MeiliSearch/src/best_proximity.rs

225 lines
7.5 KiB
Rust
Raw Normal View History

use std::cmp;
2020-06-10 21:35:01 +02:00
use std::time::Instant;
use crate::iter_shortest_paths::astar_bag;
const ONE_ATTRIBUTE: u32 = 1000;
const MAX_DISTANCE: u32 = 8;
2020-06-09 17:32:25 +02:00
fn index_proximity(lhs: u32, rhs: u32) -> u32 {
if lhs <= rhs {
2020-06-09 17:32:25 +02:00
cmp::min(rhs - lhs, MAX_DISTANCE)
} else {
2020-06-16 12:10:23 +02:00
cmp::min((lhs - rhs) + 1, MAX_DISTANCE)
2020-06-09 17:32:25 +02:00
}
}
2020-06-16 12:10:23 +02:00
pub fn positions_proximity(lhs: u32, rhs: u32) -> u32 {
2020-06-09 17:32:25 +02:00
let (lhs_attr, lhs_index) = extract_position(lhs);
let (rhs_attr, rhs_index) = extract_position(rhs);
if lhs_attr != rhs_attr { MAX_DISTANCE }
else { index_proximity(lhs_index, rhs_index) }
}
// Returns the attribute and index parts.
fn extract_position(position: u32) -> (u32, u32) {
(position / ONE_ATTRIBUTE, position % ONE_ATTRIBUTE)
}
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum Node {
// Is this node is the first node.
Uninit,
Init {
// The layer where this node located.
layer: usize,
// The position where this node is located.
position: u32,
// The total accumulated proximity until this node, used for skipping nodes.
acc_proximity: u32,
// The parent position from the above layer.
parent_position: u32,
},
}
impl Node {
// TODO we must skip the successors that have already been seen
2020-06-11 17:43:06 +02:00
// TODO we must skip the successors that doesn't return any documents
// this way we are able to skip entire paths
fn successors(&self, positions: &[Vec<u32>], best_proximity: u32) -> Vec<(Node, u32)> {
match self {
Node::Uninit => {
positions[0].iter().map(|p| {
(Node::Init { layer: 0, position: *p, acc_proximity: 0, parent_position: 0 }, 0)
}).collect()
},
// We reached the highest layer
n @ Node::Init { .. } if n.is_complete(positions) => vec![],
Node::Init { layer, position, acc_proximity, .. } => {
positions[layer + 1].iter().filter_map(|p| {
let proximity = positions_proximity(*position, *p);
let node = Node::Init {
layer: layer + 1,
position: *p,
acc_proximity: acc_proximity + proximity,
parent_position: *position,
};
// We do not produce the nodes we have already seen in previous iterations loops.
if proximity > 7 || (node.is_complete(positions) && acc_proximity + proximity < best_proximity) {
None
} else {
Some((node, proximity))
}
}).collect()
}
}
2020-06-09 23:06:59 +02:00
}
fn is_complete(&self, positions: &[Vec<u32>]) -> bool {
match self {
Node::Uninit => false,
Node::Init { layer, .. } => *layer == positions.len() - 1,
}
2020-06-11 17:43:06 +02:00
}
fn position(&self) -> Option<u32> {
match self {
Node::Uninit => None,
Node::Init { position, .. } => Some(*position),
}
}
fn proximity(&self) -> u32 {
match self {
Node::Uninit => 0,
Node::Init { layer, position, acc_proximity, parent_position } => {
if layer.checked_sub(1).is_some() {
acc_proximity + positions_proximity(*position, *parent_position)
} else {
0
}
},
}
}
fn is_reachable<F>(&self, contains_documents: &mut F) -> bool
where F: FnMut((usize, u32), (usize, u32)) -> bool,
{
match self {
Node::Uninit => true,
Node::Init { layer, position, parent_position, .. } => {
match layer.checked_sub(1) {
Some(parent_layer) => {
(contains_documents)((parent_layer, *parent_position), (*layer, *position))
},
None => true,
}
},
}
}
}
pub struct BestProximity {
positions: Vec<Vec<u32>>,
2020-06-09 23:06:59 +02:00
best_proximity: u32,
}
impl BestProximity {
pub fn new(positions: Vec<Vec<u32>>) -> BestProximity {
let best_proximity = (positions.len() as u32).saturating_sub(1);
BestProximity { positions, best_proximity }
2020-06-09 23:06:59 +02:00
}
}
impl BestProximity {
pub fn next<F>(&mut self, mut contains_documents: F) -> Option<(u32, Vec<Vec<u32>>)>
where F: FnMut((usize, u32), (usize, u32)) -> bool,
{
2020-06-10 21:35:01 +02:00
let before = Instant::now();
if self.best_proximity == self.positions.len() as u32 * (MAX_DISTANCE - 1) {
2020-06-11 17:43:06 +02:00
return None;
2020-06-09 17:32:25 +02:00
}
2020-06-09 23:06:59 +02:00
let BestProximity { positions, best_proximity } = self;
2020-06-11 17:43:06 +02:00
let result = astar_bag(
&Node::Uninit, // start
|n| n.successors(&positions, *best_proximity),
|_| 0, // heuristic
|n| { // success
let c = n.is_complete(&positions) && n.proximity() >= *best_proximity;
if n.is_reachable(&mut contains_documents) { Some(c) } else { None }
},
2020-06-11 17:43:06 +02:00
);
2020-06-10 21:35:01 +02:00
eprintln!("BestProximity::next() took {:.02?}", before.elapsed());
2020-06-11 17:43:06 +02:00
match result {
Some((paths, proximity)) => {
self.best_proximity = proximity + 1;
// We retrieve the last path that we convert into a Vec
let paths: Vec<_> = paths.map(|p| p.iter().filter_map(Node::position).collect()).collect();
2020-06-11 17:43:06 +02:00
eprintln!("result: {} {:?}", proximity, paths);
Some((proximity, paths))
},
None => {
eprintln!("result: {:?}", None as Option<()>);
self.best_proximity += 1;
None
},
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn same_attribute() {
let positions = vec![
vec![0, 2, 3, 4 ],
vec![ 1, ],
vec![ 3, 6],
];
let mut iter = BestProximity::new(positions);
let f = |_, _| true;
assert_eq!(iter.next(f), Some((1+2, vec![vec![0, 1, 3]]))); // 3
assert_eq!(iter.next(f), Some((2+2, vec![vec![2, 1, 3]]))); // 4
assert_eq!(iter.next(f), Some((3+2, vec![vec![3, 1, 3]]))); // 5
assert_eq!(iter.next(f), Some((1+5, vec![vec![0, 1, 6], vec![4, 1, 3]]))); // 6
assert_eq!(iter.next(f), Some((2+5, vec![vec![2, 1, 6]]))); // 7
assert_eq!(iter.next(f), Some((3+5, vec![vec![3, 1, 6]]))); // 8
assert_eq!(iter.next(f), Some((4+5, vec![vec![4, 1, 6]]))); // 9
assert_eq!(iter.next(f), None);
}
#[test]
fn different_attributes() {
let positions = vec![
vec![0, 2, 1000, 1001, 2000 ],
vec![ 1, 1000, 2001 ],
vec![ 3, 6, 2002, 3000],
];
let mut iter = BestProximity::new(positions);
let f = |_, _| true;
assert_eq!(iter.next(f), Some((1+1, vec![vec![2000, 2001, 2002]]))); // 2
assert_eq!(iter.next(f), Some((1+2, vec![vec![0, 1, 3]]))); // 3
assert_eq!(iter.next(f), Some((2+2, vec![vec![2, 1, 3]]))); // 4
assert_eq!(iter.next(f), Some((1+5, vec![vec![0, 1, 6]]))); // 6
// We ignore others here...
}
#[test]
fn easy_proximities() {
fn slice_proximity(positions: &[u32]) -> u32 {
positions.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>()
}
assert_eq!(slice_proximity(&[1000, 1000, 2002]), 8);
}
}