Update ollama and openai impls to use the rest embedder internally

This commit is contained in:
Louis Dureuil 2024-03-19 15:41:37 +01:00
parent 8708cbef25
commit ac52c857e8
No known key found for this signature in database
8 changed files with 394 additions and 779 deletions

View File

@ -339,6 +339,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
prompt_reader: grenad::Reader<R>,
indexer: GrenadParameters,
embedder: Arc<Embedder>,
request_threads: &rayon::ThreadPool,
) -> Result<grenad::Reader<BufReader<File>>> {
puffin::profile_function!();
let n_chunks = embedder.chunk_count_hint(); // chunk level parallelism
@ -376,7 +377,10 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
if chunks.len() == chunks.capacity() {
let chunked_embeds = embedder
.embed_chunks(std::mem::replace(&mut chunks, Vec::with_capacity(n_chunks)))
.embed_chunks(
std::mem::replace(&mut chunks, Vec::with_capacity(n_chunks)),
request_threads,
)
.map_err(crate::vector::Error::from)
.map_err(crate::Error::from)?;
@ -394,7 +398,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
// send last chunk
if !chunks.is_empty() {
let chunked_embeds = embedder
.embed_chunks(std::mem::take(&mut chunks))
.embed_chunks(std::mem::take(&mut chunks), request_threads)
.map_err(crate::vector::Error::from)
.map_err(crate::Error::from)?;
for (docid, embeddings) in chunks_ids
@ -408,7 +412,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
if !current_chunk.is_empty() {
let embeds = embedder
.embed_chunks(vec![std::mem::take(&mut current_chunk)])
.embed_chunks(vec![std::mem::take(&mut current_chunk)], request_threads)
.map_err(crate::vector::Error::from)
.map_err(crate::Error::from)?;

View File

@ -238,7 +238,15 @@ fn send_original_documents_data(
let documents_chunk_cloned = original_documents_chunk.clone();
let lmdb_writer_sx_cloned = lmdb_writer_sx.clone();
let request_threads = rayon::ThreadPoolBuilder::new()
.num_threads(crate::vector::REQUEST_PARALLELISM)
.thread_name(|index| format!("embedding-request-{index}"))
.build()
.unwrap();
rayon::spawn(move || {
/// FIXME: unwrap
for (name, (embedder, prompt)) in embedders {
let result = extract_vector_points(
documents_chunk_cloned.clone(),
@ -249,7 +257,12 @@ fn send_original_documents_data(
);
match result {
Ok(ExtractedVectorPoints { manual_vectors, remove_vectors, prompts }) => {
let embeddings = match extract_embeddings(prompts, indexer, embedder.clone()) {
let embeddings = match extract_embeddings(
prompts,
indexer,
embedder.clone(),
&request_threads,
) {
Ok(results) => Some(results),
Err(error) => {
let _ = lmdb_writer_sx_cloned.send(Err(error));

View File

@ -2,9 +2,7 @@ use std::path::PathBuf;
use hf_hub::api::sync::ApiError;
use super::ollama::OllamaError;
use crate::error::FaultSource;
use crate::vector::openai::OpenAiError;
#[derive(Debug, thiserror::Error)]
#[error("Error while generating embeddings: {inner}")]
@ -52,43 +50,12 @@ pub enum EmbedErrorKind {
TensorValue(candle_core::Error),
#[error("could not run model: {0}")]
ModelForward(candle_core::Error),
#[error("could not reach OpenAI: {0}")]
OpenAiNetwork(ureq::Transport),
#[error("unexpected response from OpenAI: {0}")]
OpenAiUnexpected(ureq::Error),
#[error("could not authenticate against OpenAI: {0:?}")]
OpenAiAuth(Option<OpenAiError>),
#[error("sent too many requests to OpenAI: {0:?}")]
OpenAiTooManyRequests(Option<OpenAiError>),
#[error("received internal error from OpenAI: {0:?}")]
OpenAiInternalServerError(Option<OpenAiError>),
#[error("sent too many tokens in a request to OpenAI: {0:?}")]
OpenAiTooManyTokens(Option<OpenAiError>),
#[error("received unhandled HTTP status code {0} from OpenAI")]
OpenAiUnhandledStatusCode(u16),
#[error("attempt to embed the following text in a configuration where embeddings must be user provided: {0:?}")]
ManualEmbed(String),
#[error("could not initialize asynchronous runtime: {0}")]
OpenAiRuntimeInit(std::io::Error),
#[error("initializing web client for sending embedding requests failed: {0}")]
InitWebClient(reqwest::Error),
// Dedicated Ollama error kinds, might have to merge them into one cohesive error type for all backends.
#[error("unexpected response from Ollama: {0}")]
OllamaUnexpected(reqwest::Error),
#[error("sent too many requests to Ollama: {0}")]
OllamaTooManyRequests(OllamaError),
#[error("received internal error from Ollama: {0}")]
OllamaInternalServerError(OllamaError),
#[error("model not found. Meilisearch will not automatically download models from the Ollama library, please pull the model manually: {0}")]
OllamaModelNotFoundError(OllamaError),
#[error("received unhandled HTTP status code {0} from Ollama")]
OllamaUnhandledStatusCode(u16),
#[error("error serializing template context: {0}")]
RestTemplateContextSerialization(liquid::Error),
#[error(
"error rendering request template: {0}. Hint: available variable in the context: {{{{input}}}}'"
)]
RestTemplateError(liquid::Error),
#[error("model not found. Meilisearch will not automatically download models from the Ollama library, please pull the model manually: {0:?}")]
OllamaModelNotFoundError(Option<String>),
#[error("error deserialization the response body as JSON: {0}")]
RestResponseDeserialization(std::io::Error),
#[error("component `{0}` not found in path `{1}` in response: `{2}`")]
@ -128,77 +95,14 @@ impl EmbedError {
Self { kind: EmbedErrorKind::ModelForward(inner), fault: FaultSource::Runtime }
}
pub fn openai_network(inner: ureq::Transport) -> Self {
Self { kind: EmbedErrorKind::OpenAiNetwork(inner), fault: FaultSource::Runtime }
}
pub fn openai_unexpected(inner: ureq::Error) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiUnexpected(inner), fault: FaultSource::Bug }
}
pub(crate) fn openai_auth_error(inner: Option<OpenAiError>) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiAuth(inner), fault: FaultSource::User }
}
pub(crate) fn openai_too_many_requests(inner: Option<OpenAiError>) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiTooManyRequests(inner), fault: FaultSource::Runtime }
}
pub(crate) fn openai_internal_server_error(inner: Option<OpenAiError>) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiInternalServerError(inner), fault: FaultSource::Runtime }
}
pub(crate) fn openai_too_many_tokens(inner: Option<OpenAiError>) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiTooManyTokens(inner), fault: FaultSource::Bug }
}
pub(crate) fn openai_unhandled_status_code(code: u16) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiUnhandledStatusCode(code), fault: FaultSource::Bug }
}
pub(crate) fn embed_on_manual_embedder(texts: String) -> EmbedError {
Self { kind: EmbedErrorKind::ManualEmbed(texts), fault: FaultSource::User }
}
pub(crate) fn openai_runtime_init(inner: std::io::Error) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiRuntimeInit(inner), fault: FaultSource::Runtime }
}
pub fn openai_initialize_web_client(inner: reqwest::Error) -> Self {
Self { kind: EmbedErrorKind::InitWebClient(inner), fault: FaultSource::Runtime }
}
pub(crate) fn ollama_unexpected(inner: reqwest::Error) -> EmbedError {
Self { kind: EmbedErrorKind::OllamaUnexpected(inner), fault: FaultSource::Bug }
}
pub(crate) fn ollama_model_not_found(inner: OllamaError) -> EmbedError {
pub(crate) fn ollama_model_not_found(inner: Option<String>) -> EmbedError {
Self { kind: EmbedErrorKind::OllamaModelNotFoundError(inner), fault: FaultSource::User }
}
pub(crate) fn ollama_too_many_requests(inner: OllamaError) -> EmbedError {
Self { kind: EmbedErrorKind::OllamaTooManyRequests(inner), fault: FaultSource::Runtime }
}
pub(crate) fn ollama_internal_server_error(inner: OllamaError) -> EmbedError {
Self { kind: EmbedErrorKind::OllamaInternalServerError(inner), fault: FaultSource::Runtime }
}
pub(crate) fn ollama_unhandled_status_code(code: u16) -> EmbedError {
Self { kind: EmbedErrorKind::OllamaUnhandledStatusCode(code), fault: FaultSource::Bug }
}
pub(crate) fn rest_template_context_serialization(error: liquid::Error) -> EmbedError {
Self {
kind: EmbedErrorKind::RestTemplateContextSerialization(error),
fault: FaultSource::Bug,
}
}
pub(crate) fn rest_template_render(error: liquid::Error) -> EmbedError {
Self { kind: EmbedErrorKind::RestTemplateError(error), fault: FaultSource::User }
}
pub(crate) fn rest_response_deserialization(error: std::io::Error) -> EmbedError {
Self {
kind: EmbedErrorKind::RestResponseDeserialization(error),
@ -335,17 +239,6 @@ impl NewEmbedderError {
fault: FaultSource::Runtime,
}
}
pub fn ollama_could_not_determine_dimension(inner: EmbedError) -> NewEmbedderError {
Self {
kind: NewEmbedderErrorKind::CouldNotDetermineDimension(inner),
fault: FaultSource::User,
}
}
pub fn openai_invalid_api_key_format(inner: reqwest::header::InvalidHeaderValue) -> Self {
Self { kind: NewEmbedderErrorKind::InvalidApiKeyFormat(inner), fault: FaultSource::User }
}
}
#[derive(Debug, thiserror::Error)]
@ -392,7 +285,4 @@ pub enum NewEmbedderErrorKind {
CouldNotDetermineDimension(EmbedError),
#[error("loading model failed: {0}")]
LoadModel(candle_core::Error),
// openai
#[error("The API key passed to Authorization error was in an invalid format: {0}")]
InvalidApiKeyFormat(reqwest::header::InvalidHeaderValue),
}

View File

@ -17,6 +17,8 @@ pub use self::error::Error;
pub type Embedding = Vec<f32>;
pub const REQUEST_PARALLELISM: usize = 40;
/// One or multiple embeddings stored consecutively in a flat vector.
pub struct Embeddings<F> {
data: Vec<F>,
@ -99,7 +101,7 @@ pub enum Embedder {
/// An embedder based on running local models, fetched from the Hugging Face Hub.
HuggingFace(hf::Embedder),
/// An embedder based on making embedding queries against the OpenAI API.
OpenAi(openai::sync::Embedder),
OpenAi(openai::Embedder),
/// An embedder based on the user providing the embeddings in the documents and queries.
UserProvided(manual::Embedder),
Ollama(ollama::Embedder),
@ -202,7 +204,7 @@ impl Embedder {
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
Ok(match options {
EmbedderOptions::HuggingFace(options) => Self::HuggingFace(hf::Embedder::new(options)?),
EmbedderOptions::OpenAi(options) => Self::OpenAi(openai::sync::Embedder::new(options)?),
EmbedderOptions::OpenAi(options) => Self::OpenAi(openai::Embedder::new(options)?),
EmbedderOptions::Ollama(options) => Self::Ollama(ollama::Embedder::new(options)?),
EmbedderOptions::UserProvided(options) => {
Self::UserProvided(manual::Embedder::new(options))
@ -213,17 +215,14 @@ impl Embedder {
/// Embed one or multiple texts.
///
/// Each text can be embedded as one or multiple embeddings.
pub async fn embed(
pub fn embed(
&self,
texts: Vec<String>,
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed(texts),
Embedder::OpenAi(embedder) => embedder.embed(texts),
Embedder::Ollama(embedder) => {
let client = embedder.new_client()?;
embedder.embed(texts, &client).await
}
Embedder::Ollama(embedder) => embedder.embed(texts),
Embedder::UserProvided(embedder) => embedder.embed(texts),
}
}
@ -231,18 +230,15 @@ impl Embedder {
/// Embed multiple chunks of texts.
///
/// Each chunk is composed of one or multiple texts.
///
/// # Panics
///
/// - if called from an asynchronous context
pub fn embed_chunks(
&self,
text_chunks: Vec<Vec<String>>,
threads: &rayon::ThreadPool,
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed_chunks(text_chunks),
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks),
Embedder::Ollama(embedder) => embedder.embed_chunks(text_chunks),
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks, threads),
Embedder::Ollama(embedder) => embedder.embed_chunks(text_chunks, threads),
Embedder::UserProvided(embedder) => embedder.embed_chunks(text_chunks),
}
}

View File

@ -1,293 +1,94 @@
// Copied from "openai.rs" with the sections I actually understand changed for Ollama.
// The common components of the Ollama and OpenAI interfaces might need to be extracted.
use rayon::iter::{IntoParallelIterator as _, ParallelIterator as _};
use std::fmt::Display;
use reqwest::StatusCode;
use super::error::{EmbedError, NewEmbedderError};
use super::openai::Retry;
use super::{DistributionShift, Embedding, Embeddings};
use super::error::{EmbedError, EmbedErrorKind, NewEmbedderError, NewEmbedderErrorKind};
use super::rest::{Embedder as RestEmbedder, EmbedderOptions as RestEmbedderOptions};
use super::{DistributionShift, Embeddings};
#[derive(Debug)]
pub struct Embedder {
headers: reqwest::header::HeaderMap,
options: EmbedderOptions,
rest_embedder: RestEmbedder,
}
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
pub struct EmbedderOptions {
pub embedding_model: EmbeddingModel,
}
#[derive(
Debug, Clone, Hash, PartialEq, Eq, serde::Serialize, serde::Deserialize, deserr::Deserr,
)]
#[deserr(deny_unknown_fields)]
pub struct EmbeddingModel {
name: String,
dimensions: usize,
}
#[derive(Debug, serde::Serialize)]
struct OllamaRequest<'a> {
model: &'a str,
prompt: &'a str,
}
#[derive(Debug, serde::Deserialize)]
struct OllamaResponse {
embedding: Embedding,
}
#[derive(Debug, serde::Deserialize)]
pub struct OllamaError {
error: String,
}
impl EmbeddingModel {
pub fn max_token(&self) -> usize {
// this might not be the same for all models
8192
}
pub fn default_dimensions(&self) -> usize {
// Dimensions for nomic-embed-text
768
}
pub fn name(&self) -> String {
self.name.clone()
}
pub fn from_name(name: &str) -> Self {
Self { name: name.to_string(), dimensions: 0 }
}
pub fn supports_overriding_dimensions(&self) -> bool {
false
}
}
impl Default for EmbeddingModel {
fn default() -> Self {
Self { name: "nomic-embed-text".to_string(), dimensions: 0 }
}
pub embedding_model: String,
}
impl EmbedderOptions {
pub fn with_default_model() -> Self {
Self { embedding_model: Default::default() }
Self { embedding_model: "nomic-embed-text".into() }
}
pub fn with_embedding_model(embedding_model: EmbeddingModel) -> Self {
pub fn with_embedding_model(embedding_model: String) -> Self {
Self { embedding_model }
}
}
impl Embedder {
pub fn new_client(&self) -> Result<reqwest::Client, EmbedError> {
reqwest::ClientBuilder::new()
.default_headers(self.headers.clone())
.build()
.map_err(EmbedError::openai_initialize_web_client)
}
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
let mut headers = reqwest::header::HeaderMap::new();
headers.insert(
reqwest::header::CONTENT_TYPE,
reqwest::header::HeaderValue::from_static("application/json"),
);
let mut embedder = Self { options, headers };
let rt = tokio::runtime::Builder::new_current_thread()
.enable_io()
.enable_time()
.build()
.map_err(EmbedError::openai_runtime_init)
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
// Get dimensions from Ollama
let request =
OllamaRequest { model: &embedder.options.embedding_model.name(), prompt: "test" };
// TODO: Refactor into shared error type
let client = embedder
.new_client()
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
rt.block_on(async move {
let response = client
.post(get_ollama_path())
.json(&request)
.send()
.await
.map_err(EmbedError::ollama_unexpected)
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
// Process error in case model not found
let response = Self::check_response(response).await.map_err(|_err| {
let e = EmbedError::ollama_model_not_found(OllamaError {
error: format!("model: {}", embedder.options.embedding_model.name()),
});
NewEmbedderError::ollama_could_not_determine_dimension(e)
})?;
let response: OllamaResponse = response
.json()
.await
.map_err(EmbedError::ollama_unexpected)
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
let embedding = Embeddings::from_single_embedding(response.embedding);
embedder.options.embedding_model.dimensions = embedding.dimension();
tracing::info!(
"ollama model {} with dimensionality {} added",
embedder.options.embedding_model.name(),
embedding.dimension()
);
Ok(embedder)
})
}
async fn check_response(response: reqwest::Response) -> Result<reqwest::Response, Retry> {
if !response.status().is_success() {
// Not the same number of possible error cases covered as with OpenAI.
match response.status() {
StatusCode::TOO_MANY_REQUESTS => {
let error_response: OllamaError = response
.json()
.await
.map_err(EmbedError::ollama_unexpected)
.map_err(Retry::retry_later)?;
return Err(Retry::rate_limited(EmbedError::ollama_too_many_requests(
OllamaError { error: error_response.error },
)));
}
StatusCode::SERVICE_UNAVAILABLE => {
let error_response: OllamaError = response
.json()
.await
.map_err(EmbedError::ollama_unexpected)
.map_err(Retry::retry_later)?;
return Err(Retry::retry_later(EmbedError::ollama_internal_server_error(
OllamaError { error: error_response.error },
)));
}
StatusCode::NOT_FOUND => {
let error_response: OllamaError = response
.json()
.await
.map_err(EmbedError::ollama_unexpected)
.map_err(Retry::give_up)?;
return Err(Retry::give_up(EmbedError::ollama_model_not_found(OllamaError {
error: error_response.error,
})));
}
code => {
return Err(Retry::give_up(EmbedError::ollama_unhandled_status_code(
code.as_u16(),
)));
}
let model = options.embedding_model.as_str();
let rest_embedder = match RestEmbedder::new(RestEmbedderOptions {
api_key: None,
distribution: None,
dimensions: None,
url: get_ollama_path(),
query: serde_json::json!({
"model": model,
}),
input_field: vec!["prompt".to_owned()],
path_to_embeddings: Default::default(),
embedding_object: vec!["embedding".to_owned()],
input_type: super::rest::InputType::Text,
}) {
Ok(embedder) => embedder,
Err(NewEmbedderError {
kind:
NewEmbedderErrorKind::CouldNotDetermineDimension(EmbedError {
kind: super::error::EmbedErrorKind::RestOtherStatusCode(404, error),
fault: _,
}),
fault: _,
}) => {
return Err(NewEmbedderError::could_not_determine_dimension(
EmbedError::ollama_model_not_found(error),
))
}
}
Ok(response)
Err(error) => return Err(error),
};
Ok(Self { rest_embedder })
}
pub async fn embed(
&self,
texts: Vec<String>,
client: &reqwest::Client,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
// Ollama only embedds one document at a time.
let mut results = Vec::with_capacity(texts.len());
// The retry loop is inside the texts loop, might have to switch that around
for text in texts {
// Retries copied from openai.rs
for attempt in 0..7 {
let retry_duration = match self.try_embed(&text, client).await {
Ok(result) => {
results.push(result);
break;
}
Err(retry) => {
tracing::warn!("Failed: {}", retry.error);
retry.into_duration(attempt)
}
}?;
tracing::warn!(
"Attempt #{}, retrying after {}ms.",
attempt,
retry_duration.as_millis()
);
tokio::time::sleep(retry_duration).await;
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
match self.rest_embedder.embed(texts) {
Ok(embeddings) => Ok(embeddings),
Err(EmbedError { kind: EmbedErrorKind::RestOtherStatusCode(404, error), fault: _ }) => {
Err(EmbedError::ollama_model_not_found(error))
}
Err(error) => Err(error),
}
Ok(results)
}
async fn try_embed(
&self,
text: &str,
client: &reqwest::Client,
) -> Result<Embeddings<f32>, Retry> {
let request = OllamaRequest { model: &self.options.embedding_model.name(), prompt: text };
let response = client
.post(get_ollama_path())
.json(&request)
.send()
.await
.map_err(EmbedError::openai_network)
.map_err(Retry::retry_later)?;
let response = Self::check_response(response).await?;
let response: OllamaResponse = response
.json()
.await
.map_err(EmbedError::openai_unexpected)
.map_err(Retry::retry_later)?;
tracing::trace!("response: {:?}", response.embedding);
let embedding = Embeddings::from_single_embedding(response.embedding);
Ok(embedding)
}
pub fn embed_chunks(
&self,
text_chunks: Vec<Vec<String>>,
threads: &rayon::ThreadPool,
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
let rt = tokio::runtime::Builder::new_current_thread()
.enable_io()
.enable_time()
.build()
.map_err(EmbedError::openai_runtime_init)?;
let client = self.new_client()?;
rt.block_on(futures::future::try_join_all(
text_chunks.into_iter().map(|prompts| self.embed(prompts, &client)),
))
threads.install(move || {
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
})
}
// Defaults copied from openai.rs
pub fn chunk_count_hint(&self) -> usize {
10
self.rest_embedder.chunk_count_hint()
}
pub fn prompt_count_in_chunk_hint(&self) -> usize {
10
self.rest_embedder.prompt_count_in_chunk_hint()
}
pub fn dimensions(&self) -> usize {
self.options.embedding_model.dimensions
self.rest_embedder.dimensions()
}
pub fn distribution(&self) -> Option<DistributionShift> {
@ -295,12 +96,6 @@ impl Embedder {
}
}
impl Display for OllamaError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.error)
}
}
fn get_ollama_path() -> String {
// Important: Hostname not enough, has to be entire path to embeddings endpoint
std::env::var("MEILI_OLLAMA_URL").unwrap_or("http://localhost:11434/api/embeddings".to_string())

View File

@ -1,9 +1,9 @@
use std::fmt::Display;
use serde::{Deserialize, Serialize};
use rayon::iter::{IntoParallelIterator, ParallelIterator as _};
use super::error::{EmbedError, NewEmbedderError};
use super::{DistributionShift, Embedding, Embeddings};
use super::rest::{Embedder as RestEmbedder, EmbedderOptions as RestEmbedderOptions};
use super::{DistributionShift, Embeddings};
use crate::vector::error::EmbedErrorKind;
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
pub struct EmbedderOptions {
@ -12,6 +12,32 @@ pub struct EmbedderOptions {
pub dimensions: Option<usize>,
}
impl EmbedderOptions {
pub fn dimensions(&self) -> usize {
if self.embedding_model.supports_overriding_dimensions() {
self.dimensions.unwrap_or(self.embedding_model.default_dimensions())
} else {
self.embedding_model.default_dimensions()
}
}
pub fn query(&self) -> serde_json::Value {
let model = self.embedding_model.name();
let mut query = serde_json::json!({
"model": model,
});
if self.embedding_model.supports_overriding_dimensions() {
if let Some(dimensions) = self.dimensions {
query["dimensions"] = dimensions.into();
}
}
query
}
}
#[derive(
Debug,
Clone,
@ -117,364 +143,112 @@ impl EmbedderOptions {
}
}
// retrying in case of failure
pub struct Retry {
pub error: EmbedError,
strategy: RetryStrategy,
}
pub enum RetryStrategy {
GiveUp,
Retry,
RetryTokenized,
RetryAfterRateLimit,
}
impl Retry {
pub fn give_up(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::GiveUp }
}
pub fn retry_later(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::Retry }
}
pub fn retry_tokenized(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::RetryTokenized }
}
pub fn rate_limited(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::RetryAfterRateLimit }
}
pub fn into_duration(self, attempt: u32) -> Result<tokio::time::Duration, EmbedError> {
match self.strategy {
RetryStrategy::GiveUp => Err(self.error),
RetryStrategy::Retry => Ok(tokio::time::Duration::from_millis((10u64).pow(attempt))),
RetryStrategy::RetryTokenized => Ok(tokio::time::Duration::from_millis(1)),
RetryStrategy::RetryAfterRateLimit => {
Ok(tokio::time::Duration::from_millis(100 + 10u64.pow(attempt)))
}
}
}
pub fn must_tokenize(&self) -> bool {
matches!(self.strategy, RetryStrategy::RetryTokenized)
}
pub fn into_error(self) -> EmbedError {
self.error
}
}
// openai api structs
#[derive(Debug, Serialize)]
struct OpenAiRequest<'a, S: AsRef<str> + serde::Serialize> {
model: &'a str,
input: &'a [S],
#[serde(skip_serializing_if = "Option::is_none")]
dimensions: Option<usize>,
}
#[derive(Debug, Serialize)]
struct OpenAiTokensRequest<'a> {
model: &'a str,
input: &'a [usize],
#[serde(skip_serializing_if = "Option::is_none")]
dimensions: Option<usize>,
}
#[derive(Debug, Deserialize)]
struct OpenAiResponse {
data: Vec<OpenAiEmbedding>,
}
#[derive(Debug, Deserialize)]
struct OpenAiErrorResponse {
error: OpenAiError,
}
#[derive(Debug, Deserialize)]
pub struct OpenAiError {
message: String,
// type: String,
code: Option<String>,
}
impl Display for OpenAiError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match &self.code {
Some(code) => write!(f, "{} ({})", self.message, code),
None => write!(f, "{}", self.message),
}
}
}
#[derive(Debug, Deserialize)]
struct OpenAiEmbedding {
embedding: Embedding,
// object: String,
// index: usize,
}
fn infer_api_key() -> String {
std::env::var("MEILI_OPENAI_API_KEY")
.or_else(|_| std::env::var("OPENAI_API_KEY"))
.unwrap_or_default()
}
pub mod sync {
use rayon::iter::{IntoParallelIterator, ParallelIterator as _};
#[derive(Debug)]
pub struct Embedder {
tokenizer: tiktoken_rs::CoreBPE,
rest_embedder: RestEmbedder,
options: EmbedderOptions,
}
use super::{
EmbedError, Embedding, Embeddings, NewEmbedderError, OpenAiErrorResponse, OpenAiRequest,
OpenAiResponse, OpenAiTokensRequest, Retry, OPENAI_EMBEDDINGS_URL,
};
use crate::vector::DistributionShift;
impl Embedder {
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
let mut inferred_api_key = Default::default();
let api_key = options.api_key.as_ref().unwrap_or_else(|| {
inferred_api_key = infer_api_key();
&inferred_api_key
});
const REQUEST_PARALLELISM: usize = 10;
let rest_embedder = RestEmbedder::new(RestEmbedderOptions {
api_key: Some(api_key.clone()),
distribution: options.embedding_model.distribution(),
dimensions: Some(options.dimensions()),
url: OPENAI_EMBEDDINGS_URL.to_owned(),
query: options.query(),
input_field: vec!["input".to_owned()],
input_type: crate::vector::rest::InputType::TextArray,
path_to_embeddings: vec!["data".to_owned()],
embedding_object: vec!["embedding".to_owned()],
})?;
#[derive(Debug)]
pub struct Embedder {
tokenizer: tiktoken_rs::CoreBPE,
options: super::EmbedderOptions,
bearer: String,
threads: rayon::ThreadPool,
// looking at the code it is very unclear that this can actually fail.
let tokenizer = tiktoken_rs::cl100k_base().unwrap();
Ok(Self { options, rest_embedder, tokenizer })
}
impl Embedder {
pub fn new(options: super::EmbedderOptions) -> Result<Self, NewEmbedderError> {
let mut inferred_api_key = Default::default();
let api_key = options.api_key.as_ref().unwrap_or_else(|| {
inferred_api_key = super::infer_api_key();
&inferred_api_key
});
let bearer = format!("Bearer {api_key}");
// looking at the code it is very unclear that this can actually fail.
let tokenizer = tiktoken_rs::cl100k_base().unwrap();
// FIXME: unwrap
let threads = rayon::ThreadPoolBuilder::new()
.num_threads(REQUEST_PARALLELISM)
.thread_name(|index| format!("embedder-chunk-{index}"))
.build()
.unwrap();
Ok(Self { options, bearer, tokenizer, threads })
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
match self.rest_embedder.embed_ref(&texts) {
Ok(embeddings) => Ok(embeddings),
Err(EmbedError { kind: EmbedErrorKind::RestBadRequest(error), fault: _ }) => {
tracing::warn!(error=?error, "OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your document template.");
self.try_embed_tokenized(&texts)
}
Err(error) => Err(error),
}
}
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
let mut tokenized = false;
let client = ureq::agent();
for attempt in 0..7 {
let result = if tokenized {
self.try_embed_tokenized(&texts, &client)
} else {
self.try_embed(&texts, &client)
};
let retry_duration = match result {
Ok(embeddings) => return Ok(embeddings),
Err(retry) => {
tracing::warn!("Failed: {}", retry.error);
tokenized |= retry.must_tokenize();
retry.into_duration(attempt)
}
}?;
let retry_duration = retry_duration.min(std::time::Duration::from_secs(60)); // don't wait more than a minute
tracing::warn!(
"Attempt #{}, retrying after {}ms.",
attempt,
retry_duration.as_millis()
);
std::thread::sleep(retry_duration);
fn try_embed_tokenized(&self, text: &[String]) -> Result<Vec<Embeddings<f32>>, EmbedError> {
pub const OVERLAP_SIZE: usize = 200;
let mut all_embeddings = Vec::with_capacity(text.len());
for text in text {
let max_token_count = self.options.embedding_model.max_token();
let encoded = self.tokenizer.encode_ordinary(text.as_str());
let len = encoded.len();
if len < max_token_count {
all_embeddings.append(&mut self.rest_embedder.embed_ref(&[text])?);
continue;
}
let result = if tokenized {
self.try_embed_tokenized(&texts, &client)
} else {
self.try_embed(&texts, &client)
};
let mut tokens = encoded.as_slice();
let mut embeddings_for_prompt = Embeddings::new(self.dimensions());
while tokens.len() > max_token_count {
let window = &tokens[..max_token_count];
let embedding = self.rest_embedder.embed_tokens(window)?;
/// FIXME: unwrap
embeddings_for_prompt.append(embedding.into_inner()).unwrap();
result.map_err(Retry::into_error)
}
fn check_response(
response: Result<ureq::Response, ureq::Error>,
) -> Result<ureq::Response, Retry> {
match response {
Ok(response) => Ok(response),
Err(ureq::Error::Status(code, response)) => {
let error_response: Option<OpenAiErrorResponse> = response.into_json().ok();
let error = error_response.map(|response| response.error);
Err(match code {
401 => Retry::give_up(EmbedError::openai_auth_error(error)),
429 => Retry::rate_limited(EmbedError::openai_too_many_requests(error)),
400 => {
tracing::warn!("OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your document template.");
Retry::retry_tokenized(EmbedError::openai_too_many_tokens(error))
}
500..=599 => {
Retry::retry_later(EmbedError::openai_internal_server_error(error))
}
x => Retry::retry_later(EmbedError::openai_unhandled_status_code(code)),
})
}
Err(ureq::Error::Transport(transport)) => {
Err(Retry::retry_later(EmbedError::openai_network(transport)))
}
}
}
fn try_embed<S: AsRef<str> + serde::Serialize>(
&self,
texts: &[S],
client: &ureq::Agent,
) -> Result<Vec<Embeddings<f32>>, Retry> {
for text in texts {
tracing::trace!("Received prompt: {}", text.as_ref())
}
let request = OpenAiRequest {
model: self.options.embedding_model.name(),
input: texts,
dimensions: self.overriden_dimensions(),
};
let response = client
.post(OPENAI_EMBEDDINGS_URL)
.set("Authorization", &self.bearer)
.send_json(&request);
let response = Self::check_response(response)?;
let response: OpenAiResponse = response
.into_json()
.map_err(EmbedError::openai_unexpected)
.map_err(Retry::retry_later)?;
tracing::trace!("response: {:?}", response.data);
Ok(response
.data
.into_iter()
.map(|data| Embeddings::from_single_embedding(data.embedding))
.collect())
}
fn try_embed_tokenized(
&self,
text: &[String],
client: &ureq::Agent,
) -> Result<Vec<Embeddings<f32>>, Retry> {
pub const OVERLAP_SIZE: usize = 200;
let mut all_embeddings = Vec::with_capacity(text.len());
for text in text {
let max_token_count = self.options.embedding_model.max_token();
let encoded = self.tokenizer.encode_ordinary(text.as_str());
let len = encoded.len();
if len < max_token_count {
all_embeddings.append(&mut self.try_embed(&[text], client)?);
continue;
}
let mut tokens = encoded.as_slice();
let mut embeddings_for_prompt = Embeddings::new(self.dimensions());
while tokens.len() > max_token_count {
let window = &tokens[..max_token_count];
embeddings_for_prompt.push(self.embed_tokens(window, client)?).unwrap();
tokens = &tokens[max_token_count - OVERLAP_SIZE..];
}
// end of text
embeddings_for_prompt.push(self.embed_tokens(tokens, client)?).unwrap();
all_embeddings.push(embeddings_for_prompt);
}
Ok(all_embeddings)
}
fn embed_tokens(&self, tokens: &[usize], client: &ureq::Agent) -> Result<Embedding, Retry> {
for attempt in 0..9 {
let duration = match self.try_embed_tokens(tokens, client) {
Ok(embedding) => return Ok(embedding),
Err(retry) => retry.into_duration(attempt),
}
.map_err(Retry::retry_later)?;
std::thread::sleep(duration);
tokens = &tokens[max_token_count - OVERLAP_SIZE..];
}
self.try_embed_tokens(tokens, client)
.map_err(|retry| Retry::give_up(retry.into_error()))
// end of text
let embedding = self.rest_embedder.embed_tokens(tokens)?;
/// FIXME: unwrap
embeddings_for_prompt.append(embedding.into_inner()).unwrap();
all_embeddings.push(embeddings_for_prompt);
}
Ok(all_embeddings)
}
fn try_embed_tokens(
&self,
tokens: &[usize],
client: &ureq::Agent,
) -> Result<Embedding, Retry> {
let request = OpenAiTokensRequest {
model: self.options.embedding_model.name(),
input: tokens,
dimensions: self.overriden_dimensions(),
};
let response = client
.post(OPENAI_EMBEDDINGS_URL)
.set("Authorization", &self.bearer)
.send_json(&request);
pub fn embed_chunks(
&self,
text_chunks: Vec<Vec<String>>,
threads: &rayon::ThreadPool,
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
threads.install(move || {
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
})
}
let response = Self::check_response(response)?;
pub fn chunk_count_hint(&self) -> usize {
self.rest_embedder.chunk_count_hint()
}
let mut response: OpenAiResponse = response
.into_json()
.map_err(EmbedError::openai_unexpected)
.map_err(Retry::retry_later)?;
pub fn prompt_count_in_chunk_hint(&self) -> usize {
self.rest_embedder.prompt_count_in_chunk_hint()
}
Ok(response.data.pop().map(|data| data.embedding).unwrap_or_default())
}
pub fn dimensions(&self) -> usize {
self.options.dimensions()
}
pub fn embed_chunks(
&self,
text_chunks: Vec<Vec<String>>,
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
self.threads
.install(move || text_chunks.into_par_iter().map(|chunk| self.embed(chunk)))
.collect()
}
pub fn chunk_count_hint(&self) -> usize {
10
}
pub fn prompt_count_in_chunk_hint(&self) -> usize {
10
}
pub fn dimensions(&self) -> usize {
if self.options.embedding_model.supports_overriding_dimensions() {
self.options.dimensions.unwrap_or(self.options.embedding_model.default_dimensions())
} else {
self.options.embedding_model.default_dimensions()
}
}
pub fn distribution(&self) -> Option<DistributionShift> {
self.options.embedding_model.distribution()
}
fn overriden_dimensions(&self) -> Option<usize> {
if self.options.embedding_model.supports_overriding_dimensions() {
self.options.dimensions
} else {
None
}
}
pub fn distribution(&self) -> Option<DistributionShift> {
self.options.embedding_model.distribution()
}
}

View File

@ -1,9 +1,62 @@
use rayon::iter::{IntoParallelIterator as _, ParallelIterator as _};
use serde::Serialize;
use super::openai::Retry;
use super::{DistributionShift, EmbedError, Embeddings, NewEmbedderError};
use crate::VectorOrArrayOfVectors;
use super::{
DistributionShift, EmbedError, Embedding, Embeddings, NewEmbedderError, REQUEST_PARALLELISM,
};
// retrying in case of failure
pub struct Retry {
pub error: EmbedError,
strategy: RetryStrategy,
}
pub enum RetryStrategy {
GiveUp,
Retry,
RetryTokenized,
RetryAfterRateLimit,
}
impl Retry {
pub fn give_up(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::GiveUp }
}
pub fn retry_later(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::Retry }
}
pub fn retry_tokenized(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::RetryTokenized }
}
pub fn rate_limited(error: EmbedError) -> Self {
Self { error, strategy: RetryStrategy::RetryAfterRateLimit }
}
pub fn into_duration(self, attempt: u32) -> Result<std::time::Duration, EmbedError> {
match self.strategy {
RetryStrategy::GiveUp => Err(self.error),
RetryStrategy::Retry => Ok(std::time::Duration::from_millis((10u64).pow(attempt))),
RetryStrategy::RetryTokenized => Ok(std::time::Duration::from_millis(1)),
RetryStrategy::RetryAfterRateLimit => {
Ok(std::time::Duration::from_millis(100 + 10u64.pow(attempt)))
}
}
}
pub fn must_tokenize(&self) -> bool {
matches!(self.strategy, RetryStrategy::RetryTokenized)
}
pub fn into_error(self) -> EmbedError {
self.error
}
}
#[derive(Debug)]
pub struct Embedder {
client: ureq::Agent,
options: EmbedderOptions,
@ -11,20 +64,35 @@ pub struct Embedder {
dimensions: usize,
}
#[derive(Debug)]
pub struct EmbedderOptions {
api_key: Option<String>,
distribution: Option<DistributionShift>,
dimensions: Option<usize>,
url: String,
query: liquid::Template,
response_field: Vec<String>,
pub api_key: Option<String>,
pub distribution: Option<DistributionShift>,
pub dimensions: Option<usize>,
pub url: String,
pub query: serde_json::Value,
pub input_field: Vec<String>,
// path to the array of embeddings
pub path_to_embeddings: Vec<String>,
// shape of a single embedding
pub embedding_object: Vec<String>,
pub input_type: InputType,
}
#[derive(Debug)]
pub enum InputType {
Text,
TextArray,
}
impl Embedder {
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
let bearer = options.api_key.as_deref().map(|api_key| format!("Bearer: {api_key}"));
let bearer = options.api_key.as_deref().map(|api_key| format!("Bearer {api_key}"));
let client = ureq::agent();
let client = ureq::AgentBuilder::new()
.max_idle_connections(REQUEST_PARALLELISM * 2)
.max_idle_connections_per_host(REQUEST_PARALLELISM * 2)
.build();
let dimensions = if let Some(dimensions) = options.dimensions {
dimensions
@ -36,7 +104,20 @@ impl Embedder {
}
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
embed(&self.client, &self.options, self.bearer.as_deref(), texts.as_slice())
embed(&self.client, &self.options, self.bearer.as_deref(), texts.as_slice(), texts.len())
}
pub fn embed_ref<S>(&self, texts: &[S]) -> Result<Vec<Embeddings<f32>>, EmbedError>
where
S: AsRef<str> + Serialize,
{
embed(&self.client, &self.options, self.bearer.as_deref(), texts, texts.len())
}
pub fn embed_tokens(&self, tokens: &[usize]) -> Result<Embeddings<f32>, EmbedError> {
let mut embeddings = embed(&self.client, &self.options, self.bearer.as_deref(), tokens, 1)?;
// unwrap: guaranteed that embeddings.len() == 1, otherwise the previous line terminated in error
Ok(embeddings.pop().unwrap())
}
pub fn embed_chunks(
@ -44,17 +125,20 @@ impl Embedder {
text_chunks: Vec<Vec<String>>,
threads: &rayon::ThreadPool,
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
threads
.install(move || text_chunks.into_par_iter().map(|chunk| self.embed(chunk)))
.collect()
threads.install(move || {
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
})
}
pub fn chunk_count_hint(&self) -> usize {
10
super::REQUEST_PARALLELISM
}
pub fn prompt_count_in_chunk_hint(&self) -> usize {
10
match self.options.input_type {
InputType::Text => 1,
InputType::TextArray => 10,
}
}
pub fn dimensions(&self) -> usize {
@ -71,9 +155,9 @@ fn infer_dimensions(
options: &EmbedderOptions,
bearer: Option<&str>,
) -> Result<usize, NewEmbedderError> {
let v = embed(client, options, bearer, ["test"].as_slice())
let v = embed(client, options, bearer, ["test"].as_slice(), 1)
.map_err(NewEmbedderError::could_not_determine_dimension)?;
// unwrap: guaranteed that v.len() == ["test"].len() == 1, otherwise the previous line terminated in error
// unwrap: guaranteed that v.len() == 1, otherwise the previous line terminated in error
Ok(v.first().unwrap().dimension())
}
@ -82,33 +166,57 @@ fn embed<S>(
options: &EmbedderOptions,
bearer: Option<&str>,
inputs: &[S],
expected_count: usize,
) -> Result<Vec<Embeddings<f32>>, EmbedError>
where
S: serde::Serialize,
S: Serialize,
{
let request = client.post(&options.url);
let request =
if let Some(bearer) = bearer { request.set("Authorization", bearer) } else { request };
let request = request.set("Content-Type", "application/json");
let body = options
.query
.render(
&liquid::to_object(&serde_json::json!({
"input": inputs,
}))
.map_err(EmbedError::rest_template_context_serialization)?,
)
.map_err(EmbedError::rest_template_render)?;
let input_value = match options.input_type {
InputType::Text => serde_json::json!(inputs.first()),
InputType::TextArray => serde_json::json!(inputs),
};
let body = match options.input_field.as_slice() {
[] => {
// inject input in body
input_value
}
[input] => {
let mut body = options.query.clone();
/// FIXME unwrap
body.as_object_mut().unwrap().insert(input.clone(), input_value);
body
}
[path @ .., input] => {
let mut body = options.query.clone();
/// FIXME unwrap
let mut current_value = &mut body;
for component in path {
current_value = current_value
.as_object_mut()
.unwrap()
.entry(component.clone())
.or_insert(serde_json::json!({}));
}
current_value.as_object_mut().unwrap().insert(input.clone(), input_value);
body
}
};
for attempt in 0..7 {
let response = request.send_string(&body);
let response = request.clone().send_json(&body);
let result = check_response(response);
let retry_duration = match result {
Ok(response) => {
return response_to_embedding(response, &options.response_field, inputs.len())
}
Ok(response) => return response_to_embedding(response, options, expected_count),
Err(retry) => {
tracing::warn!("Failed: {}", retry.error);
retry.into_duration(attempt)
@ -120,11 +228,11 @@ where
std::thread::sleep(retry_duration);
}
let response = request.send_string(&body);
let response = request.send_json(&body);
let result = check_response(response);
result
.map_err(Retry::into_error)
.and_then(|response| response_to_embedding(response, &options.response_field, inputs.len()))
.and_then(|response| response_to_embedding(response, options, expected_count))
}
fn check_response(response: Result<ureq::Response, ureq::Error>) -> Result<ureq::Response, Retry> {
@ -139,7 +247,10 @@ fn check_response(response: Result<ureq::Response, ureq::Error>) -> Result<ureq:
500..=599 => {
Retry::retry_later(EmbedError::rest_internal_server_error(code, error_response))
}
x => Retry::retry_later(EmbedError::rest_other_status_code(code, error_response)),
402..=499 => {
Retry::give_up(EmbedError::rest_other_status_code(code, error_response))
}
_ => Retry::retry_later(EmbedError::rest_other_status_code(code, error_response)),
})
}
Err(ureq::Error::Transport(transport)) => {
@ -148,34 +259,66 @@ fn check_response(response: Result<ureq::Response, ureq::Error>) -> Result<ureq:
}
}
fn response_to_embedding<S: AsRef<str>>(
fn response_to_embedding(
response: ureq::Response,
response_field: &[S],
options: &EmbedderOptions,
expected_count: usize,
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
let response: serde_json::Value =
response.into_json().map_err(EmbedError::rest_response_deserialization)?;
let mut current_value = &response;
for component in response_field {
for component in &options.path_to_embeddings {
let component = component.as_ref();
let current_value = current_value.get(component).ok_or_else(|| {
EmbedError::rest_response_missing_embeddings(response, component, response_field)
current_value = current_value.get(component).ok_or_else(|| {
EmbedError::rest_response_missing_embeddings(
response.clone(),
component,
&options.path_to_embeddings,
)
})?;
}
let embeddings = current_value.to_owned();
let embeddings = match options.input_type {
InputType::Text => {
for component in &options.embedding_object {
current_value = current_value.get(component).ok_or_else(|| {
EmbedError::rest_response_missing_embeddings(
response.clone(),
component,
&options.embedding_object,
)
})?;
}
let embeddings = current_value.to_owned();
let embeddings: Embedding =
serde_json::from_value(embeddings).map_err(EmbedError::rest_response_format)?;
let embeddings: VectorOrArrayOfVectors =
serde_json::from_value(embeddings).map_err(EmbedError::rest_response_format)?;
let embeddings = embeddings.into_array_of_vectors();
let embeddings: Vec<Embeddings<f32>> = embeddings
.into_iter()
.flatten()
.map(|embedding| Embeddings::from_single_embedding(embedding))
.collect();
vec![Embeddings::from_single_embedding(embeddings)]
}
InputType::TextArray => {
let empty = vec![];
let values = current_value.as_array().unwrap_or(&empty);
let mut embeddings: Vec<Embeddings<f32>> = Vec::with_capacity(expected_count);
for value in values {
let mut current_value = value;
for component in &options.embedding_object {
current_value = current_value.get(component).ok_or_else(|| {
EmbedError::rest_response_missing_embeddings(
response.clone(),
component,
&options.embedding_object,
)
})?;
}
let embedding = current_value.to_owned();
let embedding: Embedding =
serde_json::from_value(embedding).map_err(EmbedError::rest_response_format)?;
embeddings.push(Embeddings::from_single_embedding(embedding));
}
embeddings
}
};
if embeddings.len() != expected_count {
return Err(EmbedError::rest_response_embedding_count(expected_count, embeddings.len()));

View File

@ -204,7 +204,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
},
super::EmbedderOptions::Ollama(options) => Self {
source: Setting::Set(EmbedderSource::Ollama),
model: Setting::Set(options.embedding_model.name().to_owned()),
model: Setting::Set(options.embedding_model.to_owned()),
revision: Setting::NotSet,
api_key: Setting::NotSet,
dimensions: Setting::NotSet,
@ -248,7 +248,7 @@ impl From<EmbeddingSettings> for EmbeddingConfig {
let mut options: ollama::EmbedderOptions =
super::ollama::EmbedderOptions::with_default_model();
if let Some(model) = model.set() {
options.embedding_model = super::ollama::EmbeddingModel::from_name(&model);
options.embedding_model = model;
}
this.embedder_options = super::EmbedderOptions::Ollama(options);
}