MeiliSearch/milli/src/vector/mod.rs

451 lines
16 KiB
Rust
Raw Normal View History

use std::collections::HashMap;
use std::sync::Arc;
2024-03-27 11:50:22 +01:00
use deserr::{DeserializeError, Deserr};
2024-03-25 10:05:38 +01:00
use ordered_float::OrderedFloat;
use serde::{Deserialize, Serialize};
use self::error::{EmbedError, NewEmbedderError};
use crate::prompt::{Prompt, PromptData};
use crate::ThreadPoolNoAbort;
pub mod error;
pub mod hf;
pub mod manual;
pub mod openai;
2024-05-14 11:22:16 +02:00
pub mod parsed_vectors;
pub mod settings;
pub mod ollama;
2024-03-14 14:44:43 +01:00
pub mod rest;
pub use self::error::Error;
pub type Embedding = Vec<f32>;
pub const REQUEST_PARALLELISM: usize = 40;
2024-03-12 15:00:26 +01:00
/// One or multiple embeddings stored consecutively in a flat vector.
pub struct Embeddings<F> {
data: Vec<F>,
dimension: usize,
}
impl<F> Embeddings<F> {
2024-03-12 15:00:26 +01:00
/// Declares an empty vector of embeddings of the specified dimensions.
pub fn new(dimension: usize) -> Self {
Self { data: Default::default(), dimension }
}
2024-03-12 15:00:26 +01:00
/// Declares a vector of embeddings containing a single element.
///
/// The dimension is inferred from the length of the passed embedding.
pub fn from_single_embedding(embedding: Vec<F>) -> Self {
Self { dimension: embedding.len(), data: embedding }
}
2024-03-12 15:00:26 +01:00
/// Declares a vector of embeddings from its components.
///
/// `data.len()` must be a multiple of `dimension`, otherwise an error is returned.
pub fn from_inner(data: Vec<F>, dimension: usize) -> Result<Self, Vec<F>> {
let mut this = Self::new(dimension);
this.append(data)?;
Ok(this)
}
2024-03-12 15:00:26 +01:00
/// Returns the number of embeddings in this vector of embeddings.
pub fn embedding_count(&self) -> usize {
self.data.len() / self.dimension
}
2024-03-12 15:00:26 +01:00
/// Dimension of a single embedding.
pub fn dimension(&self) -> usize {
self.dimension
}
2024-03-12 15:00:26 +01:00
/// Deconstructs self into the inner flat vector.
pub fn into_inner(self) -> Vec<F> {
self.data
}
2024-03-12 15:00:26 +01:00
/// A reference to the inner flat vector.
pub fn as_inner(&self) -> &[F] {
&self.data
}
2024-03-12 15:00:26 +01:00
/// Iterates over the embeddings contained in the flat vector.
pub fn iter(&self) -> impl Iterator<Item = &'_ [F]> + '_ {
self.data.as_slice().chunks_exact(self.dimension)
}
2024-03-12 15:00:26 +01:00
/// Push an embedding at the end of the embeddings.
///
/// If `embedding.len() != self.dimension`, then the push operation fails.
pub fn push(&mut self, mut embedding: Vec<F>) -> Result<(), Vec<F>> {
if embedding.len() != self.dimension {
return Err(embedding);
}
self.data.append(&mut embedding);
Ok(())
}
2024-03-12 15:00:26 +01:00
/// Append a flat vector of embeddings a the end of the embeddings.
///
/// If `embeddings.len() % self.dimension != 0`, then the append operation fails.
pub fn append(&mut self, mut embeddings: Vec<F>) -> Result<(), Vec<F>> {
if embeddings.len() % self.dimension != 0 {
return Err(embeddings);
}
self.data.append(&mut embeddings);
Ok(())
}
}
2024-03-12 15:00:26 +01:00
/// An embedder can be used to transform text into embeddings.
#[derive(Debug)]
pub enum Embedder {
2024-03-12 15:00:26 +01:00
/// An embedder based on running local models, fetched from the Hugging Face Hub.
HuggingFace(hf::Embedder),
2024-03-12 15:00:26 +01:00
/// An embedder based on making embedding queries against the OpenAI API.
OpenAi(openai::Embedder),
2024-03-12 15:00:26 +01:00
/// An embedder based on the user providing the embeddings in the documents and queries.
UserProvided(manual::Embedder),
2024-03-25 10:05:38 +01:00
/// An embedder based on making embedding queries against an <https://ollama.com> embedding server.
Ollama(ollama::Embedder),
2024-03-25 10:05:38 +01:00
/// An embedder based on making embedding queries against a generic JSON/REST embedding server.
Rest(rest::Embedder),
}
2024-03-12 15:00:26 +01:00
/// Configuration for an embedder.
#[derive(Debug, Clone, Default, serde::Deserialize, serde::Serialize)]
pub struct EmbeddingConfig {
2024-03-12 15:00:26 +01:00
/// Options of the embedder, specific to each kind of embedder
pub embedder_options: EmbedderOptions,
2024-03-12 15:00:26 +01:00
/// Document template
pub prompt: PromptData,
// TODO: add metrics and anything needed
}
2024-03-12 15:00:26 +01:00
/// Map of embedder configurations.
///
/// Each configuration is mapped to a name.
#[derive(Clone, Default)]
pub struct EmbeddingConfigs(HashMap<String, (Arc<Embedder>, Arc<Prompt>)>);
impl EmbeddingConfigs {
2024-03-12 15:00:26 +01:00
/// Create the map from its internal component.s
pub fn new(data: HashMap<String, (Arc<Embedder>, Arc<Prompt>)>) -> Self {
Self(data)
}
2024-03-12 15:00:26 +01:00
/// Get an embedder configuration and template from its name.
pub fn get(&self, name: &str) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
self.0.get(name).cloned()
}
2024-03-12 15:00:26 +01:00
/// Get the default embedder configuration, if any.
pub fn get_default(&self) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
self.get(self.get_default_embedder_name())
}
pub fn inner_as_ref(&self) -> &HashMap<String, (Arc<Embedder>, Arc<Prompt>)> {
&self.0
}
2024-03-12 15:00:26 +01:00
/// Get the name of the default embedder configuration.
///
/// The default embedder is determined as follows:
///
/// - If there is only one embedder, it is always the default.
/// - If there are multiple embedders and one of them is called `default`, then that one is the default embedder.
/// - In all other cases, there is no default embedder.
pub fn get_default_embedder_name(&self) -> &str {
let mut it = self.0.keys();
let first_name = it.next();
let second_name = it.next();
match (first_name, second_name) {
(None, _) => "default",
(Some(first), None) => first,
(Some(_), Some(_)) => "default",
}
}
}
impl IntoIterator for EmbeddingConfigs {
type Item = (String, (Arc<Embedder>, Arc<Prompt>));
type IntoIter = std::collections::hash_map::IntoIter<String, (Arc<Embedder>, Arc<Prompt>)>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
2024-03-12 15:00:26 +01:00
/// Options of an embedder, specific to each kind of embedder.
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
pub enum EmbedderOptions {
HuggingFace(hf::EmbedderOptions),
OpenAi(openai::EmbedderOptions),
Ollama(ollama::EmbedderOptions),
UserProvided(manual::EmbedderOptions),
2024-03-25 10:05:38 +01:00
Rest(rest::EmbedderOptions),
}
impl Default for EmbedderOptions {
fn default() -> Self {
Self::HuggingFace(Default::default())
}
}
impl EmbedderOptions {
2024-03-12 15:00:26 +01:00
/// Default options for the Hugging Face embedder
pub fn huggingface() -> Self {
Self::HuggingFace(hf::EmbedderOptions::new())
}
2024-03-12 15:00:26 +01:00
/// Default options for the OpenAI embedder
pub fn openai(api_key: Option<String>) -> Self {
Self::OpenAi(openai::EmbedderOptions::with_default_model(api_key))
}
2024-03-25 11:50:00 +01:00
pub fn ollama(api_key: Option<String>, url: Option<String>) -> Self {
Self::Ollama(ollama::EmbedderOptions::with_default_model(api_key, url))
}
}
impl Embedder {
2024-03-12 15:00:26 +01:00
/// Spawns a new embedder built from its options.
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
Ok(match options {
EmbedderOptions::HuggingFace(options) => Self::HuggingFace(hf::Embedder::new(options)?),
EmbedderOptions::OpenAi(options) => Self::OpenAi(openai::Embedder::new(options)?),
EmbedderOptions::Ollama(options) => Self::Ollama(ollama::Embedder::new(options)?),
EmbedderOptions::UserProvided(options) => {
Self::UserProvided(manual::Embedder::new(options))
}
2024-03-25 10:05:38 +01:00
EmbedderOptions::Rest(options) => Self::Rest(rest::Embedder::new(options)?),
})
}
2024-03-12 15:00:26 +01:00
/// Embed one or multiple texts.
///
/// Each text can be embedded as one or multiple embeddings.
pub fn embed(
&self,
texts: Vec<String>,
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed(texts),
2024-03-14 11:14:31 +01:00
Embedder::OpenAi(embedder) => embedder.embed(texts),
Embedder::Ollama(embedder) => embedder.embed(texts),
Embedder::UserProvided(embedder) => embedder.embed(texts),
2024-03-25 10:05:38 +01:00
Embedder::Rest(embedder) => embedder.embed(texts),
}
}
2024-03-28 11:49:23 +01:00
pub fn embed_one(&self, text: String) -> std::result::Result<Embedding, EmbedError> {
let mut embeddings = self.embed(vec![text])?;
let embeddings = embeddings.pop().ok_or_else(EmbedError::missing_embedding)?;
Ok(if embeddings.iter().nth(1).is_some() {
tracing::warn!("Ignoring embeddings past the first one in long search query");
embeddings.iter().next().unwrap().to_vec()
} else {
embeddings.into_inner()
})
}
2024-03-12 15:00:26 +01:00
/// Embed multiple chunks of texts.
///
/// Each chunk is composed of one or multiple texts.
pub fn embed_chunks(
&self,
text_chunks: Vec<Vec<String>>,
threads: &ThreadPoolNoAbort,
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed_chunks(text_chunks),
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks, threads),
Embedder::Ollama(embedder) => embedder.embed_chunks(text_chunks, threads),
Embedder::UserProvided(embedder) => embedder.embed_chunks(text_chunks),
2024-03-25 10:05:38 +01:00
Embedder::Rest(embedder) => embedder.embed_chunks(text_chunks, threads),
}
}
2024-03-12 15:00:26 +01:00
/// Indicates the preferred number of chunks to pass to [`Self::embed_chunks`]
pub fn chunk_count_hint(&self) -> usize {
match self {
Embedder::HuggingFace(embedder) => embedder.chunk_count_hint(),
Embedder::OpenAi(embedder) => embedder.chunk_count_hint(),
Embedder::Ollama(embedder) => embedder.chunk_count_hint(),
Embedder::UserProvided(_) => 1,
2024-03-25 10:05:38 +01:00
Embedder::Rest(embedder) => embedder.chunk_count_hint(),
}
}
2024-03-12 15:00:26 +01:00
/// Indicates the preferred number of texts in a single chunk passed to [`Self::embed`]
pub fn prompt_count_in_chunk_hint(&self) -> usize {
match self {
Embedder::HuggingFace(embedder) => embedder.prompt_count_in_chunk_hint(),
Embedder::OpenAi(embedder) => embedder.prompt_count_in_chunk_hint(),
Embedder::Ollama(embedder) => embedder.prompt_count_in_chunk_hint(),
Embedder::UserProvided(_) => 1,
2024-03-25 10:05:38 +01:00
Embedder::Rest(embedder) => embedder.prompt_count_in_chunk_hint(),
}
}
2024-03-12 15:00:26 +01:00
/// Indicates the dimensions of a single embedding produced by the embedder.
pub fn dimensions(&self) -> usize {
match self {
Embedder::HuggingFace(embedder) => embedder.dimensions(),
Embedder::OpenAi(embedder) => embedder.dimensions(),
Embedder::Ollama(embedder) => embedder.dimensions(),
Embedder::UserProvided(embedder) => embedder.dimensions(),
2024-03-25 10:05:38 +01:00
Embedder::Rest(embedder) => embedder.dimensions(),
}
}
2024-03-12 15:00:26 +01:00
/// An optional distribution used to apply an affine transformation to the similarity score of a document.
pub fn distribution(&self) -> Option<DistributionShift> {
match self {
Embedder::HuggingFace(embedder) => embedder.distribution(),
Embedder::OpenAi(embedder) => embedder.distribution(),
Embedder::Ollama(embedder) => embedder.distribution(),
2024-03-27 11:50:22 +01:00
Embedder::UserProvided(embedder) => embedder.distribution(),
2024-03-25 10:05:38 +01:00
Embedder::Rest(embedder) => embedder.distribution(),
}
}
}
2024-03-12 15:00:26 +01:00
/// Describes the mean and sigma of distribution of embedding similarity in the embedding space.
///
/// The intended use is to make the similarity score more comparable to the regular ranking score.
/// This allows to correct effects where results are too "packed" around a certain value.
2024-03-25 10:05:38 +01:00
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Deserialize, Serialize)]
#[serde(from = "DistributionShiftSerializable")]
#[serde(into = "DistributionShiftSerializable")]
pub struct DistributionShift {
2024-03-12 15:00:26 +01:00
/// Value where the results are "packed".
///
/// Similarity scores are translated so that they are packed around 0.5 instead
2024-03-25 10:05:38 +01:00
pub current_mean: OrderedFloat<f32>,
2024-03-12 15:00:26 +01:00
/// standard deviation of a similarity score.
///
/// Set below 0.4 to make the results less packed around the mean, and above 0.4 to make them more packed.
2024-03-25 10:05:38 +01:00
pub current_sigma: OrderedFloat<f32>,
}
2024-03-27 11:50:33 +01:00
impl<E> Deserr<E> for DistributionShift
where
E: DeserializeError,
{
fn deserialize_from_value<V: deserr::IntoValue>(
value: deserr::Value<V>,
location: deserr::ValuePointerRef,
) -> Result<Self, E> {
let value = DistributionShiftSerializable::deserialize_from_value(value, location)?;
if value.mean < 0. || value.mean > 1. {
return Err(deserr::take_cf_content(E::error::<std::convert::Infallible>(
None,
deserr::ErrorKind::Unexpected {
msg: format!(
"the distribution mean must be in the range [0, 1], got {}",
value.mean
),
},
location,
)));
}
if value.sigma <= 0. || value.sigma > 1. {
return Err(deserr::take_cf_content(E::error::<std::convert::Infallible>(
None,
deserr::ErrorKind::Unexpected {
msg: format!(
"the distribution sigma must be in the range ]0, 1], got {}",
value.sigma
),
},
location,
)));
}
Ok(value.into())
}
}
#[derive(Serialize, Deserialize, Deserr)]
#[serde(deny_unknown_fields)]
#[deserr(deny_unknown_fields)]
2024-03-25 10:05:38 +01:00
struct DistributionShiftSerializable {
2024-03-27 11:50:33 +01:00
mean: f32,
sigma: f32,
2024-03-25 10:05:38 +01:00
}
impl From<DistributionShift> for DistributionShiftSerializable {
fn from(
DistributionShift {
current_mean: OrderedFloat(current_mean),
current_sigma: OrderedFloat(current_sigma),
}: DistributionShift,
) -> Self {
2024-03-27 11:50:33 +01:00
Self { mean: current_mean, sigma: current_sigma }
2024-03-25 10:05:38 +01:00
}
}
impl From<DistributionShiftSerializable> for DistributionShift {
2024-03-27 11:50:33 +01:00
fn from(DistributionShiftSerializable { mean, sigma }: DistributionShiftSerializable) -> Self {
Self { current_mean: OrderedFloat(mean), current_sigma: OrderedFloat(sigma) }
2024-03-25 10:05:38 +01:00
}
}
impl DistributionShift {
/// `None` if sigma <= 0.
pub fn new(mean: f32, sigma: f32) -> Option<Self> {
if sigma <= 0.0 {
None
} else {
2024-03-25 10:05:38 +01:00
Some(Self { current_mean: OrderedFloat(mean), current_sigma: OrderedFloat(sigma) })
}
}
pub fn shift(&self, score: f32) -> f32 {
2024-03-25 10:05:38 +01:00
let current_mean = self.current_mean.0;
let current_sigma = self.current_sigma.0;
// <https://math.stackexchange.com/a/2894689>
// We're somewhat abusively mapping the distribution of distances to a gaussian.
// The parameters we're given is the mean and sigma of the native result distribution.
// We're using them to retarget the distribution to a gaussian centered on 0.5 with a sigma of 0.4.
let target_mean = 0.5;
let target_sigma = 0.4;
// a^2 sig1^2 = sig2^2 => a^2 = sig2^2 / sig1^2 => a = sig2 / sig1, assuming a, sig1, and sig2 positive.
2024-03-25 10:05:38 +01:00
let factor = target_sigma / current_sigma;
// a*mu1 + b = mu2 => b = mu2 - a*mu1
2024-03-25 10:05:38 +01:00
let offset = target_mean - (factor * current_mean);
let mut score = factor * score + offset;
// clamp the final score in the ]0, 1] interval.
if score <= 0.0 {
score = f32::EPSILON;
}
if score > 1.0 {
score = 1.0;
}
score
}
}
2024-02-26 10:41:47 +01:00
2024-03-12 15:00:26 +01:00
/// Whether CUDA is supported in this version of Meilisearch.
2024-02-26 10:41:47 +01:00
pub const fn is_cuda_enabled() -> bool {
cfg!(feature = "cuda")
}
pub fn arroy_db_range_for_embedder(embedder_id: u8) -> impl Iterator<Item = u16> {
let embedder_id = (embedder_id as u16) << 8;
(0..=u8::MAX).map(move |k| embedder_id | (k as u16))
}