MeiliSearch/src/best_proximity.rs

174 lines
5.4 KiB
Rust
Raw Normal View History

use std::cmp;
2020-06-10 21:35:01 +02:00
use std::time::Instant;
2020-06-11 17:43:06 +02:00
use pathfinding::directed::astar::astar_bag;
2020-06-11 11:55:03 +02:00
use crate::SmallVec16;
const ONE_ATTRIBUTE: u32 = 1000;
const MAX_DISTANCE: u32 = 8;
2020-06-09 17:32:25 +02:00
fn index_proximity(lhs: u32, rhs: u32) -> u32 {
if lhs <= rhs {
2020-06-09 17:32:25 +02:00
cmp::min(rhs - lhs, MAX_DISTANCE)
} else {
cmp::min(lhs - rhs, MAX_DISTANCE) + 1
}
}
fn positions_proximity(lhs: u32, rhs: u32) -> u32 {
let (lhs_attr, lhs_index) = extract_position(lhs);
let (rhs_attr, rhs_index) = extract_position(rhs);
if lhs_attr != rhs_attr { MAX_DISTANCE }
else { index_proximity(lhs_index, rhs_index) }
}
// Returns the attribute and index parts.
fn extract_position(position: u32) -> (u32, u32) {
(position / ONE_ATTRIBUTE, position % ONE_ATTRIBUTE)
}
2020-06-11 17:43:06 +02:00
#[derive(Debug, Default, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
2020-06-11 11:55:03 +02:00
struct Path(SmallVec16<u32>);
2020-06-09 23:06:59 +02:00
impl Path {
// TODO we must skip the successors that have already been sent
2020-06-11 17:43:06 +02:00
// TODO we must skip the successors that doesn't return any documents
// this way we are able to skip entire paths
fn successors(&self, positions: &[Vec<u32>], best_proximity: u32) -> Vec<(Path, u32)> {
let next_positions = match positions.get(self.0.len()) {
Some(positions) => positions,
None => return vec![],
};
next_positions.iter()
.filter_map(|p| {
let mut path = self.clone();
path.0.push(*p);
let proximity = path.proximity();
2020-06-11 17:43:06 +02:00
if path.is_complete(positions) && proximity < best_proximity {
None
} else {
Some((path, proximity))
}
})
.inspect(|p| eprintln!("{:?}", p))
.collect()
2020-06-09 23:06:59 +02:00
}
2020-06-09 23:06:59 +02:00
fn proximity(&self) -> u32 {
self.0.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>()
}
2020-06-11 17:43:06 +02:00
fn heuristic(&self, positions: &[Vec<u32>]) -> u32 {
let remaining = (positions.len() - self.0.len()) as u32;
self.proximity() + remaining * MAX_DISTANCE
}
2020-06-09 23:06:59 +02:00
fn is_complete(&self, positions: &[Vec<u32>]) -> bool {
2020-06-11 17:43:06 +02:00
let res = positions.len() == self.0.len();
eprintln!("is_complete: {:?} {}", self, res);
res
}
}
pub struct BestProximity {
positions: Vec<Vec<u32>>,
2020-06-09 23:06:59 +02:00
best_proximity: u32,
}
impl BestProximity {
pub fn new(positions: Vec<Vec<u32>>) -> BestProximity {
2020-06-09 23:06:59 +02:00
BestProximity { positions, best_proximity: 0 }
}
}
impl Iterator for BestProximity {
2020-06-09 17:32:25 +02:00
type Item = (u32, Vec<Vec<u32>>);
fn next(&mut self) -> Option<Self::Item> {
2020-06-10 21:35:01 +02:00
let before = Instant::now();
2020-06-11 17:43:06 +02:00
if self.best_proximity == self.positions.len() as u32 * MAX_DISTANCE {
return None;
2020-06-09 17:32:25 +02:00
}
2020-06-09 23:06:59 +02:00
2020-06-11 17:43:06 +02:00
// We start with nothing
let start = Path::default();
let result = astar_bag(
&start,
|p| p.successors(&self.positions, self.best_proximity),
|p| p.heuristic(&self.positions),
|p| p.is_complete(&self.positions), // success
);
2020-06-10 21:35:01 +02:00
eprintln!("BestProximity::next() took {:.02?}", before.elapsed());
2020-06-11 17:43:06 +02:00
match result {
Some((paths, proximity)) => {
self.best_proximity = proximity + 1;
// We retrieve the last path that we convert into a Vec
let paths: Vec<_> = paths.map(|p| {
p.last().unwrap().0.to_vec()
}).collect();
eprintln!("result: {} {:?}", proximity, paths);
Some((proximity, paths))
},
None => {
eprintln!("result: {:?}", None as Option<()>);
self.best_proximity += 1;
None
},
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn same_attribute() {
let positions = vec![
vec![0, 2, 3, 4 ],
vec![ 1, ],
vec![ 3, 6],
];
let mut iter = BestProximity::new(positions);
assert_eq!(iter.next(), Some((1+2, vec![vec![0, 1, 3]]))); // 3
assert_eq!(iter.next(), Some((2+2, vec![vec![2, 1, 3]]))); // 4
assert_eq!(iter.next(), Some((3+2, vec![vec![3, 1, 3]]))); // 5
assert_eq!(iter.next(), Some((1+5, vec![vec![0, 1, 6], vec![4, 1, 3]]))); // 6
assert_eq!(iter.next(), Some((2+5, vec![vec![2, 1, 6]]))); // 7
assert_eq!(iter.next(), Some((3+5, vec![vec![3, 1, 6]]))); // 8
assert_eq!(iter.next(), Some((4+5, vec![vec![4, 1, 6]]))); // 9
assert_eq!(iter.next(), None);
}
#[test]
fn different_attributes() {
let positions = vec![
vec![0, 2, 1000, 1001, 2000 ],
vec![ 1, 1000, 2001 ],
vec![ 3, 6, 2002, 3000],
];
let mut iter = BestProximity::new(positions);
assert_eq!(iter.next(), Some((1+1, vec![vec![2000, 2001, 2002]]))); // 2
assert_eq!(iter.next(), Some((1+2, vec![vec![0, 1, 3]]))); // 3
assert_eq!(iter.next(), Some((2+2, vec![vec![2, 1, 3]]))); // 4
assert_eq!(iter.next(), Some((1+5, vec![vec![0, 1, 6]]))); // 6
// We ignore others here...
}
#[test]
fn easy_proximities() {
fn slice_proximity(positions: &[u32]) -> u32 {
positions.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>()
}
assert_eq!(slice_proximity(&[1000, 1000, 2002]), 8);
}
}