left.partial_cmp(&right)?;
|
||||
if self.ascending {
|
||||
// when ascending, the one with the smallest distance has the best score
|
||||
order.reverse()
|
||||
} else {
|
||||
order
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, PartialOrd)]
|
||||
pub struct Vector {
|
||||
pub target_vector: Vec<f32>,
|
||||
pub value_similarity: Option<(Vec<f32>, f32)>,
|
||||
}
|
||||
|
||||
impl GeoSort {
|
||||
pub fn distance(&self) -> Option<f64> {
|
||||
self.value.map(|value| distance_between_two_points(&self.target_point, &value))
|
||||
|
183
milli/src/search/hybrid.rs
Normal file
183
milli/src/search/hybrid.rs
Normal file
@ -0,0 +1,183 @@
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use itertools::Itertools;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use crate::score_details::{ScoreDetails, ScoreValue, ScoringStrategy};
|
||||
use crate::{MatchingWords, Result, Search, SearchResult};
|
||||
|
||||
struct ScoreWithRatioResult {
|
||||
matching_words: MatchingWords,
|
||||
candidates: RoaringBitmap,
|
||||
document_scores: Vec<(u32, ScoreWithRatio)>,
|
||||
}
|
||||
|
||||
type ScoreWithRatio = (Vec<ScoreDetails>, f32);
|
||||
|
||||
fn compare_scores(
|
||||
&(ref left_scores, left_ratio): &ScoreWithRatio,
|
||||
&(ref right_scores, right_ratio): &ScoreWithRatio,
|
||||
) -> Ordering {
|
||||
let mut left_it = ScoreDetails::score_values(left_scores.iter());
|
||||
let mut right_it = ScoreDetails::score_values(right_scores.iter());
|
||||
|
||||
loop {
|
||||
let left = left_it.next();
|
||||
let right = right_it.next();
|
||||
|
||||
match (left, right) {
|
||||
(None, None) => return Ordering::Equal,
|
||||
(None, Some(_)) => return Ordering::Less,
|
||||
(Some(_), None) => return Ordering::Greater,
|
||||
(Some(ScoreValue::Score(left)), Some(ScoreValue::Score(right))) => {
|
||||
let left = left * left_ratio as f64;
|
||||
let right = right * right_ratio as f64;
|
||||
if (left - right).abs() <= f64::EPSILON {
|
||||
continue;
|
||||
}
|
||||
return left.partial_cmp(&right).unwrap();
|
||||
}
|
||||
(Some(ScoreValue::Sort(left)), Some(ScoreValue::Sort(right))) => {
|
||||
match left.partial_cmp(right).unwrap() {
|
||||
Ordering::Equal => continue,
|
||||
order => return order,
|
||||
}
|
||||
}
|
||||
(Some(ScoreValue::GeoSort(left)), Some(ScoreValue::GeoSort(right))) => {
|
||||
match left.partial_cmp(right).unwrap() {
|
||||
Ordering::Equal => continue,
|
||||
order => return order,
|
||||
}
|
||||
}
|
||||
(Some(ScoreValue::Score(_)), Some(_)) => return Ordering::Greater,
|
||||
(Some(_), Some(ScoreValue::Score(_))) => return Ordering::Less,
|
||||
// if we have this, we're bad
|
||||
(Some(ScoreValue::GeoSort(_)), Some(ScoreValue::Sort(_)))
|
||||
| (Some(ScoreValue::Sort(_)), Some(ScoreValue::GeoSort(_))) => {
|
||||
unreachable!("Unexpected geo and sort comparison")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ScoreWithRatioResult {
|
||||
fn new(results: SearchResult, ratio: f32) -> Self {
|
||||
let document_scores = results
|
||||
.documents_ids
|
||||
.into_iter()
|
||||
.zip(results.document_scores.into_iter().map(|scores| (scores, ratio)))
|
||||
.collect();
|
||||
|
||||
Self {
|
||||
matching_words: results.matching_words,
|
||||
candidates: results.candidates,
|
||||
document_scores,
|
||||
}
|
||||
}
|
||||
|
||||
fn merge(left: Self, right: Self, from: usize, length: usize) -> SearchResult {
|
||||
let mut documents_ids =
|
||||
Vec::with_capacity(left.document_scores.len() + right.document_scores.len());
|
||||
let mut document_scores =
|
||||
Vec::with_capacity(left.document_scores.len() + right.document_scores.len());
|
||||
|
||||
let mut documents_seen = RoaringBitmap::new();
|
||||
for (docid, (main_score, _sub_score)) in left
|
||||
.document_scores
|
||||
.into_iter()
|
||||
.merge_by(right.document_scores.into_iter(), |(_, left), (_, right)| {
|
||||
// the first value is the one with the greatest score
|
||||
compare_scores(left, right).is_ge()
|
||||
})
|
||||
// remove documents we already saw
|
||||
.filter(|(docid, _)| documents_seen.insert(*docid))
|
||||
// start skipping **after** the filter
|
||||
.skip(from)
|
||||
// take **after** skipping
|
||||
.take(length)
|
||||
{
|
||||
documents_ids.push(docid);
|
||||
// TODO: pass both scores to documents_score in some way?
|
||||
document_scores.push(main_score);
|
||||
}
|
||||
|
||||
SearchResult {
|
||||
matching_words: left.matching_words,
|
||||
candidates: left.candidates | right.candidates,
|
||||
documents_ids,
|
||||
document_scores,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Search<'a> {
|
||||
pub fn execute_hybrid(&self, semantic_ratio: f32) -> Result<SearchResult> {
|
||||
// TODO: find classier way to achieve that than to reset vector and query params
|
||||
// create separate keyword and semantic searches
|
||||
let mut search = Search {
|
||||
query: self.query.clone(),
|
||||
vector: self.vector.clone(),
|
||||
filter: self.filter.clone(),
|
||||
offset: 0,
|
||||
limit: self.limit + self.offset,
|
||||
sort_criteria: self.sort_criteria.clone(),
|
||||
searchable_attributes: self.searchable_attributes,
|
||||
geo_strategy: self.geo_strategy,
|
||||
terms_matching_strategy: self.terms_matching_strategy,
|
||||
scoring_strategy: ScoringStrategy::Detailed,
|
||||
words_limit: self.words_limit,
|
||||
exhaustive_number_hits: self.exhaustive_number_hits,
|
||||
rtxn: self.rtxn,
|
||||
index: self.index,
|
||||
distribution_shift: self.distribution_shift,
|
||||
embedder_name: self.embedder_name.clone(),
|
||||
};
|
||||
|
||||
let vector_query = search.vector.take();
|
||||
let keyword_results = search.execute()?;
|
||||
|
||||
// skip semantic search if we don't have a vector query (placeholder search)
|
||||
let Some(vector_query) = vector_query else {
|
||||
return Ok(keyword_results);
|
||||
};
|
||||
|
||||
// completely skip semantic search if the results of the keyword search are good enough
|
||||
if self.results_good_enough(&keyword_results, semantic_ratio) {
|
||||
return Ok(keyword_results);
|
||||
}
|
||||
|
||||
search.vector = Some(vector_query);
|
||||
search.query = None;
|
||||
|
||||
// TODO: would be better to have two distinct functions at this point
|
||||
let vector_results = search.execute()?;
|
||||
|
||||
let keyword_results = ScoreWithRatioResult::new(keyword_results, 1.0 - semantic_ratio);
|
||||
let vector_results = ScoreWithRatioResult::new(vector_results, semantic_ratio);
|
||||
|
||||
let merge_results =
|
||||
ScoreWithRatioResult::merge(vector_results, keyword_results, self.offset, self.limit);
|
||||
assert!(merge_results.documents_ids.len() <= self.limit);
|
||||
Ok(merge_results)
|
||||
}
|
||||
|
||||
fn results_good_enough(&self, keyword_results: &SearchResult, semantic_ratio: f32) -> bool {
|
||||
// A result is good enough if its keyword score is > 0.9 with a semantic ratio of 0.5 => 0.9 * 0.5
|
||||
const GOOD_ENOUGH_SCORE: f64 = 0.45;
|
||||
|
||||
// 1. we check that we got a sufficient number of results
|
||||
if keyword_results.document_scores.len() < self.limit + self.offset {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 2. and that all results have a good enough score.
|
||||
// we need to check all results because due to sort like rules, they're not necessarily in relevancy order
|
||||
for score in &keyword_results.document_scores {
|
||||
let score = ScoreDetails::global_score(score.iter());
|
||||
if score * ((1.0 - semantic_ratio) as f64) < GOOD_ENOUGH_SCORE {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
}
|
@ -12,12 +12,14 @@ use roaring::bitmap::RoaringBitmap;
|
||||
|
||||
pub use self::facet::{FacetDistribution, Filter, OrderBy, DEFAULT_VALUES_PER_FACET};
|
||||
pub use self::new::matches::{FormatOptions, MatchBounds, MatcherBuilder, MatchingWords};
|
||||
use self::new::PartialSearchResult;
|
||||
use self::new::{execute_vector_search, PartialSearchResult};
|
||||
use crate::error::UserError;
|
||||
use crate::heed_codec::facet::{FacetGroupKey, FacetGroupValue};
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::vector::DistributionShift;
|
||||
use crate::{
|
||||
execute_search, AscDesc, DefaultSearchLogger, DocumentId, FieldId, Index, Result, SearchContext,
|
||||
execute_search, filtered_universe, AscDesc, DefaultSearchLogger, DocumentId, FieldId, Index,
|
||||
Result, SearchContext,
|
||||
};
|
||||
|
||||
// Building these factories is not free.
|
||||
@ -30,6 +32,7 @@ const MAX_NUMBER_OF_FACETS: usize = 100;
|
||||
|
||||
pub mod facet;
|
||||
mod fst_utils;
|
||||
pub mod hybrid;
|
||||
pub mod new;
|
||||
|
||||
pub struct Search<'a> {
|
||||
@ -46,8 +49,11 @@ pub struct Search<'a> {
|
||||
scoring_strategy: ScoringStrategy,
|
||||
words_limit: usize,
|
||||
exhaustive_number_hits: bool,
|
||||
/// TODO: Add semantic ratio or pass it directly to execute_hybrid()
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
index: &'a Index,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: Option<String>,
|
||||
}
|
||||
|
||||
impl<'a> Search<'a> {
|
||||
@ -67,6 +73,8 @@ impl<'a> Search<'a> {
|
||||
words_limit: 10,
|
||||
rtxn,
|
||||
index,
|
||||
distribution_shift: None,
|
||||
embedder_name: None,
|
||||
}
|
||||
}
|
||||
|
||||
@ -75,8 +83,8 @@ impl<'a> Search<'a> {
|
||||
self
|
||||
}
|
||||
|
||||
pub fn vector(&mut self, vector: impl Into<Vec<f32>>) -> &mut Search<'a> {
|
||||
self.vector = Some(vector.into());
|
||||
pub fn vector(&mut self, vector: Vec<f32>) -> &mut Search<'a> {
|
||||
self.vector = Some(vector);
|
||||
self
|
||||
}
|
||||
|
||||
@ -133,30 +141,75 @@ impl<'a> Search<'a> {
|
||||
self
|
||||
}
|
||||
|
||||
pub fn distribution_shift(
|
||||
&mut self,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
) -> &mut Search<'a> {
|
||||
self.distribution_shift = distribution_shift;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn embedder_name(&mut self, embedder_name: impl Into<String>) -> &mut Search<'a> {
|
||||
self.embedder_name = Some(embedder_name.into());
|
||||
self
|
||||
}
|
||||
|
||||
pub fn execute_for_candidates(&self, has_vector_search: bool) -> Result<RoaringBitmap> {
|
||||
if has_vector_search {
|
||||
let ctx = SearchContext::new(self.index, self.rtxn);
|
||||
filtered_universe(&ctx, &self.filter)
|
||||
} else {
|
||||
Ok(self.execute()?.candidates)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> Result<SearchResult> {
|
||||
let embedder_name;
|
||||
let embedder_name = match &self.embedder_name {
|
||||
Some(embedder_name) => embedder_name,
|
||||
None => {
|
||||
embedder_name = self.index.default_embedding_name(self.rtxn)?;
|
||||
&embedder_name
|
||||
}
|
||||
};
|
||||
|
||||
let mut ctx = SearchContext::new(self.index, self.rtxn);
|
||||
|
||||
if let Some(searchable_attributes) = self.searchable_attributes {
|
||||
ctx.searchable_attributes(searchable_attributes)?;
|
||||
}
|
||||
|
||||
let universe = filtered_universe(&ctx, &self.filter)?;
|
||||
let PartialSearchResult { located_query_terms, candidates, documents_ids, document_scores } =
|
||||
execute_search(
|
||||
&mut ctx,
|
||||
&self.query,
|
||||
&self.vector,
|
||||
self.terms_matching_strategy,
|
||||
self.scoring_strategy,
|
||||
self.exhaustive_number_hits,
|
||||
&self.filter,
|
||||
&self.sort_criteria,
|
||||
self.geo_strategy,
|
||||
self.offset,
|
||||
self.limit,
|
||||
Some(self.words_limit),
|
||||
&mut DefaultSearchLogger,
|
||||
&mut DefaultSearchLogger,
|
||||
)?;
|
||||
match self.vector.as_ref() {
|
||||
Some(vector) => execute_vector_search(
|
||||
&mut ctx,
|
||||
vector,
|
||||
self.scoring_strategy,
|
||||
universe,
|
||||
&self.sort_criteria,
|
||||
self.geo_strategy,
|
||||
self.offset,
|
||||
self.limit,
|
||||
self.distribution_shift,
|
||||
embedder_name,
|
||||
)?,
|
||||
None => execute_search(
|
||||
&mut ctx,
|
||||
self.query.as_deref(),
|
||||
self.terms_matching_strategy,
|
||||
self.scoring_strategy,
|
||||
self.exhaustive_number_hits,
|
||||
universe,
|
||||
&self.sort_criteria,
|
||||
self.geo_strategy,
|
||||
self.offset,
|
||||
self.limit,
|
||||
Some(self.words_limit),
|
||||
&mut DefaultSearchLogger,
|
||||
&mut DefaultSearchLogger,
|
||||
)?,
|
||||
};
|
||||
|
||||
// consume context and located_query_terms to build MatchingWords.
|
||||
let matching_words = match located_query_terms {
|
||||
@ -185,6 +238,8 @@ impl fmt::Debug for Search<'_> {
|
||||
exhaustive_number_hits,
|
||||
rtxn: _,
|
||||
index: _,
|
||||
distribution_shift,
|
||||
embedder_name,
|
||||
} = self;
|
||||
f.debug_struct("Search")
|
||||
.field("query", query)
|
||||
@ -198,6 +253,8 @@ impl fmt::Debug for Search<'_> {
|
||||
.field("scoring_strategy", scoring_strategy)
|
||||
.field("exhaustive_number_hits", exhaustive_number_hits)
|
||||
.field("words_limit", words_limit)
|
||||
.field("distribution_shift", distribution_shift)
|
||||
.field("embedder_name", embedder_name)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
@ -249,11 +306,16 @@ pub struct SearchForFacetValues<'a> {
|
||||
query: Option<String>,
|
||||
facet: String,
|
||||
search_query: Search<'a>,
|
||||
is_hybrid: bool,
|
||||
}
|
||||
|
||||
impl<'a> SearchForFacetValues<'a> {
|
||||
pub fn new(facet: String, search_query: Search<'a>) -> SearchForFacetValues<'a> {
|
||||
SearchForFacetValues { query: None, facet, search_query }
|
||||
pub fn new(
|
||||
facet: String,
|
||||
search_query: Search<'a>,
|
||||
is_hybrid: bool,
|
||||
) -> SearchForFacetValues<'a> {
|
||||
SearchForFacetValues { query: None, facet, search_query, is_hybrid }
|
||||
}
|
||||
|
||||
pub fn query(&mut self, query: impl Into<String>) -> &mut Self {
|
||||
@ -303,7 +365,9 @@ impl<'a> SearchForFacetValues<'a> {
|
||||
None => return Ok(vec![]),
|
||||
};
|
||||
|
||||
let search_candidates = self.search_query.execute()?.candidates;
|
||||
let search_candidates = self
|
||||
.search_query
|
||||
.execute_for_candidates(self.is_hybrid || self.search_query.vector.is_some())?;
|
||||
|
||||
match self.query.as_ref() {
|
||||
Some(query) => {
|
||||
|
@ -107,12 +107,16 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
|
||||
|
||||
/// Refill the internal buffer of cached docids based on the strategy.
|
||||
/// Drop the rtree if we don't need it anymore.
|
||||
fn fill_buffer(&mut self, ctx: &mut SearchContext) -> Result<()> {
|
||||
fn fill_buffer(
|
||||
&mut self,
|
||||
ctx: &mut SearchContext,
|
||||
geo_candidates: &RoaringBitmap,
|
||||
) -> Result<()> {
|
||||
debug_assert!(self.field_ids.is_some(), "fill_buffer can't be called without the lat&lng");
|
||||
debug_assert!(self.cached_sorted_docids.is_empty());
|
||||
|
||||
// lazily initialize the rtree if needed by the strategy, and cache it in `self.rtree`
|
||||
let rtree = if self.strategy.use_rtree(self.geo_candidates.len() as usize) {
|
||||
let rtree = if self.strategy.use_rtree(geo_candidates.len() as usize) {
|
||||
if let Some(rtree) = self.rtree.as_ref() {
|
||||
// get rtree from cache
|
||||
Some(rtree)
|
||||
@ -131,7 +135,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
|
||||
if self.ascending {
|
||||
let point = lat_lng_to_xyz(&self.point);
|
||||
for point in rtree.nearest_neighbor_iter(&point) {
|
||||
if self.geo_candidates.contains(point.data.0) {
|
||||
if geo_candidates.contains(point.data.0) {
|
||||
self.cached_sorted_docids.push_back(point.data);
|
||||
if self.cached_sorted_docids.len() >= cache_size {
|
||||
break;
|
||||
@ -143,7 +147,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
|
||||
// and we insert the points in reverse order they get reversed when emptying the cache later on
|
||||
let point = lat_lng_to_xyz(&opposite_of(self.point));
|
||||
for point in rtree.nearest_neighbor_iter(&point) {
|
||||
if self.geo_candidates.contains(point.data.0) {
|
||||
if geo_candidates.contains(point.data.0) {
|
||||
self.cached_sorted_docids.push_front(point.data);
|
||||
if self.cached_sorted_docids.len() >= cache_size {
|
||||
break;
|
||||
@ -155,8 +159,7 @@ impl<Q: RankingRuleQueryTrait> GeoSort<Q> {
|
||||
// the iterative version
|
||||
let [lat, lng] = self.field_ids.unwrap();
|
||||
|
||||
let mut documents = self
|
||||
.geo_candidates
|
||||
let mut documents = geo_candidates
|
||||
.iter()
|
||||
.map(|id| -> Result<_> { Ok((id, geo_value(id, lat, lng, ctx.index, ctx.txn)?)) })
|
||||
.collect::<Result<Vec<(u32, [f64; 2])>>>()?;
|
||||
@ -216,9 +219,10 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
|
||||
assert!(self.query.is_none());
|
||||
|
||||
self.query = Some(query.clone());
|
||||
self.geo_candidates &= universe;
|
||||
|
||||
if self.geo_candidates.is_empty() {
|
||||
let geo_candidates = &self.geo_candidates & universe;
|
||||
|
||||
if geo_candidates.is_empty() {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
@ -226,7 +230,7 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
|
||||
let lat = fid_map.id("_geo.lat").expect("geo candidates but no fid for lat");
|
||||
let lng = fid_map.id("_geo.lng").expect("geo candidates but no fid for lng");
|
||||
self.field_ids = Some([lat, lng]);
|
||||
self.fill_buffer(ctx)?;
|
||||
self.fill_buffer(ctx, &geo_candidates)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -238,9 +242,10 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<Option<RankingRuleOutput<Q>>> {
|
||||
let query = self.query.as_ref().unwrap().clone();
|
||||
self.geo_candidates &= universe;
|
||||
|
||||
if self.geo_candidates.is_empty() {
|
||||
let geo_candidates = &self.geo_candidates & universe;
|
||||
|
||||
if geo_candidates.is_empty() {
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: universe.clone(),
|
||||
@ -261,7 +266,7 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
|
||||
}
|
||||
};
|
||||
while let Some((id, point)) = next(&mut self.cached_sorted_docids) {
|
||||
if self.geo_candidates.contains(id) {
|
||||
if geo_candidates.contains(id) {
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: RoaringBitmap::from_iter([id]),
|
||||
@ -276,7 +281,7 @@ impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for GeoSort<Q> {
|
||||
|
||||
// if we got out of this loop it means we've exhausted our cache.
|
||||
// we need to refill it and run the function again.
|
||||
self.fill_buffer(ctx)?;
|
||||
self.fill_buffer(ctx, &geo_candidates)?;
|
||||
self.next_bucket(ctx, logger, universe)
|
||||
}
|
||||
|
||||
|
@ -498,19 +498,19 @@ mod tests {
|
||||
|
||||
use super::*;
|
||||
use crate::index::tests::TempIndex;
|
||||
use crate::{execute_search, SearchContext};
|
||||
use crate::{execute_search, filtered_universe, SearchContext};
|
||||
|
||||
impl<'a> MatcherBuilder<'a> {
|
||||
fn new_test(rtxn: &'a heed::RoTxn, index: &'a TempIndex, query: &str) -> Self {
|
||||
let mut ctx = SearchContext::new(index, rtxn);
|
||||
let universe = filtered_universe(&ctx, &None).unwrap();
|
||||
let crate::search::PartialSearchResult { located_query_terms, .. } = execute_search(
|
||||
&mut ctx,
|
||||
&Some(query.to_string()),
|
||||
&None,
|
||||
Some(query),
|
||||
crate::TermsMatchingStrategy::default(),
|
||||
crate::score_details::ScoringStrategy::Skip,
|
||||
false,
|
||||
&None,
|
||||
universe,
|
||||
&None,
|
||||
crate::search::new::GeoSortStrategy::default(),
|
||||
0,
|
||||
|
@ -16,6 +16,7 @@ mod small_bitmap;
|
||||
|
||||
mod exact_attribute;
|
||||
mod sort;
|
||||
mod vector_sort;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
@ -28,7 +29,6 @@ use db_cache::DatabaseCache;
|
||||
use exact_attribute::ExactAttribute;
|
||||
use graph_based_ranking_rule::{Exactness, Fid, Position, Proximity, Typo};
|
||||
use heed::RoTxn;
|
||||
use instant_distance::Search;
|
||||
use interner::{DedupInterner, Interner};
|
||||
pub use logger::visual::VisualSearchLogger;
|
||||
pub use logger::{DefaultSearchLogger, SearchLogger};
|
||||
@ -46,10 +46,11 @@ use self::geo_sort::GeoSort;
|
||||
pub use self::geo_sort::Strategy as GeoSortStrategy;
|
||||
use self::graph_based_ranking_rule::Words;
|
||||
use self::interner::Interned;
|
||||
use crate::distance::NDotProductPoint;
|
||||
use self::vector_sort::VectorSort;
|
||||
use crate::error::FieldIdMapMissingEntry;
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::search::new::distinct::apply_distinct_rule;
|
||||
use crate::vector::DistributionShift;
|
||||
use crate::{
|
||||
AscDesc, DocumentId, FieldId, Filter, Index, Member, Result, TermsMatchingStrategy, UserError,
|
||||
};
|
||||
@ -258,6 +259,80 @@ fn get_ranking_rules_for_placeholder_search<'ctx>(
|
||||
Ok(ranking_rules)
|
||||
}
|
||||
|
||||
fn get_ranking_rules_for_vector<'ctx>(
|
||||
ctx: &SearchContext<'ctx>,
|
||||
sort_criteria: &Option<Vec<AscDesc>>,
|
||||
geo_strategy: geo_sort::Strategy,
|
||||
limit_plus_offset: usize,
|
||||
target: &[f32],
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: &str,
|
||||
) -> Result<Vec<BoxRankingRule<'ctx, PlaceholderQuery>>> {
|
||||
// query graph search
|
||||
|
||||
let mut sort = false;
|
||||
let mut sorted_fields = HashSet::new();
|
||||
let mut geo_sorted = false;
|
||||
|
||||
let mut vector = false;
|
||||
let mut ranking_rules: Vec<BoxRankingRule<PlaceholderQuery>> = vec![];
|
||||
|
||||
let settings_ranking_rules = ctx.index.criteria(ctx.txn)?;
|
||||
for rr in settings_ranking_rules {
|
||||
match rr {
|
||||
crate::Criterion::Words
|
||||
| crate::Criterion::Typo
|
||||
| crate::Criterion::Proximity
|
||||
| crate::Criterion::Attribute
|
||||
| crate::Criterion::Exactness => {
|
||||
if !vector {
|
||||
let vector_candidates = ctx.index.documents_ids(ctx.txn)?;
|
||||
let vector_sort = VectorSort::new(
|
||||
ctx,
|
||||
target.to_vec(),
|
||||
vector_candidates,
|
||||
limit_plus_offset,
|
||||
distribution_shift,
|
||||
embedder_name,
|
||||
)?;
|
||||
ranking_rules.push(Box::new(vector_sort));
|
||||
vector = true;
|
||||
}
|
||||
}
|
||||
crate::Criterion::Sort => {
|
||||
if sort {
|
||||
continue;
|
||||
}
|
||||
resolve_sort_criteria(
|
||||
sort_criteria,
|
||||
ctx,
|
||||
&mut ranking_rules,
|
||||
&mut sorted_fields,
|
||||
&mut geo_sorted,
|
||||
geo_strategy,
|
||||
)?;
|
||||
sort = true;
|
||||
}
|
||||
crate::Criterion::Asc(field_name) => {
|
||||
if sorted_fields.contains(&field_name) {
|
||||
continue;
|
||||
}
|
||||
sorted_fields.insert(field_name.clone());
|
||||
ranking_rules.push(Box::new(Sort::new(ctx.index, ctx.txn, field_name, true)?));
|
||||
}
|
||||
crate::Criterion::Desc(field_name) => {
|
||||
if sorted_fields.contains(&field_name) {
|
||||
continue;
|
||||
}
|
||||
sorted_fields.insert(field_name.clone());
|
||||
ranking_rules.push(Box::new(Sort::new(ctx.index, ctx.txn, field_name, false)?));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(ranking_rules)
|
||||
}
|
||||
|
||||
/// Return the list of initialised ranking rules to be used for a query graph search.
|
||||
fn get_ranking_rules_for_query_graph_search<'ctx>(
|
||||
ctx: &SearchContext<'ctx>,
|
||||
@ -422,15 +497,72 @@ fn resolve_sort_criteria<'ctx, Query: RankingRuleQueryTrait>(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn filtered_universe(ctx: &SearchContext, filters: &Option<Filter>) -> Result<RoaringBitmap> {
|
||||
Ok(if let Some(filters) = filters {
|
||||
filters.evaluate(ctx.txn, ctx.index)?
|
||||
} else {
|
||||
ctx.index.documents_ids(ctx.txn)?
|
||||
})
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn execute_vector_search(
|
||||
ctx: &mut SearchContext,
|
||||
vector: &[f32],
|
||||
scoring_strategy: ScoringStrategy,
|
||||
universe: RoaringBitmap,
|
||||
sort_criteria: &Option<Vec<AscDesc>>,
|
||||
geo_strategy: geo_sort::Strategy,
|
||||
from: usize,
|
||||
length: usize,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: &str,
|
||||
) -> Result<PartialSearchResult> {
|
||||
check_sort_criteria(ctx, sort_criteria.as_ref())?;
|
||||
|
||||
// FIXME: input universe = universe & documents_with_vectors
|
||||
// for now if we're computing embeddings for ALL documents, we can assume that this is just universe
|
||||
let ranking_rules = get_ranking_rules_for_vector(
|
||||
ctx,
|
||||
sort_criteria,
|
||||
geo_strategy,
|
||||
from + length,
|
||||
vector,
|
||||
distribution_shift,
|
||||
embedder_name,
|
||||
)?;
|
||||
|
||||
let mut placeholder_search_logger = logger::DefaultSearchLogger;
|
||||
let placeholder_search_logger: &mut dyn SearchLogger<PlaceholderQuery> =
|
||||
&mut placeholder_search_logger;
|
||||
|
||||
let BucketSortOutput { docids, scores, all_candidates } = bucket_sort(
|
||||
ctx,
|
||||
ranking_rules,
|
||||
&PlaceholderQuery,
|
||||
&universe,
|
||||
from,
|
||||
length,
|
||||
scoring_strategy,
|
||||
placeholder_search_logger,
|
||||
)?;
|
||||
|
||||
Ok(PartialSearchResult {
|
||||
candidates: all_candidates,
|
||||
document_scores: scores,
|
||||
documents_ids: docids,
|
||||
located_query_terms: None,
|
||||
})
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn execute_search(
|
||||
ctx: &mut SearchContext,
|
||||
query: &Option<String>,
|
||||
vector: &Option<Vec<f32>>,
|
||||
query: Option<&str>,
|
||||
terms_matching_strategy: TermsMatchingStrategy,
|
||||
scoring_strategy: ScoringStrategy,
|
||||
exhaustive_number_hits: bool,
|
||||
filters: &Option<Filter>,
|
||||
mut universe: RoaringBitmap,
|
||||
sort_criteria: &Option<Vec<AscDesc>>,
|
||||
geo_strategy: geo_sort::Strategy,
|
||||
from: usize,
|
||||
@ -439,60 +571,8 @@ pub fn execute_search(
|
||||
placeholder_search_logger: &mut dyn SearchLogger<PlaceholderQuery>,
|
||||
query_graph_logger: &mut dyn SearchLogger<QueryGraph>,
|
||||
) -> Result<PartialSearchResult> {
|
||||
let mut universe = if let Some(filters) = filters {
|
||||
filters.evaluate(ctx.txn, ctx.index)?
|
||||
} else {
|
||||
ctx.index.documents_ids(ctx.txn)?
|
||||
};
|
||||
|
||||
check_sort_criteria(ctx, sort_criteria.as_ref())?;
|
||||
|
||||
if let Some(vector) = vector {
|
||||
let mut search = Search::default();
|
||||
let docids = match ctx.index.vector_hnsw(ctx.txn)? {
|
||||
Some(hnsw) => {
|
||||
if let Some(expected_size) = hnsw.iter().map(|(_, point)| point.len()).next() {
|
||||
if vector.len() != expected_size {
|
||||
return Err(UserError::InvalidVectorDimensions {
|
||||
expected: expected_size,
|
||||
found: vector.len(),
|
||||
}
|
||||
.into());
|
||||
}
|
||||
}
|
||||
|
||||
let vector = NDotProductPoint::new(vector.clone());
|
||||
|
||||
let neighbors = hnsw.search(&vector, &mut search);
|
||||
|
||||
let mut docids = Vec::new();
|
||||
let mut uniq_docids = RoaringBitmap::new();
|
||||
for instant_distance::Item { distance: _, pid, point: _ } in neighbors {
|
||||
let index = pid.into_inner();
|
||||
let docid = ctx.index.vector_id_docid.get(ctx.txn, &index)?.unwrap();
|
||||
if universe.contains(docid) && uniq_docids.insert(docid) {
|
||||
docids.push(docid);
|
||||
if docids.len() == (from + length) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// return the nearest documents that are also part of the candidates
|
||||
// along with a dummy list of scores that are useless in this context.
|
||||
docids.into_iter().skip(from).take(length).collect()
|
||||
}
|
||||
None => Vec::new(),
|
||||
};
|
||||
|
||||
return Ok(PartialSearchResult {
|
||||
candidates: universe,
|
||||
document_scores: vec![Vec::new(); docids.len()],
|
||||
documents_ids: docids,
|
||||
located_query_terms: None,
|
||||
});
|
||||
}
|
||||
|
||||
let mut located_query_terms = None;
|
||||
let query_terms = if let Some(query) = query {
|
||||
// We make sure that the analyzer is aware of the stop words
|
||||
@ -546,7 +626,7 @@ pub fn execute_search(
|
||||
terms_matching_strategy,
|
||||
)?;
|
||||
|
||||
universe =
|
||||
universe &=
|
||||
resolve_universe(ctx, &universe, &graph, terms_matching_strategy, query_graph_logger)?;
|
||||
|
||||
bucket_sort(
|
||||
|
170
milli/src/search/new/vector_sort.rs
Normal file
170
milli/src/search/new/vector_sort.rs
Normal file
@ -0,0 +1,170 @@
|
||||
use std::iter::FromIterator;
|
||||
|
||||
use ordered_float::OrderedFloat;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::ranking_rules::{RankingRule, RankingRuleOutput, RankingRuleQueryTrait};
|
||||
use crate::score_details::{self, ScoreDetails};
|
||||
use crate::vector::DistributionShift;
|
||||
use crate::{DocumentId, Result, SearchContext, SearchLogger};
|
||||
|
||||
pub struct VectorSort<Q: RankingRuleQueryTrait> {
|
||||
query: Option<Q>,
|
||||
target: Vec<f32>,
|
||||
vector_candidates: RoaringBitmap,
|
||||
cached_sorted_docids: std::vec::IntoIter<(DocumentId, f32, Vec<f32>)>,
|
||||
limit: usize,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_index: u8,
|
||||
}
|
||||
|
||||
impl<Q: RankingRuleQueryTrait> VectorSort<Q> {
|
||||
pub fn new(
|
||||
ctx: &SearchContext,
|
||||
target: Vec<f32>,
|
||||
vector_candidates: RoaringBitmap,
|
||||
limit: usize,
|
||||
distribution_shift: Option<DistributionShift>,
|
||||
embedder_name: &str,
|
||||
) -> Result<Self> {
|
||||
let embedder_index = ctx
|
||||
.index
|
||||
.embedder_category_id
|
||||
.get(ctx.txn, embedder_name)?
|
||||
.ok_or_else(|| crate::UserError::InvalidEmbedder(embedder_name.to_owned()))?;
|
||||
|
||||
Ok(Self {
|
||||
query: None,
|
||||
target,
|
||||
vector_candidates,
|
||||
cached_sorted_docids: Default::default(),
|
||||
limit,
|
||||
distribution_shift,
|
||||
embedder_index,
|
||||
})
|
||||
}
|
||||
|
||||
fn fill_buffer(
|
||||
&mut self,
|
||||
ctx: &mut SearchContext<'_>,
|
||||
vector_candidates: &RoaringBitmap,
|
||||
) -> Result<()> {
|
||||
let writer_index = (self.embedder_index as u16) << 8;
|
||||
let readers: std::result::Result<Vec<_>, _> = (0..=u8::MAX)
|
||||
.map_while(|k| {
|
||||
arroy::Reader::open(ctx.txn, writer_index | (k as u16), ctx.index.vector_arroy)
|
||||
.map(Some)
|
||||
.or_else(|e| match e {
|
||||
arroy::Error::MissingMetadata => Ok(None),
|
||||
e => Err(e),
|
||||
})
|
||||
.transpose()
|
||||
})
|
||||
.collect();
|
||||
|
||||
let readers = readers?;
|
||||
|
||||
let target = &self.target;
|
||||
let mut results = Vec::new();
|
||||
|
||||
for reader in readers.iter() {
|
||||
let nns_by_vector =
|
||||
reader.nns_by_vector(ctx.txn, target, self.limit, None, Some(vector_candidates))?;
|
||||
let vectors: std::result::Result<Vec<_>, _> = nns_by_vector
|
||||
.iter()
|
||||
.map(|(docid, _)| reader.item_vector(ctx.txn, *docid).transpose().unwrap())
|
||||
.collect();
|
||||
let vectors = vectors?;
|
||||
results.extend(nns_by_vector.into_iter().zip(vectors).map(|((x, y), z)| (x, y, z)));
|
||||
}
|
||||
results.sort_unstable_by_key(|(_, distance, _)| OrderedFloat(*distance));
|
||||
self.cached_sorted_docids = results.into_iter();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Q: RankingRuleQueryTrait> RankingRule<'ctx, Q> for VectorSort<Q> {
|
||||
fn id(&self) -> String {
|
||||
"vector_sort".to_owned()
|
||||
}
|
||||
|
||||
fn start_iteration(
|
||||
&mut self,
|
||||
ctx: &mut SearchContext<'ctx>,
|
||||
_logger: &mut dyn SearchLogger<Q>,
|
||||
universe: &RoaringBitmap,
|
||||
query: &Q,
|
||||
) -> Result<()> {
|
||||
assert!(self.query.is_none());
|
||||
|
||||
self.query = Some(query.clone());
|
||||
let vector_candidates = &self.vector_candidates & universe;
|
||||
self.fill_buffer(ctx, &vector_candidates)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[allow(clippy::only_used_in_recursion)]
|
||||
fn next_bucket(
|
||||
&mut self,
|
||||
ctx: &mut SearchContext<'ctx>,
|
||||
_logger: &mut dyn SearchLogger<Q>,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<Option<RankingRuleOutput<Q>>> {
|
||||
let query = self.query.as_ref().unwrap().clone();
|
||||
let vector_candidates = &self.vector_candidates & universe;
|
||||
|
||||
if vector_candidates.is_empty() {
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: universe.clone(),
|
||||
score: ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: self.target.clone(),
|
||||
value_similarity: None,
|
||||
}),
|
||||
}));
|
||||
}
|
||||
|
||||
for (docid, distance, vector) in self.cached_sorted_docids.by_ref() {
|
||||
if vector_candidates.contains(docid) {
|
||||
let score = 1.0 - distance;
|
||||
let score = self
|
||||
.distribution_shift
|
||||
.map(|distribution| distribution.shift(score))
|
||||
.unwrap_or(score);
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: RoaringBitmap::from_iter([docid]),
|
||||
score: ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: self.target.clone(),
|
||||
value_similarity: Some((vector, score)),
|
||||
}),
|
||||
}));
|
||||
}
|
||||
}
|
||||
|
||||
// if we got out of this loop it means we've exhausted our cache.
|
||||
// we need to refill it and run the function again.
|
||||
self.fill_buffer(ctx, &vector_candidates)?;
|
||||
|
||||
// we tried filling the buffer, but it remained empty 😢
|
||||
// it means we don't actually have any document remaining in the universe with a vector.
|
||||
// => exit
|
||||
if self.cached_sorted_docids.len() == 0 {
|
||||
return Ok(Some(RankingRuleOutput {
|
||||
query,
|
||||
candidates: universe.clone(),
|
||||
score: ScoreDetails::Vector(score_details::Vector {
|
||||
target_vector: self.target.clone(),
|
||||
value_similarity: None,
|
||||
}),
|
||||
}));
|
||||
}
|
||||
|
||||
self.next_bucket(ctx, _logger, universe)
|
||||
}
|
||||
|
||||
fn end_iteration(&mut self, _ctx: &mut SearchContext<'ctx>, _logger: &mut dyn SearchLogger<Q>) {
|
||||
self.query = None;
|
||||
}
|
||||
}
|
@ -42,7 +42,8 @@ impl<'t, 'i> ClearDocuments<'t, 'i> {
|
||||
facet_id_is_empty_docids,
|
||||
field_id_docid_facet_f64s,
|
||||
field_id_docid_facet_strings,
|
||||
vector_id_docid,
|
||||
vector_arroy,
|
||||
embedder_category_id: _,
|
||||
documents,
|
||||
} = self.index;
|
||||
|
||||
@ -58,7 +59,6 @@ impl<'t, 'i> ClearDocuments<'t, 'i> {
|
||||
self.index.put_field_distribution(self.wtxn, &FieldDistribution::default())?;
|
||||
self.index.delete_geo_rtree(self.wtxn)?;
|
||||
self.index.delete_geo_faceted_documents_ids(self.wtxn)?;
|
||||
self.index.delete_vector_hnsw(self.wtxn)?;
|
||||
|
||||
// Clear the other databases.
|
||||
external_documents_ids.clear(self.wtxn)?;
|
||||
@ -82,7 +82,9 @@ impl<'t, 'i> ClearDocuments<'t, 'i> {
|
||||
facet_id_string_docids.clear(self.wtxn)?;
|
||||
field_id_docid_facet_f64s.clear(self.wtxn)?;
|
||||
field_id_docid_facet_strings.clear(self.wtxn)?;
|
||||
vector_id_docid.clear(self.wtxn)?;
|
||||
// vector
|
||||
vector_arroy.clear(self.wtxn)?;
|
||||
|
||||
documents.clear(self.wtxn)?;
|
||||
|
||||
Ok(number_of_documents)
|
||||
|
@ -1,9 +1,10 @@
|
||||
use std::cmp::Ordering;
|
||||
use std::convert::TryFrom;
|
||||
use std::convert::{TryFrom, TryInto};
|
||||
use std::fs::File;
|
||||
use std::io::{self, BufReader, BufWriter};
|
||||
use std::mem::size_of;
|
||||
use std::str::from_utf8;
|
||||
use std::sync::Arc;
|
||||
|
||||
use bytemuck::cast_slice;
|
||||
use grenad::Writer;
|
||||
@ -13,13 +14,56 @@ use serde_json::{from_slice, Value};
|
||||
|
||||
use super::helpers::{create_writer, writer_into_reader, GrenadParameters};
|
||||
use crate::error::UserError;
|
||||
use crate::prompt::Prompt;
|
||||
use crate::update::del_add::{DelAdd, KvReaderDelAdd, KvWriterDelAdd};
|
||||
use crate::update::index_documents::helpers::try_split_at;
|
||||
use crate::{DocumentId, FieldId, InternalError, Result, VectorOrArrayOfVectors};
|
||||
use crate::vector::Embedder;
|
||||
use crate::{DocumentId, FieldsIdsMap, InternalError, Result, VectorOrArrayOfVectors};
|
||||
|
||||
/// The length of the elements that are always in the buffer when inserting new values.
|
||||
const TRUNCATE_SIZE: usize = size_of::<DocumentId>();
|
||||
|
||||
pub struct ExtractedVectorPoints {
|
||||
// docid, _index -> KvWriterDelAdd -> Vector
|
||||
pub manual_vectors: grenad::Reader<BufReader<File>>,
|
||||
// docid -> ()
|
||||
pub remove_vectors: grenad::Reader<BufReader<File>>,
|
||||
// docid -> prompt
|
||||
pub prompts: grenad::Reader<BufReader<File>>,
|
||||
}
|
||||
|
||||
enum VectorStateDelta {
|
||||
NoChange,
|
||||
// Remove all vectors, generated or manual, from this document
|
||||
NowRemoved,
|
||||
|
||||
// Add the manually specified vectors, passed in the other grenad
|
||||
// Remove any previously generated vectors
|
||||
// Note: changing the value of the manually specified vector **should not record** this delta
|
||||
WasGeneratedNowManual(Vec<Vec<f32>>),
|
||||
|
||||
ManualDelta(Vec<Vec<f32>>, Vec<Vec<f32>>),
|
||||
|
||||
// Add the vector computed from the specified prompt
|
||||
// Remove any previous vector
|
||||
// Note: changing the value of the prompt **does require** recording this delta
|
||||
NowGenerated(String),
|
||||
}
|
||||
|
||||
impl VectorStateDelta {
|
||||
fn into_values(self) -> (bool, String, (Vec<Vec<f32>>, Vec<Vec<f32>>)) {
|
||||
match self {
|
||||
VectorStateDelta::NoChange => Default::default(),
|
||||
VectorStateDelta::NowRemoved => (true, Default::default(), Default::default()),
|
||||
VectorStateDelta::WasGeneratedNowManual(add) => {
|
||||
(true, Default::default(), (Default::default(), add))
|
||||
}
|
||||
VectorStateDelta::ManualDelta(del, add) => (false, Default::default(), (del, add)),
|
||||
VectorStateDelta::NowGenerated(prompt) => (true, prompt, Default::default()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Extracts the embedding vector contained in each document under the `_vectors` field.
|
||||
///
|
||||
/// Returns the generated grenad reader containing the docid as key associated to the Vec<f32>
|
||||
@ -27,16 +71,35 @@ const TRUNCATE_SIZE: usize = size_of::<DocumentId>();
|
||||
pub fn extract_vector_points<R: io::Read + io::Seek>(
|
||||
obkv_documents: grenad::Reader<R>,
|
||||
indexer: GrenadParameters,
|
||||
vectors_fid: FieldId,
|
||||
) -> Result<grenad::Reader<BufReader<File>>> {
|
||||
field_id_map: &FieldsIdsMap,
|
||||
prompt: &Prompt,
|
||||
embedder_name: &str,
|
||||
) -> Result<ExtractedVectorPoints> {
|
||||
puffin::profile_function!();
|
||||
|
||||
let mut writer = create_writer(
|
||||
// (docid, _index) -> KvWriterDelAdd -> Vector
|
||||
let mut manual_vectors_writer = create_writer(
|
||||
indexer.chunk_compression_type,
|
||||
indexer.chunk_compression_level,
|
||||
tempfile::tempfile()?,
|
||||
);
|
||||
|
||||
// (docid) -> (prompt)
|
||||
let mut prompts_writer = create_writer(
|
||||
indexer.chunk_compression_type,
|
||||
indexer.chunk_compression_level,
|
||||
tempfile::tempfile()?,
|
||||
);
|
||||
|
||||
// (docid) -> ()
|
||||
let mut remove_vectors_writer = create_writer(
|
||||
indexer.chunk_compression_type,
|
||||
indexer.chunk_compression_level,
|
||||
tempfile::tempfile()?,
|
||||
);
|
||||
|
||||
let vectors_fid = field_id_map.id("_vectors");
|
||||
|
||||
let mut key_buffer = Vec::new();
|
||||
let mut cursor = obkv_documents.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
@ -53,43 +116,157 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
|
||||
// lazily get it when needed
|
||||
let document_id = || -> Value { from_utf8(external_id_bytes).unwrap().into() };
|
||||
|
||||
// first we retrieve the _vectors field
|
||||
if let Some(value) = obkv.get(vectors_fid) {
|
||||
let vectors_obkv = KvReaderDelAdd::new(value);
|
||||
let vectors_field = vectors_fid
|
||||
.and_then(|vectors_fid| obkv.get(vectors_fid))
|
||||
.map(KvReaderDelAdd::new)
|
||||
.map(|obkv| to_vector_maps(obkv, document_id))
|
||||
.transpose()?;
|
||||
|
||||
// then we extract the values
|
||||
let del_vectors = vectors_obkv
|
||||
.get(DelAdd::Deletion)
|
||||
.map(|vectors| extract_vectors(vectors, document_id))
|
||||
.transpose()?
|
||||
.flatten();
|
||||
let add_vectors = vectors_obkv
|
||||
.get(DelAdd::Addition)
|
||||
.map(|vectors| extract_vectors(vectors, document_id))
|
||||
.transpose()?
|
||||
.flatten();
|
||||
let (del_map, add_map) = vectors_field.unzip();
|
||||
let del_map = del_map.flatten();
|
||||
let add_map = add_map.flatten();
|
||||
|
||||
// and we finally push the unique vectors into the writer
|
||||
push_vectors_diff(
|
||||
&mut writer,
|
||||
&mut key_buffer,
|
||||
del_vectors.unwrap_or_default(),
|
||||
add_vectors.unwrap_or_default(),
|
||||
)?;
|
||||
}
|
||||
let del_value = del_map.and_then(|mut map| map.remove(embedder_name));
|
||||
let add_value = add_map.and_then(|mut map| map.remove(embedder_name));
|
||||
|
||||
let delta = match (del_value, add_value) {
|
||||
(Some(old), Some(new)) => {
|
||||
// no autogeneration
|
||||
let del_vectors = extract_vectors(old, document_id, embedder_name)?;
|
||||
let add_vectors = extract_vectors(new, document_id, embedder_name)?;
|
||||
|
||||
if add_vectors.len() > u8::MAX.into() {
|
||||
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
|
||||
document_id().to_string(),
|
||||
add_vectors.len(),
|
||||
)));
|
||||
}
|
||||
|
||||
VectorStateDelta::ManualDelta(del_vectors, add_vectors)
|
||||
}
|
||||
(Some(_old), None) => {
|
||||
// Do we keep this document?
|
||||
let document_is_kept = obkv
|
||||
.iter()
|
||||
.map(|(_, deladd)| KvReaderDelAdd::new(deladd))
|
||||
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
|
||||
if document_is_kept {
|
||||
// becomes autogenerated
|
||||
VectorStateDelta::NowGenerated(prompt.render(
|
||||
obkv,
|
||||
DelAdd::Addition,
|
||||
field_id_map,
|
||||
)?)
|
||||
} else {
|
||||
VectorStateDelta::NowRemoved
|
||||
}
|
||||
}
|
||||
(None, Some(new)) => {
|
||||
// was possibly autogenerated, remove all vectors for that document
|
||||
let add_vectors = extract_vectors(new, document_id, embedder_name)?;
|
||||
if add_vectors.len() > u8::MAX.into() {
|
||||
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
|
||||
document_id().to_string(),
|
||||
add_vectors.len(),
|
||||
)));
|
||||
}
|
||||
|
||||
VectorStateDelta::WasGeneratedNowManual(add_vectors)
|
||||
}
|
||||
(None, None) => {
|
||||
// Do we keep this document?
|
||||
let document_is_kept = obkv
|
||||
.iter()
|
||||
.map(|(_, deladd)| KvReaderDelAdd::new(deladd))
|
||||
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
|
||||
|
||||
if document_is_kept {
|
||||
// Don't give up if the old prompt was failing
|
||||
let old_prompt =
|
||||
prompt.render(obkv, DelAdd::Deletion, field_id_map).unwrap_or_default();
|
||||
let new_prompt = prompt.render(obkv, DelAdd::Addition, field_id_map)?;
|
||||
if old_prompt != new_prompt {
|
||||
log::trace!(
|
||||
"🚀 Changing prompt from\n{old_prompt}\n===to===\n{new_prompt}"
|
||||
);
|
||||
VectorStateDelta::NowGenerated(new_prompt)
|
||||
} else {
|
||||
log::trace!("⏭️ Prompt unmodified, skipping");
|
||||
VectorStateDelta::NoChange
|
||||
}
|
||||
} else {
|
||||
VectorStateDelta::NowRemoved
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// and we finally push the unique vectors into the writer
|
||||
push_vectors_diff(
|
||||
&mut remove_vectors_writer,
|
||||
&mut prompts_writer,
|
||||
&mut manual_vectors_writer,
|
||||
&mut key_buffer,
|
||||
delta,
|
||||
)?;
|
||||
}
|
||||
|
||||
writer_into_reader(writer)
|
||||
Ok(ExtractedVectorPoints {
|
||||
// docid, _index -> KvWriterDelAdd -> Vector
|
||||
manual_vectors: writer_into_reader(manual_vectors_writer)?,
|
||||
// docid -> ()
|
||||
remove_vectors: writer_into_reader(remove_vectors_writer)?,
|
||||
// docid -> prompt
|
||||
prompts: writer_into_reader(prompts_writer)?,
|
||||
})
|
||||
}
|
||||
|
||||
fn to_vector_maps(
|
||||
obkv: KvReaderDelAdd,
|
||||
document_id: impl Fn() -> Value,
|
||||
) -> Result<(Option<serde_json::Map<String, Value>>, Option<serde_json::Map<String, Value>>)> {
|
||||
let del = to_vector_map(obkv, DelAdd::Deletion, &document_id)?;
|
||||
let add = to_vector_map(obkv, DelAdd::Addition, &document_id)?;
|
||||
Ok((del, add))
|
||||
}
|
||||
|
||||
fn to_vector_map(
|
||||
obkv: KvReaderDelAdd,
|
||||
side: DelAdd,
|
||||
document_id: &impl Fn() -> Value,
|
||||
) -> Result<Option<serde_json::Map<String, Value>>> {
|
||||
Ok(if let Some(value) = obkv.get(side) {
|
||||
let Ok(value) = from_slice(value) else {
|
||||
let value = from_slice(value).map_err(InternalError::SerdeJson)?;
|
||||
return Err(crate::Error::UserError(UserError::InvalidVectorsMapType {
|
||||
document_id: document_id(),
|
||||
value,
|
||||
}));
|
||||
};
|
||||
Some(value)
|
||||
} else {
|
||||
None
|
||||
})
|
||||
}
|
||||
|
||||
/// Computes the diff between both Del and Add numbers and
|
||||
/// only inserts the parts that differ in the sorter.
|
||||
fn push_vectors_diff(
|
||||
writer: &mut Writer<BufWriter<File>>,
|
||||
remove_vectors_writer: &mut Writer<BufWriter<File>>,
|
||||
prompts_writer: &mut Writer<BufWriter<File>>,
|
||||
manual_vectors_writer: &mut Writer<BufWriter<File>>,
|
||||
key_buffer: &mut Vec<u8>,
|
||||
mut del_vectors: Vec<Vec<f32>>,
|
||||
mut add_vectors: Vec<Vec<f32>>,
|
||||
delta: VectorStateDelta,
|
||||
) -> Result<()> {
|
||||
let (must_remove, prompt, (mut del_vectors, mut add_vectors)) = delta.into_values();
|
||||
if must_remove {
|
||||
key_buffer.truncate(TRUNCATE_SIZE);
|
||||
remove_vectors_writer.insert(&key_buffer, [])?;
|
||||
}
|
||||
if !prompt.is_empty() {
|
||||
key_buffer.truncate(TRUNCATE_SIZE);
|
||||
prompts_writer.insert(&key_buffer, prompt.as_bytes())?;
|
||||
}
|
||||
|
||||
// We sort and dedup the vectors
|
||||
del_vectors.sort_unstable_by(|a, b| compare_vectors(a, b));
|
||||
add_vectors.sort_unstable_by(|a, b| compare_vectors(a, b));
|
||||
@ -114,7 +291,7 @@ fn push_vectors_diff(
|
||||
let mut obkv = KvWriterDelAdd::memory();
|
||||
obkv.insert(DelAdd::Deletion, cast_slice(&vector))?;
|
||||
let bytes = obkv.into_inner()?;
|
||||
writer.insert(&key_buffer, bytes)?;
|
||||
manual_vectors_writer.insert(&key_buffer, bytes)?;
|
||||
}
|
||||
EitherOrBoth::Right(vector) => {
|
||||
// We insert only the Add part of the Obkv to inform
|
||||
@ -122,7 +299,7 @@ fn push_vectors_diff(
|
||||
let mut obkv = KvWriterDelAdd::memory();
|
||||
obkv.insert(DelAdd::Addition, cast_slice(&vector))?;
|
||||
let bytes = obkv.into_inner()?;
|
||||
writer.insert(&key_buffer, bytes)?;
|
||||
manual_vectors_writer.insert(&key_buffer, bytes)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -136,13 +313,112 @@ fn compare_vectors(a: &[f32], b: &[f32]) -> Ordering {
|
||||
}
|
||||
|
||||
/// Extracts the vectors from a JSON value.
|
||||
fn extract_vectors(value: &[u8], document_id: impl Fn() -> Value) -> Result<Option<Vec<Vec<f32>>>> {
|
||||
match from_slice(value) {
|
||||
Ok(vectors) => Ok(VectorOrArrayOfVectors::into_array_of_vectors(vectors)),
|
||||
fn extract_vectors(
|
||||
value: Value,
|
||||
document_id: impl Fn() -> Value,
|
||||
name: &str,
|
||||
) -> Result<Vec<Vec<f32>>> {
|
||||
// FIXME: ugly clone of the vectors here
|
||||
match serde_json::from_value(value.clone()) {
|
||||
Ok(vectors) => {
|
||||
Ok(VectorOrArrayOfVectors::into_array_of_vectors(vectors).unwrap_or_default())
|
||||
}
|
||||
Err(_) => Err(UserError::InvalidVectorsType {
|
||||
document_id: document_id(),
|
||||
value: from_slice(value).map_err(InternalError::SerdeJson)?,
|
||||
value,
|
||||
subfield: name.to_owned(),
|
||||
}
|
||||
.into()),
|
||||
}
|
||||
}
|
||||
|
||||
#[logging_timer::time]
|
||||
pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
// docid, prompt
|
||||
prompt_reader: grenad::Reader<R>,
|
||||
indexer: GrenadParameters,
|
||||
embedder: Arc<Embedder>,
|
||||
) -> Result<grenad::Reader<BufReader<File>>> {
|
||||
let rt = tokio::runtime::Builder::new_current_thread().enable_io().enable_time().build()?;
|
||||
|
||||
let n_chunks = embedder.chunk_count_hint(); // chunk level parellelism
|
||||
let n_vectors_per_chunk = embedder.prompt_count_in_chunk_hint(); // number of vectors in a single chunk
|
||||
|
||||
// docid, state with embedding
|
||||
let mut state_writer = create_writer(
|
||||
indexer.chunk_compression_type,
|
||||
indexer.chunk_compression_level,
|
||||
tempfile::tempfile()?,
|
||||
);
|
||||
|
||||
let mut chunks = Vec::with_capacity(n_chunks);
|
||||
let mut current_chunk = Vec::with_capacity(n_vectors_per_chunk);
|
||||
let mut current_chunk_ids = Vec::with_capacity(n_vectors_per_chunk);
|
||||
let mut chunks_ids = Vec::with_capacity(n_chunks);
|
||||
let mut cursor = prompt_reader.into_cursor()?;
|
||||
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
let docid = key.try_into().map(DocumentId::from_be_bytes).unwrap();
|
||||
// SAFETY: precondition, the grenad value was saved from a string
|
||||
let prompt = unsafe { std::str::from_utf8_unchecked(value) };
|
||||
if current_chunk.len() == current_chunk.capacity() {
|
||||
chunks.push(std::mem::replace(
|
||||
&mut current_chunk,
|
||||
Vec::with_capacity(n_vectors_per_chunk),
|
||||
));
|
||||
chunks_ids.push(std::mem::replace(
|
||||
&mut current_chunk_ids,
|
||||
Vec::with_capacity(n_vectors_per_chunk),
|
||||
));
|
||||
};
|
||||
current_chunk.push(prompt.to_owned());
|
||||
current_chunk_ids.push(docid);
|
||||
|
||||
if chunks.len() == chunks.capacity() {
|
||||
let chunked_embeds = rt
|
||||
.block_on(
|
||||
embedder
|
||||
.embed_chunks(std::mem::replace(&mut chunks, Vec::with_capacity(n_chunks))),
|
||||
)
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
|
||||
for (docid, embeddings) in chunks_ids
|
||||
.iter()
|
||||
.flat_map(|docids| docids.iter())
|
||||
.zip(chunked_embeds.iter().flat_map(|embeds| embeds.iter()))
|
||||
{
|
||||
state_writer.insert(docid.to_be_bytes(), cast_slice(embeddings.as_inner()))?;
|
||||
}
|
||||
chunks_ids.clear();
|
||||
}
|
||||
}
|
||||
|
||||
// send last chunk
|
||||
if !chunks.is_empty() {
|
||||
let chunked_embeds = rt
|
||||
.block_on(embedder.embed_chunks(std::mem::take(&mut chunks)))
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
for (docid, embeddings) in chunks_ids
|
||||
.iter()
|
||||
.flat_map(|docids| docids.iter())
|
||||
.zip(chunked_embeds.iter().flat_map(|embeds| embeds.iter()))
|
||||
{
|
||||
state_writer.insert(docid.to_be_bytes(), cast_slice(embeddings.as_inner()))?;
|
||||
}
|
||||
}
|
||||
|
||||
if !current_chunk.is_empty() {
|
||||
let embeds = rt
|
||||
.block_on(embedder.embed(std::mem::take(&mut current_chunk)))
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
|
||||
for (docid, embeddings) in current_chunk_ids.iter().zip(embeds.iter()) {
|
||||
state_writer.insert(docid.to_be_bytes(), cast_slice(embeddings.as_inner()))?;
|
||||
}
|
||||
}
|
||||
|
||||
writer_into_reader(state_writer)
|
||||
}
|
||||
|
@ -23,7 +23,9 @@ use self::extract_facet_string_docids::extract_facet_string_docids;
|
||||
use self::extract_fid_docid_facet_values::{extract_fid_docid_facet_values, ExtractedFacetValues};
|
||||
use self::extract_fid_word_count_docids::extract_fid_word_count_docids;
|
||||
use self::extract_geo_points::extract_geo_points;
|
||||
use self::extract_vector_points::extract_vector_points;
|
||||
use self::extract_vector_points::{
|
||||
extract_embeddings, extract_vector_points, ExtractedVectorPoints,
|
||||
};
|
||||
use self::extract_word_docids::extract_word_docids;
|
||||
use self::extract_word_pair_proximity_docids::extract_word_pair_proximity_docids;
|
||||
use self::extract_word_position_docids::extract_word_position_docids;
|
||||
@ -33,7 +35,8 @@ use super::helpers::{
|
||||
};
|
||||
use super::{helpers, TypedChunk};
|
||||
use crate::proximity::ProximityPrecision;
|
||||
use crate::{FieldId, Result};
|
||||
use crate::vector::EmbeddingConfigs;
|
||||
use crate::{FieldId, FieldsIdsMap, Result};
|
||||
|
||||
/// Extract data for each databases from obkv documents in parallel.
|
||||
/// Send data in grenad file over provided Sender.
|
||||
@ -47,13 +50,14 @@ pub(crate) fn data_from_obkv_documents(
|
||||
faceted_fields: HashSet<FieldId>,
|
||||
primary_key_id: FieldId,
|
||||
geo_fields_ids: Option<(FieldId, FieldId)>,
|
||||
vectors_field_id: Option<FieldId>,
|
||||
field_id_map: FieldsIdsMap,
|
||||
stop_words: Option<fst::Set<&[u8]>>,
|
||||
allowed_separators: Option<&[&str]>,
|
||||
dictionary: Option<&[&str]>,
|
||||
max_positions_per_attributes: Option<u32>,
|
||||
exact_attributes: HashSet<FieldId>,
|
||||
proximity_precision: ProximityPrecision,
|
||||
embedders: EmbeddingConfigs,
|
||||
) -> Result<()> {
|
||||
puffin::profile_function!();
|
||||
|
||||
@ -64,7 +68,8 @@ pub(crate) fn data_from_obkv_documents(
|
||||
original_documents_chunk,
|
||||
indexer,
|
||||
lmdb_writer_sx.clone(),
|
||||
vectors_field_id,
|
||||
field_id_map.clone(),
|
||||
embedders.clone(),
|
||||
)
|
||||
})
|
||||
.collect::<Result<()>>()?;
|
||||
@ -276,24 +281,53 @@ fn send_original_documents_data(
|
||||
original_documents_chunk: Result<grenad::Reader<BufReader<File>>>,
|
||||
indexer: GrenadParameters,
|
||||
lmdb_writer_sx: Sender<Result<TypedChunk>>,
|
||||
vectors_field_id: Option<FieldId>,
|
||||
field_id_map: FieldsIdsMap,
|
||||
embedders: EmbeddingConfigs,
|
||||
) -> Result<()> {
|
||||
let original_documents_chunk =
|
||||
original_documents_chunk.and_then(|c| unsafe { as_cloneable_grenad(&c) })?;
|
||||
|
||||
if let Some(vectors_field_id) = vectors_field_id {
|
||||
let documents_chunk_cloned = original_documents_chunk.clone();
|
||||
let lmdb_writer_sx_cloned = lmdb_writer_sx.clone();
|
||||
rayon::spawn(move || {
|
||||
let result = extract_vector_points(documents_chunk_cloned, indexer, vectors_field_id);
|
||||
let _ = match result {
|
||||
Ok(vector_points) => {
|
||||
lmdb_writer_sx_cloned.send(Ok(TypedChunk::VectorPoints(vector_points)))
|
||||
let documents_chunk_cloned = original_documents_chunk.clone();
|
||||
let lmdb_writer_sx_cloned = lmdb_writer_sx.clone();
|
||||
rayon::spawn(move || {
|
||||
for (name, (embedder, prompt)) in embedders {
|
||||
let result = extract_vector_points(
|
||||
documents_chunk_cloned.clone(),
|
||||
indexer,
|
||||
&field_id_map,
|
||||
&prompt,
|
||||
&name,
|
||||
);
|
||||
match result {
|
||||
Ok(ExtractedVectorPoints { manual_vectors, remove_vectors, prompts }) => {
|
||||
let embeddings = match extract_embeddings(prompts, indexer, embedder.clone()) {
|
||||
Ok(results) => Some(results),
|
||||
Err(error) => {
|
||||
let _ = lmdb_writer_sx_cloned.send(Err(error));
|
||||
None
|
||||
}
|
||||
};
|
||||
|
||||
if !(remove_vectors.is_empty()
|
||||
&& manual_vectors.is_empty()
|
||||
&& embeddings.as_ref().map_or(true, |e| e.is_empty()))
|
||||
{
|
||||
let _ = lmdb_writer_sx_cloned.send(Ok(TypedChunk::VectorPoints {
|
||||
remove_vectors,
|
||||
embeddings,
|
||||
expected_dimension: embedder.dimensions(),
|
||||
manual_vectors,
|
||||
embedder_name: name,
|
||||
}));
|
||||
}
|
||||
}
|
||||
Err(error) => lmdb_writer_sx_cloned.send(Err(error)),
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
Err(error) => {
|
||||
let _ = lmdb_writer_sx_cloned.send(Err(error));
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// TODO: create a custom internal error
|
||||
lmdb_writer_sx.send(Ok(TypedChunk::Documents(original_documents_chunk))).unwrap();
|
||||
|
@ -4,7 +4,7 @@ mod helpers;
|
||||
mod transform;
|
||||
mod typed_chunk;
|
||||
|
||||
use std::collections::HashSet;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::io::{Cursor, Read, Seek};
|
||||
use std::iter::FromIterator;
|
||||
use std::num::NonZeroU32;
|
||||
@ -14,6 +14,7 @@ use crossbeam_channel::{Receiver, Sender};
|
||||
use heed::types::Str;
|
||||
use heed::Database;
|
||||
use log::debug;
|
||||
use rand::SeedableRng;
|
||||
use roaring::RoaringBitmap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use slice_group_by::GroupBy;
|
||||
@ -36,6 +37,7 @@ pub use crate::update::index_documents::helpers::CursorClonableMmap;
|
||||
use crate::update::{
|
||||
IndexerConfig, UpdateIndexingStep, WordPrefixDocids, WordPrefixIntegerDocids, WordsPrefixesFst,
|
||||
};
|
||||
use crate::vector::EmbeddingConfigs;
|
||||
use crate::{CboRoaringBitmapCodec, Index, Result};
|
||||
|
||||
static MERGED_DATABASE_COUNT: usize = 7;
|
||||
@ -78,6 +80,7 @@ pub struct IndexDocuments<'t, 'i, 'a, FP, FA> {
|
||||
should_abort: FA,
|
||||
added_documents: u64,
|
||||
deleted_documents: u64,
|
||||
embedders: EmbeddingConfigs,
|
||||
}
|
||||
|
||||
#[derive(Default, Debug, Clone)]
|
||||
@ -121,6 +124,7 @@ where
|
||||
index,
|
||||
added_documents: 0,
|
||||
deleted_documents: 0,
|
||||
embedders: Default::default(),
|
||||
})
|
||||
}
|
||||
|
||||
@ -167,6 +171,11 @@ where
|
||||
Ok((self, Ok(indexed_documents)))
|
||||
}
|
||||
|
||||
pub fn with_embedders(mut self, embedders: EmbeddingConfigs) -> Self {
|
||||
self.embedders = embedders;
|
||||
self
|
||||
}
|
||||
|
||||
/// Remove a batch of documents from the current builder.
|
||||
///
|
||||
/// Returns the number of documents deleted from the builder.
|
||||
@ -322,17 +331,18 @@ where
|
||||
// get filterable fields for facet databases
|
||||
let faceted_fields = self.index.faceted_fields_ids(self.wtxn)?;
|
||||
// get the fid of the `_geo.lat` and `_geo.lng` fields.
|
||||
let geo_fields_ids = match self.index.fields_ids_map(self.wtxn)?.id("_geo") {
|
||||
let mut field_id_map = self.index.fields_ids_map(self.wtxn)?;
|
||||
|
||||
// self.index.fields_ids_map($a)? ==>> field_id_map
|
||||
let geo_fields_ids = match field_id_map.id("_geo") {
|
||||
Some(gfid) => {
|
||||
let is_sortable = self.index.sortable_fields_ids(self.wtxn)?.contains(&gfid);
|
||||
let is_filterable = self.index.filterable_fields_ids(self.wtxn)?.contains(&gfid);
|
||||
// if `_geo` is faceted then we get the `lat` and `lng`
|
||||
if is_sortable || is_filterable {
|
||||
let field_ids = self
|
||||
.index
|
||||
.fields_ids_map(self.wtxn)?
|
||||
let field_ids = field_id_map
|
||||
.insert("_geo.lat")
|
||||
.zip(self.index.fields_ids_map(self.wtxn)?.insert("_geo.lng"))
|
||||
.zip(field_id_map.insert("_geo.lng"))
|
||||
.ok_or(UserError::AttributeLimitReached)?;
|
||||
Some(field_ids)
|
||||
} else {
|
||||
@ -341,8 +351,6 @@ where
|
||||
}
|
||||
None => None,
|
||||
};
|
||||
// get the fid of the `_vectors` field.
|
||||
let vectors_field_id = self.index.fields_ids_map(self.wtxn)?.id("_vectors");
|
||||
|
||||
let stop_words = self.index.stop_words(self.wtxn)?;
|
||||
let separators = self.index.allowed_separators(self.wtxn)?;
|
||||
@ -364,6 +372,8 @@ where
|
||||
self.indexer_config.documents_chunk_size.unwrap_or(1024 * 1024 * 4); // 4MiB
|
||||
let max_positions_per_attributes = self.indexer_config.max_positions_per_attributes;
|
||||
|
||||
let cloned_embedder = self.embedders.clone();
|
||||
|
||||
// Run extraction pipeline in parallel.
|
||||
pool.install(|| {
|
||||
puffin::profile_scope!("extract_and_send_grenad_chunks");
|
||||
@ -387,13 +397,14 @@ where
|
||||
faceted_fields,
|
||||
primary_key_id,
|
||||
geo_fields_ids,
|
||||
vectors_field_id,
|
||||
field_id_map,
|
||||
stop_words,
|
||||
separators.as_deref(),
|
||||
dictionary.as_deref(),
|
||||
max_positions_per_attributes,
|
||||
exact_attributes,
|
||||
proximity_precision,
|
||||
cloned_embedder,
|
||||
)
|
||||
});
|
||||
|
||||
@ -402,7 +413,7 @@ where
|
||||
}
|
||||
|
||||
// needs to be dropped to avoid channel waiting lock.
|
||||
drop(lmdb_writer_sx)
|
||||
drop(lmdb_writer_sx);
|
||||
});
|
||||
|
||||
let index_is_empty = self.index.number_of_documents(self.wtxn)? == 0;
|
||||
@ -419,6 +430,8 @@ where
|
||||
let mut word_docids = None;
|
||||
let mut exact_word_docids = None;
|
||||
|
||||
let mut dimension = HashMap::new();
|
||||
|
||||
for result in lmdb_writer_rx {
|
||||
if (self.should_abort)() {
|
||||
return Err(Error::InternalError(InternalError::AbortedIndexation));
|
||||
@ -448,6 +461,22 @@ where
|
||||
word_position_docids = Some(cloneable_chunk);
|
||||
TypedChunk::WordPositionDocids(chunk)
|
||||
}
|
||||
TypedChunk::VectorPoints {
|
||||
expected_dimension,
|
||||
remove_vectors,
|
||||
embeddings,
|
||||
manual_vectors,
|
||||
embedder_name,
|
||||
} => {
|
||||
dimension.insert(embedder_name.clone(), expected_dimension);
|
||||
TypedChunk::VectorPoints {
|
||||
remove_vectors,
|
||||
embeddings,
|
||||
expected_dimension,
|
||||
manual_vectors,
|
||||
embedder_name,
|
||||
}
|
||||
}
|
||||
otherwise => otherwise,
|
||||
};
|
||||
|
||||
@ -480,6 +509,33 @@ where
|
||||
// We write the primary key field id into the main database
|
||||
self.index.put_primary_key(self.wtxn, &primary_key)?;
|
||||
let number_of_documents = self.index.number_of_documents(self.wtxn)?;
|
||||
let mut rng = rand::rngs::StdRng::seed_from_u64(42);
|
||||
|
||||
for (embedder_name, dimension) in dimension {
|
||||
let wtxn = &mut *self.wtxn;
|
||||
let vector_arroy = self.index.vector_arroy;
|
||||
|
||||
let embedder_index = self.index.embedder_category_id.get(wtxn, &embedder_name)?.ok_or(
|
||||
InternalError::DatabaseMissingEntry { db_name: "embedder_category_id", key: None },
|
||||
)?;
|
||||
|
||||
pool.install(|| {
|
||||
let writer_index = (embedder_index as u16) << 8;
|
||||
for k in 0..=u8::MAX {
|
||||
let writer = arroy::Writer::prepare(
|
||||
wtxn,
|
||||
vector_arroy,
|
||||
writer_index | (k as u16),
|
||||
dimension,
|
||||
)?;
|
||||
if writer.is_empty(wtxn)? {
|
||||
break;
|
||||
}
|
||||
writer.build(wtxn, &mut rng, None)?;
|
||||
}
|
||||
Result::Ok(())
|
||||
})?;
|
||||
}
|
||||
|
||||
self.execute_prefix_databases(
|
||||
word_docids,
|
||||
@ -694,6 +750,8 @@ fn execute_word_prefix_docids(
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::collections::BTreeMap;
|
||||
|
||||
use big_s::S;
|
||||
use fst::IntoStreamer;
|
||||
use heed::RwTxn;
|
||||
@ -703,6 +761,7 @@ mod tests {
|
||||
use crate::documents::documents_batch_reader_from_objects;
|
||||
use crate::index::tests::TempIndex;
|
||||
use crate::search::TermsMatchingStrategy;
|
||||
use crate::update::Setting;
|
||||
use crate::{db_snap, Filter, Search};
|
||||
|
||||
#[test]
|
||||
@ -2494,18 +2553,39 @@ mod tests {
|
||||
/// Vectors must be of the same length.
|
||||
#[test]
|
||||
fn test_multiple_vectors() {
|
||||
use crate::vector::settings::{EmbedderSettings, EmbeddingSettings};
|
||||
let index = TempIndex::new();
|
||||
|
||||
index.add_documents(documents!([{"id": 0, "_vectors": [[0, 1, 2], [3, 4, 5]] }])).unwrap();
|
||||
index.add_documents(documents!([{"id": 1, "_vectors": [6, 7, 8] }])).unwrap();
|
||||
index
|
||||
.update_settings(|settings| {
|
||||
let mut embedders = BTreeMap::default();
|
||||
embedders.insert(
|
||||
"manual".to_string(),
|
||||
Setting::Set(EmbeddingSettings {
|
||||
embedder_options: Setting::Set(EmbedderSettings::UserProvided(
|
||||
crate::vector::settings::UserProvidedSettings { dimensions: 3 },
|
||||
)),
|
||||
document_template: Setting::NotSet,
|
||||
}),
|
||||
);
|
||||
settings.set_embedder_settings(embedders);
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
index
|
||||
.add_documents(
|
||||
documents!([{"id": 2, "_vectors": [[9, 10, 11], [12, 13, 14], [15, 16, 17]] }]),
|
||||
documents!([{"id": 0, "_vectors": { "manual": [[0, 1, 2], [3, 4, 5]] } }]),
|
||||
)
|
||||
.unwrap();
|
||||
index.add_documents(documents!([{"id": 1, "_vectors": { "manual": [6, 7, 8] }}])).unwrap();
|
||||
index
|
||||
.add_documents(
|
||||
documents!([{"id": 2, "_vectors": { "manual": [[9, 10, 11], [12, 13, 14], [15, 16, 17]] }}]),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let rtxn = index.read_txn().unwrap();
|
||||
let res = index.search(&rtxn).vector([0.0, 1.0, 2.0]).execute().unwrap();
|
||||
let res = index.search(&rtxn).vector([0.0, 1.0, 2.0].to_vec()).execute().unwrap();
|
||||
assert_eq!(res.documents_ids.len(), 3);
|
||||
}
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::collections::HashMap;
|
||||
use std::convert::TryInto;
|
||||
use std::fs::File;
|
||||
use std::io::{self, BufReader};
|
||||
@ -8,9 +8,7 @@ use charabia::{Language, Script};
|
||||
use grenad::MergerBuilder;
|
||||
use heed::types::Bytes;
|
||||
use heed::{PutFlags, RwTxn};
|
||||
use log::error;
|
||||
use obkv::{KvReader, KvWriter};
|
||||
use ordered_float::OrderedFloat;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::helpers::{
|
||||
@ -18,16 +16,15 @@ use super::helpers::{
|
||||
valid_lmdb_key, CursorClonableMmap,
|
||||
};
|
||||
use super::{ClonableMmap, MergeFn};
|
||||
use crate::distance::NDotProductPoint;
|
||||
use crate::error::UserError;
|
||||
use crate::external_documents_ids::{DocumentOperation, DocumentOperationKind};
|
||||
use crate::facet::FacetType;
|
||||
use crate::index::db_name::DOCUMENTS;
|
||||
use crate::index::Hnsw;
|
||||
use crate::update::del_add::{deladd_serialize_add_side, DelAdd, KvReaderDelAdd};
|
||||
use crate::update::facet::FacetsUpdate;
|
||||
use crate::update::index_documents::helpers::{as_cloneable_grenad, try_split_array_at};
|
||||
use crate::{lat_lng_to_xyz, DocumentId, FieldId, GeoPoint, Index, Result, SerializationError};
|
||||
use crate::{
|
||||
lat_lng_to_xyz, DocumentId, FieldId, GeoPoint, Index, InternalError, Result, SerializationError,
|
||||
};
|
||||
|
||||
pub(crate) enum TypedChunk {
|
||||
FieldIdDocidFacetStrings(grenad::Reader<CursorClonableMmap>),
|
||||
@ -47,7 +44,13 @@ pub(crate) enum TypedChunk {
|
||||
FieldIdFacetIsNullDocids(grenad::Reader<BufReader<File>>),
|
||||
FieldIdFacetIsEmptyDocids(grenad::Reader<BufReader<File>>),
|
||||
GeoPoints(grenad::Reader<BufReader<File>>),
|
||||
VectorPoints(grenad::Reader<BufReader<File>>),
|
||||
VectorPoints {
|
||||
remove_vectors: grenad::Reader<BufReader<File>>,
|
||||
embeddings: Option<grenad::Reader<BufReader<File>>>,
|
||||
expected_dimension: usize,
|
||||
manual_vectors: grenad::Reader<BufReader<File>>,
|
||||
embedder_name: String,
|
||||
},
|
||||
ScriptLanguageDocids(HashMap<(Script, Language), (RoaringBitmap, RoaringBitmap)>),
|
||||
}
|
||||
|
||||
@ -100,8 +103,8 @@ impl TypedChunk {
|
||||
TypedChunk::GeoPoints(grenad) => {
|
||||
format!("GeoPoints {{ number_of_entries: {} }}", grenad.len())
|
||||
}
|
||||
TypedChunk::VectorPoints(grenad) => {
|
||||
format!("VectorPoints {{ number_of_entries: {} }}", grenad.len())
|
||||
TypedChunk::VectorPoints{ remove_vectors, manual_vectors, embeddings, expected_dimension, embedder_name } => {
|
||||
format!("VectorPoints {{ remove_vectors: {}, manual_vectors: {}, embeddings: {}, dimension: {}, embedder_name: {} }}", remove_vectors.len(), manual_vectors.len(), embeddings.as_ref().map(|e| e.len()).unwrap_or_default(), expected_dimension, embedder_name)
|
||||
}
|
||||
TypedChunk::ScriptLanguageDocids(sl_map) => {
|
||||
format!("ScriptLanguageDocids {{ number_of_entries: {} }}", sl_map.len())
|
||||
@ -355,19 +358,77 @@ pub(crate) fn write_typed_chunk_into_index(
|
||||
index.put_geo_rtree(wtxn, &rtree)?;
|
||||
index.put_geo_faceted_documents_ids(wtxn, &geo_faceted_docids)?;
|
||||
}
|
||||
TypedChunk::VectorPoints(vector_points) => {
|
||||
let mut vectors_set = HashSet::new();
|
||||
// We extract and store the previous vectors
|
||||
if let Some(hnsw) = index.vector_hnsw(wtxn)? {
|
||||
for (pid, point) in hnsw.iter() {
|
||||
let pid_key = pid.into_inner();
|
||||
let docid = index.vector_id_docid.get(wtxn, &pid_key)?.unwrap();
|
||||
let vector: Vec<_> = point.iter().copied().map(OrderedFloat).collect();
|
||||
vectors_set.insert((docid, vector));
|
||||
TypedChunk::VectorPoints {
|
||||
remove_vectors,
|
||||
manual_vectors,
|
||||
embeddings,
|
||||
expected_dimension,
|
||||
embedder_name,
|
||||
} => {
|
||||
let embedder_index = index.embedder_category_id.get(wtxn, &embedder_name)?.ok_or(
|
||||
InternalError::DatabaseMissingEntry { db_name: "embedder_category_id", key: None },
|
||||
)?;
|
||||
let writer_index = (embedder_index as u16) << 8;
|
||||
// FIXME: allow customizing distance
|
||||
let writers: std::result::Result<Vec<_>, _> = (0..=u8::MAX)
|
||||
.map(|k| {
|
||||
arroy::Writer::prepare(
|
||||
wtxn,
|
||||
index.vector_arroy,
|
||||
writer_index | (k as u16),
|
||||
expected_dimension,
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
let writers = writers?;
|
||||
|
||||
// remove vectors for docids we want them removed
|
||||
let mut cursor = remove_vectors.into_cursor()?;
|
||||
while let Some((key, _)) = cursor.move_on_next()? {
|
||||
let docid = key.try_into().map(DocumentId::from_be_bytes).unwrap();
|
||||
|
||||
for writer in &writers {
|
||||
// Uses invariant: vectors are packed in the first writers.
|
||||
if !writer.del_item(wtxn, docid)? {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let mut cursor = vector_points.into_cursor()?;
|
||||
// add generated embeddings
|
||||
if let Some(embeddings) = embeddings {
|
||||
let mut cursor = embeddings.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
let docid = key.try_into().map(DocumentId::from_be_bytes).unwrap();
|
||||
let data = pod_collect_to_vec(value);
|
||||
// it is a code error to have embeddings and not expected_dimension
|
||||
let embeddings =
|
||||
crate::vector::Embeddings::from_inner(data, expected_dimension)
|
||||
// code error if we somehow got the wrong dimension
|
||||
.unwrap();
|
||||
|
||||
if embeddings.embedding_count() > u8::MAX.into() {
|
||||
let external_docid = if let Ok(Some(Ok(index))) = index
|
||||
.external_id_of(wtxn, std::iter::once(docid))
|
||||
.map(|it| it.into_iter().next())
|
||||
{
|
||||
index
|
||||
} else {
|
||||
format!("internal docid={docid}")
|
||||
};
|
||||
return Err(crate::Error::UserError(crate::UserError::TooManyVectors(
|
||||
external_docid,
|
||||
embeddings.embedding_count(),
|
||||
)));
|
||||
}
|
||||
for (embedding, writer) in embeddings.iter().zip(&writers) {
|
||||
writer.add_item(wtxn, docid, embedding)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// perform the manual diff
|
||||
let mut cursor = manual_vectors.into_cursor()?;
|
||||
while let Some((key, value)) = cursor.move_on_next()? {
|
||||
// convert the key back to a u32 (4 bytes)
|
||||
let (left, _index) = try_split_array_at(key).unwrap();
|
||||
@ -375,58 +436,52 @@ pub(crate) fn write_typed_chunk_into_index(
|
||||
|
||||
let vector_deladd_obkv = KvReaderDelAdd::new(value);
|
||||
if let Some(value) = vector_deladd_obkv.get(DelAdd::Deletion) {
|
||||
// convert the vector back to a Vec<f32>
|
||||
let vector = pod_collect_to_vec(value).into_iter().map(OrderedFloat).collect();
|
||||
let key = (docid, vector);
|
||||
if !vectors_set.remove(&key) {
|
||||
error!("Unable to delete the vector: {:?}", key.1);
|
||||
let vector: Vec<f32> = pod_collect_to_vec(value);
|
||||
|
||||
let mut deleted_index = None;
|
||||
for (index, writer) in writers.iter().enumerate() {
|
||||
let Some(candidate) = writer.item_vector(wtxn, docid)? else {
|
||||
// uses invariant: vectors are packed in the first writers.
|
||||
break;
|
||||
};
|
||||
if candidate == vector {
|
||||
writer.del_item(wtxn, docid)?;
|
||||
deleted_index = Some(index);
|
||||
}
|
||||
}
|
||||
|
||||
// 🥲 enforce invariant: vectors are packed in the first writers.
|
||||
if let Some(deleted_index) = deleted_index {
|
||||
let mut last_index_with_a_vector = None;
|
||||
for (index, writer) in writers.iter().enumerate().skip(deleted_index) {
|
||||
let Some(candidate) = writer.item_vector(wtxn, docid)? else {
|
||||
break;
|
||||
};
|
||||
last_index_with_a_vector = Some((index, candidate));
|
||||
}
|
||||
if let Some((last_index, vector)) = last_index_with_a_vector {
|
||||
// unwrap: computed the index from the list of writers
|
||||
let writer = writers.get(last_index).unwrap();
|
||||
writer.del_item(wtxn, docid)?;
|
||||
writers.get(deleted_index).unwrap().add_item(wtxn, docid, &vector)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(value) = vector_deladd_obkv.get(DelAdd::Addition) {
|
||||
// convert the vector back to a Vec<f32>
|
||||
let vector = pod_collect_to_vec(value).into_iter().map(OrderedFloat).collect();
|
||||
vectors_set.insert((docid, vector));
|
||||
}
|
||||
}
|
||||
let vector = pod_collect_to_vec(value);
|
||||
|
||||
// Extract the most common vector dimension
|
||||
let expected_dimension_size = {
|
||||
let mut dims = HashMap::new();
|
||||
vectors_set.iter().for_each(|(_, v)| *dims.entry(v.len()).or_insert(0) += 1);
|
||||
dims.into_iter().max_by_key(|(_, count)| *count).map(|(len, _)| len)
|
||||
};
|
||||
|
||||
// Ensure that the vector lengths are correct and
|
||||
// prepare the vectors before inserting them in the HNSW.
|
||||
let mut points = Vec::new();
|
||||
let mut docids = Vec::new();
|
||||
for (docid, vector) in vectors_set {
|
||||
if expected_dimension_size.map_or(false, |expected| expected != vector.len()) {
|
||||
return Err(UserError::InvalidVectorDimensions {
|
||||
expected: expected_dimension_size.unwrap_or(vector.len()),
|
||||
found: vector.len(),
|
||||
// overflow was detected during vector extraction.
|
||||
for writer in &writers {
|
||||
if !writer.contains_item(wtxn, docid)? {
|
||||
writer.add_item(wtxn, docid, &vector)?;
|
||||
break;
|
||||
}
|
||||
}
|
||||
.into());
|
||||
} else {
|
||||
let vector = vector.into_iter().map(OrderedFloat::into_inner).collect();
|
||||
points.push(NDotProductPoint::new(vector));
|
||||
docids.push(docid);
|
||||
}
|
||||
}
|
||||
|
||||
let hnsw_length = points.len();
|
||||
let (new_hnsw, pids) = Hnsw::builder().build_hnsw(points);
|
||||
|
||||
assert_eq!(docids.len(), pids.len());
|
||||
|
||||
// Store the vectors in the point-docid relation database
|
||||
index.vector_id_docid.clear(wtxn)?;
|
||||
for (docid, pid) in docids.into_iter().zip(pids) {
|
||||
index.vector_id_docid.put(wtxn, &pid.into_inner(), &docid)?;
|
||||
}
|
||||
|
||||
log::debug!("There are {} entries in the HNSW so far", hnsw_length);
|
||||
index.put_vector_hnsw(wtxn, &new_hnsw)?;
|
||||
log::debug!("Finished vector chunk for {}", embedder_name);
|
||||
}
|
||||
TypedChunk::ScriptLanguageDocids(sl_map) => {
|
||||
for (key, (deletion, addition)) in sl_map {
|
||||
|
@ -1,9 +1,11 @@
|
||||
use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet};
|
||||
use std::convert::TryInto;
|
||||
use std::result::Result as StdResult;
|
||||
use std::sync::Arc;
|
||||
|
||||
use charabia::{Normalize, Tokenizer, TokenizerBuilder};
|
||||
use deserr::{DeserializeError, Deserr};
|
||||
use itertools::Itertools;
|
||||
use itertools::{EitherOrBoth, Itertools};
|
||||
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
use time::OffsetDateTime;
|
||||
|
||||
@ -15,6 +17,8 @@ use crate::index::{DEFAULT_MIN_WORD_LEN_ONE_TYPO, DEFAULT_MIN_WORD_LEN_TWO_TYPOS
|
||||
use crate::proximity::ProximityPrecision;
|
||||
use crate::update::index_documents::IndexDocumentsMethod;
|
||||
use crate::update::{IndexDocuments, UpdateIndexingStep};
|
||||
use crate::vector::settings::{EmbeddingSettings, PromptSettings};
|
||||
use crate::vector::{Embedder, EmbeddingConfig, EmbeddingConfigs};
|
||||
use crate::{FieldsIdsMap, Index, OrderBy, Result};
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq, Copy)]
|
||||
@ -73,6 +77,13 @@ impl<T> Setting<T> {
|
||||
otherwise => otherwise,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn apply(&mut self, new: Self) {
|
||||
if let Setting::NotSet = new {
|
||||
return;
|
||||
}
|
||||
*self = new;
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Serialize> Serialize for Setting<T> {
|
||||
@ -129,6 +140,7 @@ pub struct Settings<'a, 't, 'i> {
|
||||
sort_facet_values_by: Setting<HashMap<String, OrderBy>>,
|
||||
pagination_max_total_hits: Setting<usize>,
|
||||
proximity_precision: Setting<ProximityPrecision>,
|
||||
embedder_settings: Setting<BTreeMap<String, Setting<EmbeddingSettings>>>,
|
||||
}
|
||||
|
||||
impl<'a, 't, 'i> Settings<'a, 't, 'i> {
|
||||
@ -161,6 +173,7 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
|
||||
sort_facet_values_by: Setting::NotSet,
|
||||
pagination_max_total_hits: Setting::NotSet,
|
||||
proximity_precision: Setting::NotSet,
|
||||
embedder_settings: Setting::NotSet,
|
||||
indexer_config,
|
||||
}
|
||||
}
|
||||
@ -343,6 +356,14 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
|
||||
self.proximity_precision = Setting::Reset;
|
||||
}
|
||||
|
||||
pub fn set_embedder_settings(&mut self, value: BTreeMap<String, Setting<EmbeddingSettings>>) {
|
||||
self.embedder_settings = Setting::Set(value);
|
||||
}
|
||||
|
||||
pub fn reset_embedder_settings(&mut self) {
|
||||
self.embedder_settings = Setting::Reset;
|
||||
}
|
||||
|
||||
fn reindex<FP, FA>(
|
||||
&mut self,
|
||||
progress_callback: &FP,
|
||||
@ -377,6 +398,9 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
|
||||
fields_ids_map,
|
||||
)?;
|
||||
|
||||
let embedder_configs = self.index.embedding_configs(self.wtxn)?;
|
||||
let embedders = self.embedders(embedder_configs)?;
|
||||
|
||||
// We index the generated `TransformOutput` which must contain
|
||||
// all the documents with fields in the newly defined searchable order.
|
||||
let indexing_builder = IndexDocuments::new(
|
||||
@ -387,11 +411,33 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
|
||||
&progress_callback,
|
||||
&should_abort,
|
||||
)?;
|
||||
|
||||
let indexing_builder = indexing_builder.with_embedders(embedders);
|
||||
indexing_builder.execute_raw(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn embedders(
|
||||
&self,
|
||||
embedding_configs: Vec<(String, EmbeddingConfig)>,
|
||||
) -> Result<EmbeddingConfigs> {
|
||||
let res: Result<_> = embedding_configs
|
||||
.into_iter()
|
||||
.map(|(name, EmbeddingConfig { embedder_options, prompt })| {
|
||||
let prompt = Arc::new(prompt.try_into().map_err(crate::Error::from)?);
|
||||
|
||||
let embedder = Arc::new(
|
||||
Embedder::new(embedder_options.clone())
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?,
|
||||
);
|
||||
Ok((name, (embedder, prompt)))
|
||||
})
|
||||
.collect();
|
||||
res.map(EmbeddingConfigs::new)
|
||||
}
|
||||
|
||||
fn update_displayed(&mut self) -> Result<bool> {
|
||||
match self.displayed_fields {
|
||||
Setting::Set(ref fields) => {
|
||||
@ -890,6 +936,73 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
|
||||
Ok(changed)
|
||||
}
|
||||
|
||||
fn update_embedding_configs(&mut self) -> Result<bool> {
|
||||
let update = match std::mem::take(&mut self.embedder_settings) {
|
||||
Setting::Set(configs) => {
|
||||
let mut changed = false;
|
||||
let old_configs = self.index.embedding_configs(self.wtxn)?;
|
||||
let old_configs: BTreeMap<String, Setting<EmbeddingSettings>> =
|
||||
old_configs.into_iter().map(|(k, v)| (k, Setting::Set(v.into()))).collect();
|
||||
|
||||
let mut new_configs = BTreeMap::new();
|
||||
for joined in old_configs
|
||||
.into_iter()
|
||||
.merge_join_by(configs.into_iter(), |(left, _), (right, _)| left.cmp(right))
|
||||
{
|
||||
match joined {
|
||||
EitherOrBoth::Both((name, mut old), (_, new)) => {
|
||||
old.apply(new);
|
||||
let new = validate_prompt(&name, old)?;
|
||||
changed = true;
|
||||
new_configs.insert(name, new);
|
||||
}
|
||||
EitherOrBoth::Left((name, setting)) => {
|
||||
new_configs.insert(name, setting);
|
||||
}
|
||||
EitherOrBoth::Right((name, setting)) => {
|
||||
let setting = validate_prompt(&name, setting)?;
|
||||
changed = true;
|
||||
new_configs.insert(name, setting);
|
||||
}
|
||||
}
|
||||
}
|
||||
let new_configs: Vec<(String, EmbeddingConfig)> = new_configs
|
||||
.into_iter()
|
||||
.filter_map(|(name, setting)| match setting {
|
||||
Setting::Set(value) => Some((name, value.into())),
|
||||
Setting::Reset => None,
|
||||
Setting::NotSet => Some((name, EmbeddingSettings::default().into())),
|
||||
})
|
||||
.collect();
|
||||
|
||||
self.index.embedder_category_id.clear(self.wtxn)?;
|
||||
for (index, (embedder_name, _)) in new_configs.iter().enumerate() {
|
||||
self.index.embedder_category_id.put_with_flags(
|
||||
self.wtxn,
|
||||
heed::PutFlags::APPEND,
|
||||
embedder_name,
|
||||
&index
|
||||
.try_into()
|
||||
.map_err(|_| UserError::TooManyEmbedders(new_configs.len()))?,
|
||||
)?;
|
||||
}
|
||||
|
||||
if new_configs.is_empty() {
|
||||
self.index.delete_embedding_configs(self.wtxn)?;
|
||||
} else {
|
||||
self.index.put_embedding_configs(self.wtxn, new_configs)?;
|
||||
}
|
||||
changed
|
||||
}
|
||||
Setting::Reset => {
|
||||
self.index.delete_embedding_configs(self.wtxn)?;
|
||||
true
|
||||
}
|
||||
Setting::NotSet => false,
|
||||
};
|
||||
Ok(update)
|
||||
}
|
||||
|
||||
pub fn execute<FP, FA>(mut self, progress_callback: FP, should_abort: FA) -> Result<()>
|
||||
where
|
||||
FP: Fn(UpdateIndexingStep) + Sync,
|
||||
@ -927,6 +1040,13 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
|
||||
let searchable_updated = self.update_searchable()?;
|
||||
let exact_attributes_updated = self.update_exact_attributes()?;
|
||||
let proximity_precision = self.update_proximity_precision()?;
|
||||
// TODO: very rough approximation of the needs for reindexing where any change will result in
|
||||
// a full reindexing.
|
||||
// What can be done instead:
|
||||
// 1. Only change the distance on a distance change
|
||||
// 2. Only change the name -> embedder mapping on a name change
|
||||
// 3. Keep the old vectors but reattempt indexing on a prompt change: only actually changed prompt will need embedding + storage
|
||||
let embedding_configs_updated = self.update_embedding_configs()?;
|
||||
|
||||
if stop_words_updated
|
||||
|| non_separator_tokens_updated
|
||||
@ -937,6 +1057,7 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
|
||||
|| searchable_updated
|
||||
|| exact_attributes_updated
|
||||
|| proximity_precision
|
||||
|| embedding_configs_updated
|
||||
{
|
||||
self.reindex(&progress_callback, &should_abort, old_fields_ids_map)?;
|
||||
}
|
||||
@ -945,6 +1066,31 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
|
||||
}
|
||||
}
|
||||
|
||||
fn validate_prompt(
|
||||
name: &str,
|
||||
new: Setting<EmbeddingSettings>,
|
||||
) -> Result<Setting<EmbeddingSettings>> {
|
||||
match new {
|
||||
Setting::Set(EmbeddingSettings {
|
||||
embedder_options,
|
||||
document_template: Setting::Set(PromptSettings { template: Setting::Set(template) }),
|
||||
}) => {
|
||||
// validate
|
||||
let template = crate::prompt::Prompt::new(template)
|
||||
.map(|prompt| crate::prompt::PromptData::from(prompt).template)
|
||||
.map_err(|inner| UserError::InvalidPromptForEmbeddings(name.to_owned(), inner))?;
|
||||
|
||||
Ok(Setting::Set(EmbeddingSettings {
|
||||
embedder_options,
|
||||
document_template: Setting::Set(PromptSettings {
|
||||
template: Setting::Set(template),
|
||||
}),
|
||||
}))
|
||||
}
|
||||
new => Ok(new),
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use big_s::S;
|
||||
@ -1763,6 +1909,7 @@ mod tests {
|
||||
sort_facet_values_by,
|
||||
pagination_max_total_hits,
|
||||
proximity_precision,
|
||||
embedder_settings,
|
||||
} = settings;
|
||||
assert!(matches!(searchable_fields, Setting::NotSet));
|
||||
assert!(matches!(displayed_fields, Setting::NotSet));
|
||||
@ -1785,6 +1932,7 @@ mod tests {
|
||||
assert!(matches!(sort_facet_values_by, Setting::NotSet));
|
||||
assert!(matches!(pagination_max_total_hits, Setting::NotSet));
|
||||
assert!(matches!(proximity_precision, Setting::NotSet));
|
||||
assert!(matches!(embedder_settings, Setting::NotSet));
|
||||
})
|
||||
.unwrap();
|
||||
}
|
||||
|
244
milli/src/vector/error.rs
Normal file
244
milli/src/vector/error.rs
Normal file
@ -0,0 +1,244 @@
|
||||
use std::path::PathBuf;
|
||||
|
||||
use hf_hub::api::sync::ApiError;
|
||||
|
||||
use crate::error::FaultSource;
|
||||
use crate::vector::openai::OpenAiError;
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("Error while generating embeddings: {inner}")]
|
||||
pub struct Error {
|
||||
pub inner: Box<ErrorKind>,
|
||||
}
|
||||
|
||||
impl<I: Into<ErrorKind>> From<I> for Error {
|
||||
fn from(value: I) -> Self {
|
||||
Self { inner: Box::new(value.into()) }
|
||||
}
|
||||
}
|
||||
|
||||
impl Error {
|
||||
pub fn fault(&self) -> FaultSource {
|
||||
match &*self.inner {
|
||||
ErrorKind::NewEmbedderError(inner) => inner.fault,
|
||||
ErrorKind::EmbedError(inner) => inner.fault,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
pub enum ErrorKind {
|
||||
#[error(transparent)]
|
||||
NewEmbedderError(#[from] NewEmbedderError),
|
||||
#[error(transparent)]
|
||||
EmbedError(#[from] EmbedError),
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("{fault}: {kind}")]
|
||||
pub struct EmbedError {
|
||||
pub kind: EmbedErrorKind,
|
||||
pub fault: FaultSource,
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
pub enum EmbedErrorKind {
|
||||
#[error("could not tokenize: {0}")]
|
||||
Tokenize(Box<dyn std::error::Error + Send + Sync>),
|
||||
#[error("unexpected tensor shape: {0}")]
|
||||
TensorShape(candle_core::Error),
|
||||
#[error("unexpected tensor value: {0}")]
|
||||
TensorValue(candle_core::Error),
|
||||
#[error("could not run model: {0}")]
|
||||
ModelForward(candle_core::Error),
|
||||
#[error("could not reach OpenAI: {0}")]
|
||||
OpenAiNetwork(reqwest::Error),
|
||||
#[error("unexpected response from OpenAI: {0}")]
|
||||
OpenAiUnexpected(reqwest::Error),
|
||||
#[error("could not authenticate against OpenAI: {0}")]
|
||||
OpenAiAuth(OpenAiError),
|
||||
#[error("sent too many requests to OpenAI: {0}")]
|
||||
OpenAiTooManyRequests(OpenAiError),
|
||||
#[error("received internal error from OpenAI: {0}")]
|
||||
OpenAiInternalServerError(OpenAiError),
|
||||
#[error("sent too many tokens in a request to OpenAI: {0}")]
|
||||
OpenAiTooManyTokens(OpenAiError),
|
||||
#[error("received unhandled HTTP status code {0} from OpenAI")]
|
||||
OpenAiUnhandledStatusCode(u16),
|
||||
#[error("attempt to embed the following text in a configuration where embeddings must be user provided: {0:?}")]
|
||||
ManualEmbed(String),
|
||||
}
|
||||
|
||||
impl EmbedError {
|
||||
pub fn tokenize(inner: Box<dyn std::error::Error + Send + Sync>) -> Self {
|
||||
Self { kind: EmbedErrorKind::Tokenize(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn tensor_shape(inner: candle_core::Error) -> Self {
|
||||
Self { kind: EmbedErrorKind::TensorShape(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub fn tensor_value(inner: candle_core::Error) -> Self {
|
||||
Self { kind: EmbedErrorKind::TensorValue(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub fn model_forward(inner: candle_core::Error) -> Self {
|
||||
Self { kind: EmbedErrorKind::ModelForward(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_network(inner: reqwest::Error) -> Self {
|
||||
Self { kind: EmbedErrorKind::OpenAiNetwork(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_unexpected(inner: reqwest::Error) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiUnexpected(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_auth_error(inner: OpenAiError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiAuth(inner), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_too_many_requests(inner: OpenAiError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiTooManyRequests(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_internal_server_error(inner: OpenAiError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiInternalServerError(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_too_many_tokens(inner: OpenAiError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiTooManyTokens(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_unhandled_status_code(code: u16) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiUnhandledStatusCode(code), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn embed_on_manual_embedder(texts: String) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::ManualEmbed(texts), fault: FaultSource::User }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("{fault}: {kind}")]
|
||||
pub struct NewEmbedderError {
|
||||
pub kind: NewEmbedderErrorKind,
|
||||
pub fault: FaultSource,
|
||||
}
|
||||
|
||||
impl NewEmbedderError {
|
||||
pub fn open_config(config_filename: PathBuf, inner: std::io::Error) -> NewEmbedderError {
|
||||
let open_config = OpenConfig { filename: config_filename, inner };
|
||||
|
||||
Self { kind: NewEmbedderErrorKind::OpenConfig(open_config), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn deserialize_config(
|
||||
config: String,
|
||||
config_filename: PathBuf,
|
||||
inner: serde_json::Error,
|
||||
) -> NewEmbedderError {
|
||||
let deserialize_config = DeserializeConfig { config, filename: config_filename, inner };
|
||||
Self {
|
||||
kind: NewEmbedderErrorKind::DeserializeConfig(deserialize_config),
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn open_tokenizer(
|
||||
tokenizer_filename: PathBuf,
|
||||
inner: Box<dyn std::error::Error + Send + Sync>,
|
||||
) -> NewEmbedderError {
|
||||
let open_tokenizer = OpenTokenizer { filename: tokenizer_filename, inner };
|
||||
Self {
|
||||
kind: NewEmbedderErrorKind::OpenTokenizer(open_tokenizer),
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_api_fail(inner: ApiError) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::NewApiFail(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub fn api_get(inner: ApiError) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::ApiGet(inner), fault: FaultSource::Undecided }
|
||||
}
|
||||
|
||||
pub fn pytorch_weight(inner: candle_core::Error) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::PytorchWeight(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn safetensor_weight(inner: candle_core::Error) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::PytorchWeight(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn load_model(inner: candle_core::Error) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::LoadModel(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn hf_could_not_determine_dimension(inner: EmbedError) -> NewEmbedderError {
|
||||
Self {
|
||||
kind: NewEmbedderErrorKind::CouldNotDetermineDimension(inner),
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn openai_initialize_web_client(inner: reqwest::Error) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::InitWebClient(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_invalid_api_key_format(inner: reqwest::header::InvalidHeaderValue) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::InvalidApiKeyFormat(inner), fault: FaultSource::User }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("could not open config at {filename:?}: {inner}")]
|
||||
pub struct OpenConfig {
|
||||
pub filename: PathBuf,
|
||||
pub inner: std::io::Error,
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("could not deserialize config at {filename}: {inner}. Config follows:\n{config}")]
|
||||
pub struct DeserializeConfig {
|
||||
pub config: String,
|
||||
pub filename: PathBuf,
|
||||
pub inner: serde_json::Error,
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("could not open tokenizer at {filename}: {inner}")]
|
||||
pub struct OpenTokenizer {
|
||||
pub filename: PathBuf,
|
||||
#[source]
|
||||
pub inner: Box<dyn std::error::Error + Send + Sync>,
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
pub enum NewEmbedderErrorKind {
|
||||
// hf
|
||||
#[error(transparent)]
|
||||
OpenConfig(OpenConfig),
|
||||
#[error(transparent)]
|
||||
DeserializeConfig(DeserializeConfig),
|
||||
#[error(transparent)]
|
||||
OpenTokenizer(OpenTokenizer),
|
||||
#[error("could not build weights from Pytorch weights: {0}")]
|
||||
PytorchWeight(candle_core::Error),
|
||||
#[error("could not build weights from Safetensor weights: {0}")]
|
||||
SafetensorWeight(candle_core::Error),
|
||||
#[error("could not spawn HG_HUB API client: {0}")]
|
||||
NewApiFail(ApiError),
|
||||
#[error("fetching file from HG_HUB failed: {0}")]
|
||||
ApiGet(ApiError),
|
||||
#[error("could not determine model dimensions: test embedding failed with {0}")]
|
||||
CouldNotDetermineDimension(EmbedError),
|
||||
#[error("loading model failed: {0}")]
|
||||
LoadModel(candle_core::Error),
|
||||
// openai
|
||||
#[error("initializing web client for sending embedding requests failed: {0}")]
|
||||
InitWebClient(reqwest::Error),
|
||||
#[error("The API key passed to Authorization error was in an invalid format: {0}")]
|
||||
InvalidApiKeyFormat(reqwest::header::InvalidHeaderValue),
|
||||
}
|
195
milli/src/vector/hf.rs
Normal file
195
milli/src/vector/hf.rs
Normal file
@ -0,0 +1,195 @@
|
||||
use candle_core::Tensor;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::models::bert::{BertModel, Config, DTYPE};
|
||||
// FIXME: currently we'll be using the hub to retrieve model, in the future we might want to embed it into Meilisearch itself
|
||||
use hf_hub::api::sync::Api;
|
||||
use hf_hub::{Repo, RepoType};
|
||||
use tokenizers::{PaddingParams, Tokenizer};
|
||||
|
||||
pub use super::error::{EmbedError, Error, NewEmbedderError};
|
||||
use super::{DistributionShift, Embedding, Embeddings};
|
||||
|
||||
#[derive(
|
||||
Debug,
|
||||
Clone,
|
||||
Copy,
|
||||
Default,
|
||||
Hash,
|
||||
PartialEq,
|
||||
Eq,
|
||||
serde::Deserialize,
|
||||
serde::Serialize,
|
||||
deserr::Deserr,
|
||||
)]
|
||||
#[serde(deny_unknown_fields, rename_all = "camelCase")]
|
||||
#[deserr(rename_all = camelCase, deny_unknown_fields)]
|
||||
enum WeightSource {
|
||||
#[default]
|
||||
Safetensors,
|
||||
Pytorch,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
||||
pub struct EmbedderOptions {
|
||||
pub model: String,
|
||||
pub revision: Option<String>,
|
||||
}
|
||||
|
||||
impl EmbedderOptions {
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
model: "BAAI/bge-base-en-v1.5".to_string(),
|
||||
revision: Some("617ca489d9e86b49b8167676d8220688b99db36e".into()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for EmbedderOptions {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform embedding of documents and queries
|
||||
pub struct Embedder {
|
||||
model: BertModel,
|
||||
tokenizer: Tokenizer,
|
||||
options: EmbedderOptions,
|
||||
dimensions: usize,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for Embedder {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("Embedder")
|
||||
.field("model", &self.options.model)
|
||||
.field("tokenizer", &self.tokenizer)
|
||||
.field("options", &self.options)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
|
||||
let device = candle_core::Device::Cpu;
|
||||
let repo = match options.revision.clone() {
|
||||
Some(revision) => Repo::with_revision(options.model.clone(), RepoType::Model, revision),
|
||||
None => Repo::model(options.model.clone()),
|
||||
};
|
||||
let (config_filename, tokenizer_filename, weights_filename, weight_source) = {
|
||||
let api = Api::new().map_err(NewEmbedderError::new_api_fail)?;
|
||||
let api = api.repo(repo);
|
||||
let config = api.get("config.json").map_err(NewEmbedderError::api_get)?;
|
||||
let tokenizer = api.get("tokenizer.json").map_err(NewEmbedderError::api_get)?;
|
||||
let (weights, source) = {
|
||||
api.get("pytorch_model.bin")
|
||||
.map(|filename| (filename, WeightSource::Pytorch))
|
||||
.or_else(|_| {
|
||||
api.get("model.safetensors")
|
||||
.map(|filename| (filename, WeightSource::Safetensors))
|
||||
})
|
||||
.map_err(NewEmbedderError::api_get)?
|
||||
};
|
||||
(config, tokenizer, weights, source)
|
||||
};
|
||||
|
||||
let config = std::fs::read_to_string(&config_filename)
|
||||
.map_err(|inner| NewEmbedderError::open_config(config_filename.clone(), inner))?;
|
||||
let config: Config = serde_json::from_str(&config).map_err(|inner| {
|
||||
NewEmbedderError::deserialize_config(config, config_filename, inner)
|
||||
})?;
|
||||
let mut tokenizer = Tokenizer::from_file(&tokenizer_filename)
|
||||
.map_err(|inner| NewEmbedderError::open_tokenizer(tokenizer_filename, inner))?;
|
||||
|
||||
let vb = match weight_source {
|
||||
WeightSource::Pytorch => VarBuilder::from_pth(&weights_filename, DTYPE, &device)
|
||||
.map_err(NewEmbedderError::pytorch_weight)?,
|
||||
WeightSource::Safetensors => unsafe {
|
||||
VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)
|
||||
.map_err(NewEmbedderError::safetensor_weight)?
|
||||
},
|
||||
};
|
||||
|
||||
let model = BertModel::load(vb, &config).map_err(NewEmbedderError::load_model)?;
|
||||
|
||||
if let Some(pp) = tokenizer.get_padding_mut() {
|
||||
pp.strategy = tokenizers::PaddingStrategy::BatchLongest
|
||||
} else {
|
||||
let pp = PaddingParams {
|
||||
strategy: tokenizers::PaddingStrategy::BatchLongest,
|
||||
..Default::default()
|
||||
};
|
||||
tokenizer.with_padding(Some(pp));
|
||||
}
|
||||
|
||||
let mut this = Self { model, tokenizer, options, dimensions: 0 };
|
||||
|
||||
let embeddings = this
|
||||
.embed(vec!["test".into()])
|
||||
.map_err(NewEmbedderError::hf_could_not_determine_dimension)?;
|
||||
this.dimensions = embeddings.first().unwrap().dimension();
|
||||
|
||||
Ok(this)
|
||||
}
|
||||
|
||||
pub fn embed(
|
||||
&self,
|
||||
mut texts: Vec<String>,
|
||||
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
let tokens = match texts.len() {
|
||||
1 => vec![self
|
||||
.tokenizer
|
||||
.encode(texts.pop().unwrap(), true)
|
||||
.map_err(EmbedError::tokenize)?],
|
||||
_ => self.tokenizer.encode_batch(texts, true).map_err(EmbedError::tokenize)?,
|
||||
};
|
||||
let token_ids = tokens
|
||||
.iter()
|
||||
.map(|tokens| {
|
||||
let tokens = tokens.get_ids().to_vec();
|
||||
Tensor::new(tokens.as_slice(), &self.model.device).map_err(EmbedError::tensor_shape)
|
||||
})
|
||||
.collect::<Result<Vec<_>, EmbedError>>()?;
|
||||
|
||||
let token_ids = Tensor::stack(&token_ids, 0).map_err(EmbedError::tensor_shape)?;
|
||||
let token_type_ids = token_ids.zeros_like().map_err(EmbedError::tensor_shape)?;
|
||||
let embeddings =
|
||||
self.model.forward(&token_ids, &token_type_ids).map_err(EmbedError::model_forward)?;
|
||||
|
||||
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
|
||||
let (_n_sentence, n_tokens, _hidden_size) =
|
||||
embeddings.dims3().map_err(EmbedError::tensor_shape)?;
|
||||
|
||||
let embeddings = (embeddings.sum(1).map_err(EmbedError::tensor_value)? / (n_tokens as f64))
|
||||
.map_err(EmbedError::tensor_shape)?;
|
||||
|
||||
let embeddings: Vec<Embedding> = embeddings.to_vec2().map_err(EmbedError::tensor_shape)?;
|
||||
Ok(embeddings.into_iter().map(Embeddings::from_single_embedding).collect())
|
||||
}
|
||||
|
||||
pub fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
text_chunks.into_iter().map(|prompts| self.embed(prompts)).collect()
|
||||
}
|
||||
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
1
|
||||
}
|
||||
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
std::thread::available_parallelism().map(|x| x.get()).unwrap_or(8)
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
self.dimensions
|
||||
}
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
if self.options.model == "BAAI/bge-base-en-v1.5" {
|
||||
Some(DistributionShift { current_mean: 0.85, current_sigma: 0.1 })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
34
milli/src/vector/manual.rs
Normal file
34
milli/src/vector/manual.rs
Normal file
@ -0,0 +1,34 @@
|
||||
use super::error::EmbedError;
|
||||
use super::Embeddings;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Embedder {
|
||||
dimensions: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
||||
pub struct EmbedderOptions {
|
||||
pub dimensions: usize,
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new(options: EmbedderOptions) -> Self {
|
||||
Self { dimensions: options.dimensions }
|
||||
}
|
||||
|
||||
pub fn embed(&self, mut texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
let Some(text) = texts.pop() else { return Ok(Default::default()) };
|
||||
Err(EmbedError::embed_on_manual_embedder(text))
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
self.dimensions
|
||||
}
|
||||
|
||||
pub fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
text_chunks.into_iter().map(|prompts| self.embed(prompts)).collect()
|
||||
}
|
||||
}
|
257
milli/src/vector/mod.rs
Normal file
257
milli/src/vector/mod.rs
Normal file
@ -0,0 +1,257 @@
|
||||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
use self::error::{EmbedError, NewEmbedderError};
|
||||
use crate::prompt::{Prompt, PromptData};
|
||||
|
||||
pub mod error;
|
||||
pub mod hf;
|
||||
pub mod manual;
|
||||
pub mod openai;
|
||||
pub mod settings;
|
||||
|
||||
pub use self::error::Error;
|
||||
|
||||
pub type Embedding = Vec<f32>;
|
||||
|
||||
pub struct Embeddings<F> {
|
||||
data: Vec<F>,
|
||||
dimension: usize,
|
||||
}
|
||||
|
||||
impl<F> Embeddings<F> {
|
||||
pub fn new(dimension: usize) -> Self {
|
||||
Self { data: Default::default(), dimension }
|
||||
}
|
||||
|
||||
pub fn from_single_embedding(embedding: Vec<F>) -> Self {
|
||||
Self { dimension: embedding.len(), data: embedding }
|
||||
}
|
||||
|
||||
pub fn from_inner(data: Vec<F>, dimension: usize) -> Result<Self, Vec<F>> {
|
||||
let mut this = Self::new(dimension);
|
||||
this.append(data)?;
|
||||
Ok(this)
|
||||
}
|
||||
|
||||
pub fn embedding_count(&self) -> usize {
|
||||
self.data.len() / self.dimension
|
||||
}
|
||||
|
||||
pub fn dimension(&self) -> usize {
|
||||
self.dimension
|
||||
}
|
||||
|
||||
pub fn into_inner(self) -> Vec<F> {
|
||||
self.data
|
||||
}
|
||||
|
||||
pub fn as_inner(&self) -> &[F] {
|
||||
&self.data
|
||||
}
|
||||
|
||||
pub fn iter(&self) -> impl Iterator<Item = &'_ [F]> + '_ {
|
||||
self.data.as_slice().chunks_exact(self.dimension)
|
||||
}
|
||||
|
||||
pub fn push(&mut self, mut embedding: Vec<F>) -> Result<(), Vec<F>> {
|
||||
if embedding.len() != self.dimension {
|
||||
return Err(embedding);
|
||||
}
|
||||
self.data.append(&mut embedding);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn append(&mut self, mut embeddings: Vec<F>) -> Result<(), Vec<F>> {
|
||||
if embeddings.len() % self.dimension != 0 {
|
||||
return Err(embeddings);
|
||||
}
|
||||
self.data.append(&mut embeddings);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum Embedder {
|
||||
HuggingFace(hf::Embedder),
|
||||
OpenAi(openai::Embedder),
|
||||
UserProvided(manual::Embedder),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default, serde::Deserialize, serde::Serialize)]
|
||||
pub struct EmbeddingConfig {
|
||||
pub embedder_options: EmbedderOptions,
|
||||
pub prompt: PromptData,
|
||||
// TODO: add metrics and anything needed
|
||||
}
|
||||
|
||||
#[derive(Clone, Default)]
|
||||
pub struct EmbeddingConfigs(HashMap<String, (Arc<Embedder>, Arc<Prompt>)>);
|
||||
|
||||
impl EmbeddingConfigs {
|
||||
pub fn new(data: HashMap<String, (Arc<Embedder>, Arc<Prompt>)>) -> Self {
|
||||
Self(data)
|
||||
}
|
||||
|
||||
pub fn get(&self, name: &str) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
|
||||
self.0.get(name).cloned()
|
||||
}
|
||||
|
||||
pub fn get_default(&self) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
|
||||
self.get_default_embedder_name().and_then(|default| self.get(&default))
|
||||
}
|
||||
|
||||
pub fn get_default_embedder_name(&self) -> Option<String> {
|
||||
let mut it = self.0.keys();
|
||||
let first_name = it.next();
|
||||
let second_name = it.next();
|
||||
match (first_name, second_name) {
|
||||
(None, _) => None,
|
||||
(Some(first), None) => Some(first.to_owned()),
|
||||
(Some(_), Some(_)) => Some("default".to_owned()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl IntoIterator for EmbeddingConfigs {
|
||||
type Item = (String, (Arc<Embedder>, Arc<Prompt>));
|
||||
|
||||
type IntoIter = std::collections::hash_map::IntoIter<String, (Arc<Embedder>, Arc<Prompt>)>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
self.0.into_iter()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
||||
pub enum EmbedderOptions {
|
||||
HuggingFace(hf::EmbedderOptions),
|
||||
OpenAi(openai::EmbedderOptions),
|
||||
UserProvided(manual::EmbedderOptions),
|
||||
}
|
||||
|
||||
impl Default for EmbedderOptions {
|
||||
fn default() -> Self {
|
||||
Self::HuggingFace(Default::default())
|
||||
}
|
||||
}
|
||||
|
||||
impl EmbedderOptions {
|
||||
pub fn huggingface() -> Self {
|
||||
Self::HuggingFace(hf::EmbedderOptions::new())
|
||||
}
|
||||
|
||||
pub fn openai(api_key: Option<String>) -> Self {
|
||||
Self::OpenAi(openai::EmbedderOptions::with_default_model(api_key))
|
||||
}
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
|
||||
Ok(match options {
|
||||
EmbedderOptions::HuggingFace(options) => Self::HuggingFace(hf::Embedder::new(options)?),
|
||||
EmbedderOptions::OpenAi(options) => Self::OpenAi(openai::Embedder::new(options)?),
|
||||
EmbedderOptions::UserProvided(options) => {
|
||||
Self::UserProvided(manual::Embedder::new(options))
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
pub async fn embed(
|
||||
&self,
|
||||
texts: Vec<String>,
|
||||
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.embed(texts),
|
||||
Embedder::OpenAi(embedder) => embedder.embed(texts).await,
|
||||
Embedder::UserProvided(embedder) => embedder.embed(texts),
|
||||
}
|
||||
}
|
||||
|
||||
pub async fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.embed_chunks(text_chunks),
|
||||
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks).await,
|
||||
Embedder::UserProvided(embedder) => embedder.embed_chunks(text_chunks),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.chunk_count_hint(),
|
||||
Embedder::OpenAi(embedder) => embedder.chunk_count_hint(),
|
||||
Embedder::UserProvided(_) => 1,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.prompt_count_in_chunk_hint(),
|
||||
Embedder::OpenAi(embedder) => embedder.prompt_count_in_chunk_hint(),
|
||||
Embedder::UserProvided(_) => 1,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.dimensions(),
|
||||
Embedder::OpenAi(embedder) => embedder.dimensions(),
|
||||
Embedder::UserProvided(embedder) => embedder.dimensions(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.distribution(),
|
||||
Embedder::OpenAi(embedder) => embedder.distribution(),
|
||||
Embedder::UserProvided(_embedder) => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct DistributionShift {
|
||||
pub current_mean: f32,
|
||||
pub current_sigma: f32,
|
||||
}
|
||||
|
||||
impl DistributionShift {
|
||||
/// `None` if sigma <= 0.
|
||||
pub fn new(mean: f32, sigma: f32) -> Option<Self> {
|
||||
if sigma <= 0.0 {
|
||||
None
|
||||
} else {
|
||||
Some(Self { current_mean: mean, current_sigma: sigma })
|
||||
}
|
||||
}
|
||||
|
||||
pub fn shift(&self, score: f32) -> f32 {
|
||||
// <https://math.stackexchange.com/a/2894689>
|
||||
// We're somewhat abusively mapping the distribution of distances to a gaussian.
|
||||
// The parameters we're given is the mean and sigma of the native result distribution.
|
||||
// We're using them to retarget the distribution to a gaussian centered on 0.5 with a sigma of 0.4.
|
||||
|
||||
let target_mean = 0.5;
|
||||
let target_sigma = 0.4;
|
||||
|
||||
// a^2 sig1^2 = sig2^2 => a^2 = sig2^2 / sig1^2 => a = sig2 / sig1, assuming a, sig1, and sig2 positive.
|
||||
let factor = target_sigma / self.current_sigma;
|
||||
// a*mu1 + b = mu2 => b = mu2 - a*mu1
|
||||
let offset = target_mean - (factor * self.current_mean);
|
||||
|
||||
let mut score = factor * score + offset;
|
||||
|
||||
// clamp the final score in the ]0, 1] interval.
|
||||
if score <= 0.0 {
|
||||
score = f32::EPSILON;
|
||||
}
|
||||
if score > 1.0 {
|
||||
score = 1.0;
|
||||
}
|
||||
|
||||
score
|
||||
}
|
||||
}
|
445
milli/src/vector/openai.rs
Normal file
445
milli/src/vector/openai.rs
Normal file
@ -0,0 +1,445 @@
|
||||
use std::fmt::Display;
|
||||
|
||||
use reqwest::StatusCode;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::error::{EmbedError, NewEmbedderError};
|
||||
use super::{DistributionShift, Embedding, Embeddings};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Embedder {
|
||||
client: reqwest::Client,
|
||||
tokenizer: tiktoken_rs::CoreBPE,
|
||||
options: EmbedderOptions,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
||||
pub struct EmbedderOptions {
|
||||
pub api_key: Option<String>,
|
||||
pub embedding_model: EmbeddingModel,
|
||||
}
|
||||
|
||||
#[derive(
|
||||
Debug,
|
||||
Clone,
|
||||
Copy,
|
||||
Default,
|
||||
Hash,
|
||||
PartialEq,
|
||||
Eq,
|
||||
serde::Serialize,
|
||||
serde::Deserialize,
|
||||
deserr::Deserr,
|
||||
)]
|
||||
#[serde(deny_unknown_fields, rename_all = "camelCase")]
|
||||
#[deserr(rename_all = camelCase, deny_unknown_fields)]
|
||||
pub enum EmbeddingModel {
|
||||
#[default]
|
||||
#[serde(rename = "text-embedding-ada-002")]
|
||||
#[deserr(rename = "text-embedding-ada-002")]
|
||||
TextEmbeddingAda002,
|
||||
}
|
||||
|
||||
impl EmbeddingModel {
|
||||
pub fn max_token(&self) -> usize {
|
||||
match self {
|
||||
EmbeddingModel::TextEmbeddingAda002 => 8191,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
match self {
|
||||
EmbeddingModel::TextEmbeddingAda002 => 1536,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn name(&self) -> &'static str {
|
||||
match self {
|
||||
EmbeddingModel::TextEmbeddingAda002 => "text-embedding-ada-002",
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_name(name: &'static str) -> Option<Self> {
|
||||
match name {
|
||||
"text-embedding-ada-002" => Some(EmbeddingModel::TextEmbeddingAda002),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn distribution(&self) -> Option<DistributionShift> {
|
||||
match self {
|
||||
EmbeddingModel::TextEmbeddingAda002 => {
|
||||
Some(DistributionShift { current_mean: 0.90, current_sigma: 0.08 })
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub const OPENAI_EMBEDDINGS_URL: &str = "https://api.openai.com/v1/embeddings";
|
||||
|
||||
impl EmbedderOptions {
|
||||
pub fn with_default_model(api_key: Option<String>) -> Self {
|
||||
Self { api_key, embedding_model: Default::default() }
|
||||
}
|
||||
|
||||
pub fn with_embedding_model(api_key: Option<String>, embedding_model: EmbeddingModel) -> Self {
|
||||
Self { api_key, embedding_model }
|
||||
}
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
|
||||
let mut headers = reqwest::header::HeaderMap::new();
|
||||
let mut inferred_api_key = Default::default();
|
||||
let api_key = options.api_key.as_ref().unwrap_or_else(|| {
|
||||
inferred_api_key = infer_api_key();
|
||||
&inferred_api_key
|
||||
});
|
||||
headers.insert(
|
||||
reqwest::header::AUTHORIZATION,
|
||||
reqwest::header::HeaderValue::from_str(&format!("Bearer {}", api_key))
|
||||
.map_err(NewEmbedderError::openai_invalid_api_key_format)?,
|
||||
);
|
||||
headers.insert(
|
||||
reqwest::header::CONTENT_TYPE,
|
||||
reqwest::header::HeaderValue::from_static("application/json"),
|
||||
);
|
||||
let client = reqwest::ClientBuilder::new()
|
||||
.default_headers(headers)
|
||||
.build()
|
||||
.map_err(NewEmbedderError::openai_initialize_web_client)?;
|
||||
|
||||
// looking at the code it is very unclear that this can actually fail.
|
||||
let tokenizer = tiktoken_rs::cl100k_base().unwrap();
|
||||
|
||||
Ok(Self { options, client, tokenizer })
|
||||
}
|
||||
|
||||
pub async fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
let mut tokenized = false;
|
||||
|
||||
for attempt in 0..7 {
|
||||
let result = if tokenized {
|
||||
self.try_embed_tokenized(&texts).await
|
||||
} else {
|
||||
self.try_embed(&texts).await
|
||||
};
|
||||
|
||||
let retry_duration = match result {
|
||||
Ok(embeddings) => return Ok(embeddings),
|
||||
Err(retry) => {
|
||||
log::warn!("Failed: {}", retry.error);
|
||||
tokenized |= retry.must_tokenize();
|
||||
retry.into_duration(attempt)
|
||||
}
|
||||
}?;
|
||||
log::warn!("Attempt #{}, retrying after {}ms.", attempt, retry_duration.as_millis());
|
||||
tokio::time::sleep(retry_duration).await;
|
||||
}
|
||||
|
||||
let result = if tokenized {
|
||||
self.try_embed_tokenized(&texts).await
|
||||
} else {
|
||||
self.try_embed(&texts).await
|
||||
};
|
||||
|
||||
result.map_err(Retry::into_error)
|
||||
}
|
||||
|
||||
async fn check_response(response: reqwest::Response) -> Result<reqwest::Response, Retry> {
|
||||
if !response.status().is_success() {
|
||||
match response.status() {
|
||||
StatusCode::UNAUTHORIZED => {
|
||||
let error_response: OpenAiErrorResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
return Err(Retry::give_up(EmbedError::openai_auth_error(
|
||||
error_response.error,
|
||||
)));
|
||||
}
|
||||
StatusCode::TOO_MANY_REQUESTS => {
|
||||
let error_response: OpenAiErrorResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
return Err(Retry::rate_limited(EmbedError::openai_too_many_requests(
|
||||
error_response.error,
|
||||
)));
|
||||
}
|
||||
StatusCode::INTERNAL_SERVER_ERROR => {
|
||||
let error_response: OpenAiErrorResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
return Err(Retry::retry_later(EmbedError::openai_internal_server_error(
|
||||
error_response.error,
|
||||
)));
|
||||
}
|
||||
StatusCode::SERVICE_UNAVAILABLE => {
|
||||
let error_response: OpenAiErrorResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
return Err(Retry::retry_later(EmbedError::openai_internal_server_error(
|
||||
error_response.error,
|
||||
)));
|
||||
}
|
||||
StatusCode::BAD_REQUEST => {
|
||||
// Most probably, one text contained too many tokens
|
||||
let error_response: OpenAiErrorResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
log::warn!("OpenAI: input was too long, retrying on tokenized version. For best performance, limit the size of your prompt.");
|
||||
|
||||
return Err(Retry::retry_tokenized(EmbedError::openai_too_many_tokens(
|
||||
error_response.error,
|
||||
)));
|
||||
}
|
||||
code => {
|
||||
return Err(Retry::give_up(EmbedError::openai_unhandled_status_code(
|
||||
code.as_u16(),
|
||||
)));
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(response)
|
||||
}
|
||||
|
||||
async fn try_embed<S: AsRef<str> + serde::Serialize>(
|
||||
&self,
|
||||
texts: &[S],
|
||||
) -> Result<Vec<Embeddings<f32>>, Retry> {
|
||||
for text in texts {
|
||||
log::trace!("Received prompt: {}", text.as_ref())
|
||||
}
|
||||
let request = OpenAiRequest { model: self.options.embedding_model.name(), input: texts };
|
||||
let response = self
|
||||
.client
|
||||
.post(OPENAI_EMBEDDINGS_URL)
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(EmbedError::openai_network)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
let response = Self::check_response(response).await?;
|
||||
|
||||
let response: OpenAiResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
log::trace!("response: {:?}", response.data);
|
||||
|
||||
Ok(response
|
||||
.data
|
||||
.into_iter()
|
||||
.map(|data| Embeddings::from_single_embedding(data.embedding))
|
||||
.collect())
|
||||
}
|
||||
|
||||
async fn try_embed_tokenized(&self, text: &[String]) -> Result<Vec<Embeddings<f32>>, Retry> {
|
||||
pub const OVERLAP_SIZE: usize = 200;
|
||||
let mut all_embeddings = Vec::with_capacity(text.len());
|
||||
for text in text {
|
||||
let max_token_count = self.options.embedding_model.max_token();
|
||||
let encoded = self.tokenizer.encode_ordinary(text.as_str());
|
||||
let len = encoded.len();
|
||||
if len < max_token_count {
|
||||
all_embeddings.append(&mut self.try_embed(&[text]).await?);
|
||||
continue;
|
||||
}
|
||||
|
||||
let mut tokens = encoded.as_slice();
|
||||
let mut embeddings_for_prompt =
|
||||
Embeddings::new(self.options.embedding_model.dimensions());
|
||||
while tokens.len() > max_token_count {
|
||||
let window = &tokens[..max_token_count];
|
||||
embeddings_for_prompt.push(self.embed_tokens(window).await?).unwrap();
|
||||
|
||||
tokens = &tokens[max_token_count - OVERLAP_SIZE..];
|
||||
}
|
||||
|
||||
// end of text
|
||||
embeddings_for_prompt.push(self.embed_tokens(tokens).await?).unwrap();
|
||||
|
||||
all_embeddings.push(embeddings_for_prompt);
|
||||
}
|
||||
Ok(all_embeddings)
|
||||
}
|
||||
|
||||
async fn embed_tokens(&self, tokens: &[usize]) -> Result<Embedding, Retry> {
|
||||
for attempt in 0..9 {
|
||||
let duration = match self.try_embed_tokens(tokens).await {
|
||||
Ok(embedding) => return Ok(embedding),
|
||||
Err(retry) => retry.into_duration(attempt),
|
||||
}
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
tokio::time::sleep(duration).await;
|
||||
}
|
||||
|
||||
self.try_embed_tokens(tokens).await.map_err(|retry| Retry::give_up(retry.into_error()))
|
||||
}
|
||||
|
||||
async fn try_embed_tokens(&self, tokens: &[usize]) -> Result<Embedding, Retry> {
|
||||
let request =
|
||||
OpenAiTokensRequest { model: self.options.embedding_model.name(), input: tokens };
|
||||
let response = self
|
||||
.client
|
||||
.post(OPENAI_EMBEDDINGS_URL)
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(EmbedError::openai_network)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
let response = Self::check_response(response).await?;
|
||||
|
||||
let mut response: OpenAiResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
Ok(response.data.pop().map(|data| data.embedding).unwrap_or_default())
|
||||
}
|
||||
|
||||
pub async fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
futures::future::try_join_all(text_chunks.into_iter().map(|prompts| self.embed(prompts)))
|
||||
.await
|
||||
}
|
||||
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
10
|
||||
}
|
||||
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
10
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
self.options.embedding_model.dimensions()
|
||||
}
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
self.options.embedding_model.distribution()
|
||||
}
|
||||
}
|
||||
|
||||
// retrying in case of failure
|
||||
|
||||
struct Retry {
|
||||
error: EmbedError,
|
||||
strategy: RetryStrategy,
|
||||
}
|
||||
|
||||
enum RetryStrategy {
|
||||
GiveUp,
|
||||
Retry,
|
||||
RetryTokenized,
|
||||
RetryAfterRateLimit,
|
||||
}
|
||||
|
||||
impl Retry {
|
||||
fn give_up(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::GiveUp }
|
||||
}
|
||||
|
||||
fn retry_later(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::Retry }
|
||||
}
|
||||
|
||||
fn retry_tokenized(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::RetryTokenized }
|
||||
}
|
||||
|
||||
fn rate_limited(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::RetryAfterRateLimit }
|
||||
}
|
||||
|
||||
fn into_duration(self, attempt: u32) -> Result<tokio::time::Duration, EmbedError> {
|
||||
match self.strategy {
|
||||
RetryStrategy::GiveUp => Err(self.error),
|
||||
RetryStrategy::Retry => Ok(tokio::time::Duration::from_millis((10u64).pow(attempt))),
|
||||
RetryStrategy::RetryTokenized => Ok(tokio::time::Duration::from_millis(1)),
|
||||
RetryStrategy::RetryAfterRateLimit => {
|
||||
Ok(tokio::time::Duration::from_millis(100 + 10u64.pow(attempt)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn must_tokenize(&self) -> bool {
|
||||
matches!(self.strategy, RetryStrategy::RetryTokenized)
|
||||
}
|
||||
|
||||
fn into_error(self) -> EmbedError {
|
||||
self.error
|
||||
}
|
||||
}
|
||||
|
||||
// openai api structs
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
struct OpenAiRequest<'a, S: AsRef<str> + serde::Serialize> {
|
||||
model: &'a str,
|
||||
input: &'a [S],
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
struct OpenAiTokensRequest<'a> {
|
||||
model: &'a str,
|
||||
input: &'a [usize],
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
struct OpenAiResponse {
|
||||
data: Vec<OpenAiEmbedding>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
struct OpenAiErrorResponse {
|
||||
error: OpenAiError,
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
pub struct OpenAiError {
|
||||
message: String,
|
||||
// type: String,
|
||||
code: Option<String>,
|
||||
}
|
||||
|
||||
impl Display for OpenAiError {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match &self.code {
|
||||
Some(code) => write!(f, "{} ({})", self.message, code),
|
||||
None => write!(f, "{}", self.message),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
struct OpenAiEmbedding {
|
||||
embedding: Embedding,
|
||||
// object: String,
|
||||
// index: usize,
|
||||
}
|
||||
|
||||
fn infer_api_key() -> String {
|
||||
std::env::var("MEILI_OPENAI_API_KEY")
|
||||
.or_else(|_| std::env::var("OPENAI_API_KEY"))
|
||||
.unwrap_or_default()
|
||||
}
|
292
milli/src/vector/settings.rs
Normal file
292
milli/src/vector/settings.rs
Normal file
@ -0,0 +1,292 @@
|
||||
use deserr::Deserr;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::prompt::PromptData;
|
||||
use crate::update::Setting;
|
||||
use crate::vector::EmbeddingConfig;
|
||||
|
||||
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
|
||||
#[serde(deny_unknown_fields, rename_all = "camelCase")]
|
||||
#[deserr(rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct EmbeddingSettings {
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set", rename = "source")]
|
||||
#[deserr(default, rename = "source")]
|
||||
pub embedder_options: Setting<EmbedderSettings>,
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub document_template: Setting<PromptSettings>,
|
||||
}
|
||||
|
||||
impl EmbeddingSettings {
|
||||
pub fn apply(&mut self, new: Self) {
|
||||
let EmbeddingSettings { embedder_options, document_template: prompt } = new;
|
||||
self.embedder_options.apply(embedder_options);
|
||||
self.document_template.apply(prompt);
|
||||
}
|
||||
}
|
||||
|
||||
impl From<EmbeddingConfig> for EmbeddingSettings {
|
||||
fn from(value: EmbeddingConfig) -> Self {
|
||||
Self {
|
||||
embedder_options: Setting::Set(value.embedder_options.into()),
|
||||
document_template: Setting::Set(value.prompt.into()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<EmbeddingSettings> for EmbeddingConfig {
|
||||
fn from(value: EmbeddingSettings) -> Self {
|
||||
let mut this = Self::default();
|
||||
let EmbeddingSettings { embedder_options, document_template: prompt } = value;
|
||||
if let Some(embedder_options) = embedder_options.set() {
|
||||
this.embedder_options = embedder_options.into();
|
||||
}
|
||||
if let Some(prompt) = prompt.set() {
|
||||
this.prompt = prompt.into();
|
||||
}
|
||||
this
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
|
||||
#[serde(deny_unknown_fields, rename_all = "camelCase")]
|
||||
#[deserr(rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct PromptSettings {
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub template: Setting<String>,
|
||||
}
|
||||
|
||||
impl PromptSettings {
|
||||
pub fn apply(&mut self, new: Self) {
|
||||
let PromptSettings { template } = new;
|
||||
self.template.apply(template);
|
||||
}
|
||||
}
|
||||
|
||||
impl From<PromptData> for PromptSettings {
|
||||
fn from(value: PromptData) -> Self {
|
||||
Self { template: Setting::Set(value.template) }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<PromptSettings> for PromptData {
|
||||
fn from(value: PromptSettings) -> Self {
|
||||
let mut this = PromptData::default();
|
||||
let PromptSettings { template } = value;
|
||||
if let Some(template) = template.set() {
|
||||
this.template = template;
|
||||
}
|
||||
this
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
|
||||
#[serde(deny_unknown_fields, rename_all = "camelCase")]
|
||||
pub enum EmbedderSettings {
|
||||
HuggingFace(Setting<HfEmbedderSettings>),
|
||||
OpenAi(Setting<OpenAiEmbedderSettings>),
|
||||
UserProvided(UserProvidedSettings),
|
||||
}
|
||||
|
||||
impl<E> Deserr<E> for EmbedderSettings
|
||||
where
|
||||
E: deserr::DeserializeError,
|
||||
{
|
||||
fn deserialize_from_value<V: deserr::IntoValue>(
|
||||
value: deserr::Value<V>,
|
||||
location: deserr::ValuePointerRef,
|
||||
) -> Result<Self, E> {
|
||||
match value {
|
||||
deserr::Value::Map(map) => {
|
||||
if deserr::Map::len(&map) != 1 {
|
||||
return Err(deserr::take_cf_content(E::error::<V>(
|
||||
None,
|
||||
deserr::ErrorKind::Unexpected {
|
||||
msg: format!(
|
||||
"Expected a single field, got {} fields",
|
||||
deserr::Map::len(&map)
|
||||
),
|
||||
},
|
||||
location,
|
||||
)));
|
||||
}
|
||||
let mut it = deserr::Map::into_iter(map);
|
||||
let (k, v) = it.next().unwrap();
|
||||
|
||||
match k.as_str() {
|
||||
"huggingFace" => Ok(EmbedderSettings::HuggingFace(Setting::Set(
|
||||
HfEmbedderSettings::deserialize_from_value(
|
||||
v.into_value(),
|
||||
location.push_key(&k),
|
||||
)?,
|
||||
))),
|
||||
"openAi" => Ok(EmbedderSettings::OpenAi(Setting::Set(
|
||||
OpenAiEmbedderSettings::deserialize_from_value(
|
||||
v.into_value(),
|
||||
location.push_key(&k),
|
||||
)?,
|
||||
))),
|
||||
"userProvided" => Ok(EmbedderSettings::UserProvided(
|
||||
UserProvidedSettings::deserialize_from_value(
|
||||
v.into_value(),
|
||||
location.push_key(&k),
|
||||
)?,
|
||||
)),
|
||||
other => Err(deserr::take_cf_content(E::error::<V>(
|
||||
None,
|
||||
deserr::ErrorKind::UnknownKey {
|
||||
key: other,
|
||||
accepted: &["huggingFace", "openAi", "userProvided"],
|
||||
},
|
||||
location,
|
||||
))),
|
||||
}
|
||||
}
|
||||
_ => Err(deserr::take_cf_content(E::error::<V>(
|
||||
None,
|
||||
deserr::ErrorKind::IncorrectValueKind {
|
||||
actual: value,
|
||||
accepted: &[deserr::ValueKind::Map],
|
||||
},
|
||||
location,
|
||||
))),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for EmbedderSettings {
|
||||
fn default() -> Self {
|
||||
Self::OpenAi(Default::default())
|
||||
}
|
||||
}
|
||||
|
||||
impl From<crate::vector::EmbedderOptions> for EmbedderSettings {
|
||||
fn from(value: crate::vector::EmbedderOptions) -> Self {
|
||||
match value {
|
||||
crate::vector::EmbedderOptions::HuggingFace(hf) => {
|
||||
Self::HuggingFace(Setting::Set(hf.into()))
|
||||
}
|
||||
crate::vector::EmbedderOptions::OpenAi(openai) => {
|
||||
Self::OpenAi(Setting::Set(openai.into()))
|
||||
}
|
||||
crate::vector::EmbedderOptions::UserProvided(user_provided) => {
|
||||
Self::UserProvided(user_provided.into())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<EmbedderSettings> for crate::vector::EmbedderOptions {
|
||||
fn from(value: EmbedderSettings) -> Self {
|
||||
match value {
|
||||
EmbedderSettings::HuggingFace(Setting::Set(hf)) => Self::HuggingFace(hf.into()),
|
||||
EmbedderSettings::HuggingFace(_setting) => Self::HuggingFace(Default::default()),
|
||||
EmbedderSettings::OpenAi(Setting::Set(ai)) => Self::OpenAi(ai.into()),
|
||||
EmbedderSettings::OpenAi(_setting) => {
|
||||
Self::OpenAi(crate::vector::openai::EmbedderOptions::with_default_model(None))
|
||||
}
|
||||
EmbedderSettings::UserProvided(user_provided) => {
|
||||
Self::UserProvided(user_provided.into())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
|
||||
#[serde(deny_unknown_fields, rename_all = "camelCase")]
|
||||
#[deserr(rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct HfEmbedderSettings {
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub model: Setting<String>,
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub revision: Setting<String>,
|
||||
}
|
||||
|
||||
impl HfEmbedderSettings {
|
||||
pub fn apply(&mut self, new: Self) {
|
||||
let HfEmbedderSettings { model, revision } = new;
|
||||
self.model.apply(model);
|
||||
self.revision.apply(revision);
|
||||
}
|
||||
}
|
||||
|
||||
impl From<crate::vector::hf::EmbedderOptions> for HfEmbedderSettings {
|
||||
fn from(value: crate::vector::hf::EmbedderOptions) -> Self {
|
||||
Self {
|
||||
model: Setting::Set(value.model),
|
||||
revision: value.revision.map(Setting::Set).unwrap_or(Setting::NotSet),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<HfEmbedderSettings> for crate::vector::hf::EmbedderOptions {
|
||||
fn from(value: HfEmbedderSettings) -> Self {
|
||||
let HfEmbedderSettings { model, revision } = value;
|
||||
let mut this = Self::default();
|
||||
if let Some(model) = model.set() {
|
||||
this.model = model;
|
||||
}
|
||||
if let Some(revision) = revision.set() {
|
||||
this.revision = Some(revision);
|
||||
}
|
||||
this
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
|
||||
#[serde(deny_unknown_fields, rename_all = "camelCase")]
|
||||
#[deserr(rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct OpenAiEmbedderSettings {
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
|
||||
#[deserr(default)]
|
||||
pub api_key: Setting<String>,
|
||||
#[serde(default, skip_serializing_if = "Setting::is_not_set", rename = "model")]
|
||||
#[deserr(default, rename = "model")]
|
||||
pub embedding_model: Setting<crate::vector::openai::EmbeddingModel>,
|
||||
}
|
||||
|
||||
impl OpenAiEmbedderSettings {
|
||||
pub fn apply(&mut self, new: Self) {
|
||||
let Self { api_key, embedding_model: embedding_mode } = new;
|
||||
self.api_key.apply(api_key);
|
||||
self.embedding_model.apply(embedding_mode);
|
||||
}
|
||||
}
|
||||
|
||||
impl From<crate::vector::openai::EmbedderOptions> for OpenAiEmbedderSettings {
|
||||
fn from(value: crate::vector::openai::EmbedderOptions) -> Self {
|
||||
Self {
|
||||
api_key: value.api_key.map(Setting::Set).unwrap_or(Setting::Reset),
|
||||
embedding_model: Setting::Set(value.embedding_model),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<OpenAiEmbedderSettings> for crate::vector::openai::EmbedderOptions {
|
||||
fn from(value: OpenAiEmbedderSettings) -> Self {
|
||||
let OpenAiEmbedderSettings { api_key, embedding_model } = value;
|
||||
Self { api_key: api_key.set(), embedding_model: embedding_model.set().unwrap_or_default() }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
|
||||
#[serde(deny_unknown_fields, rename_all = "camelCase")]
|
||||
#[deserr(rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct UserProvidedSettings {
|
||||
pub dimensions: usize,
|
||||
}
|
||||
|
||||
impl From<UserProvidedSettings> for crate::vector::manual::EmbedderOptions {
|
||||
fn from(value: UserProvidedSettings) -> Self {
|
||||
Self { dimensions: value.dimensions }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<crate::vector::manual::EmbedderOptions> for UserProvidedSettings {
|
||||
fn from(value: crate::vector::manual::EmbedderOptions) -> Self {
|
||||
Self { dimensions: value.dimensions }
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user