2020-06-08 18:05:14 +02:00
|
|
|
use std::cmp;
|
2020-06-10 21:35:01 +02:00
|
|
|
use std::time::Instant;
|
|
|
|
|
2020-06-11 17:43:06 +02:00
|
|
|
use pathfinding::directed::astar::astar_bag;
|
2020-06-08 18:05:14 +02:00
|
|
|
|
2020-06-11 11:55:03 +02:00
|
|
|
use crate::SmallVec16;
|
|
|
|
|
2020-06-08 18:05:14 +02:00
|
|
|
const ONE_ATTRIBUTE: u32 = 1000;
|
|
|
|
const MAX_DISTANCE: u32 = 8;
|
|
|
|
|
2020-06-09 17:32:25 +02:00
|
|
|
fn index_proximity(lhs: u32, rhs: u32) -> u32 {
|
2020-06-10 16:27:02 +02:00
|
|
|
if lhs <= rhs {
|
2020-06-09 17:32:25 +02:00
|
|
|
cmp::min(rhs - lhs, MAX_DISTANCE)
|
|
|
|
} else {
|
|
|
|
cmp::min(lhs - rhs, MAX_DISTANCE) + 1
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn positions_proximity(lhs: u32, rhs: u32) -> u32 {
|
|
|
|
let (lhs_attr, lhs_index) = extract_position(lhs);
|
|
|
|
let (rhs_attr, rhs_index) = extract_position(rhs);
|
|
|
|
if lhs_attr != rhs_attr { MAX_DISTANCE }
|
|
|
|
else { index_proximity(lhs_index, rhs_index) }
|
|
|
|
}
|
|
|
|
|
2020-06-08 18:05:14 +02:00
|
|
|
// Returns the attribute and index parts.
|
|
|
|
fn extract_position(position: u32) -> (u32, u32) {
|
|
|
|
(position / ONE_ATTRIBUTE, position % ONE_ATTRIBUTE)
|
|
|
|
}
|
|
|
|
|
2020-06-11 17:43:06 +02:00
|
|
|
#[derive(Debug, Default, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
|
2020-06-11 11:55:03 +02:00
|
|
|
struct Path(SmallVec16<u32>);
|
2020-06-08 18:05:14 +02:00
|
|
|
|
2020-06-09 23:06:59 +02:00
|
|
|
impl Path {
|
2020-06-10 14:20:35 +02:00
|
|
|
// TODO we must skip the successors that have already been sent
|
2020-06-11 17:43:06 +02:00
|
|
|
// TODO we must skip the successors that doesn't return any documents
|
|
|
|
// this way we are able to skip entire paths
|
|
|
|
fn successors(&self, positions: &[Vec<u32>], best_proximity: u32) -> Vec<(Path, u32)> {
|
|
|
|
let next_positions = match positions.get(self.0.len()) {
|
|
|
|
Some(positions) => positions,
|
|
|
|
None => return vec![],
|
|
|
|
};
|
|
|
|
|
|
|
|
next_positions.iter()
|
|
|
|
.filter_map(|p| {
|
|
|
|
let mut path = self.clone();
|
|
|
|
path.0.push(*p);
|
2020-06-10 16:27:02 +02:00
|
|
|
let proximity = path.proximity();
|
2020-06-11 17:43:06 +02:00
|
|
|
if path.is_complete(positions) && proximity < best_proximity {
|
|
|
|
None
|
|
|
|
} else {
|
|
|
|
Some((path, proximity))
|
|
|
|
}
|
|
|
|
})
|
|
|
|
.inspect(|p| eprintln!("{:?}", p))
|
|
|
|
.collect()
|
2020-06-09 23:06:59 +02:00
|
|
|
}
|
2020-06-08 18:05:14 +02:00
|
|
|
|
2020-06-09 23:06:59 +02:00
|
|
|
fn proximity(&self) -> u32 {
|
|
|
|
self.0.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>()
|
|
|
|
}
|
2020-06-08 18:05:14 +02:00
|
|
|
|
2020-06-11 17:43:06 +02:00
|
|
|
fn heuristic(&self, positions: &[Vec<u32>]) -> u32 {
|
|
|
|
let remaining = (positions.len() - self.0.len()) as u32;
|
|
|
|
self.proximity() + remaining * MAX_DISTANCE
|
|
|
|
}
|
|
|
|
|
2020-06-09 23:06:59 +02:00
|
|
|
fn is_complete(&self, positions: &[Vec<u32>]) -> bool {
|
2020-06-11 17:43:06 +02:00
|
|
|
let res = positions.len() == self.0.len();
|
|
|
|
eprintln!("is_complete: {:?} {}", self, res);
|
|
|
|
res
|
2020-06-08 18:05:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub struct BestProximity {
|
|
|
|
positions: Vec<Vec<u32>>,
|
2020-06-09 23:06:59 +02:00
|
|
|
best_proximity: u32,
|
2020-06-08 18:05:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
impl BestProximity {
|
|
|
|
pub fn new(positions: Vec<Vec<u32>>) -> BestProximity {
|
2020-06-09 23:06:59 +02:00
|
|
|
BestProximity { positions, best_proximity: 0 }
|
|
|
|
}
|
2020-06-08 18:05:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
impl Iterator for BestProximity {
|
2020-06-09 17:32:25 +02:00
|
|
|
type Item = (u32, Vec<Vec<u32>>);
|
2020-06-08 18:05:14 +02:00
|
|
|
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
2020-06-10 21:35:01 +02:00
|
|
|
let before = Instant::now();
|
|
|
|
|
2020-06-11 17:43:06 +02:00
|
|
|
if self.best_proximity == self.positions.len() as u32 * MAX_DISTANCE {
|
|
|
|
return None;
|
2020-06-09 17:32:25 +02:00
|
|
|
}
|
2020-06-09 23:06:59 +02:00
|
|
|
|
2020-06-11 17:43:06 +02:00
|
|
|
// We start with nothing
|
|
|
|
let start = Path::default();
|
|
|
|
let result = astar_bag(
|
|
|
|
&start,
|
|
|
|
|p| p.successors(&self.positions, self.best_proximity),
|
|
|
|
|p| p.heuristic(&self.positions),
|
|
|
|
|p| p.is_complete(&self.positions), // success
|
|
|
|
);
|
|
|
|
|
2020-06-10 21:35:01 +02:00
|
|
|
eprintln!("BestProximity::next() took {:.02?}", before.elapsed());
|
|
|
|
|
2020-06-11 17:43:06 +02:00
|
|
|
match result {
|
|
|
|
Some((paths, proximity)) => {
|
|
|
|
self.best_proximity = proximity + 1;
|
|
|
|
// We retrieve the last path that we convert into a Vec
|
|
|
|
let paths: Vec<_> = paths.map(|p| {
|
|
|
|
p.last().unwrap().0.to_vec()
|
|
|
|
}).collect();
|
|
|
|
eprintln!("result: {} {:?}", proximity, paths);
|
|
|
|
Some((proximity, paths))
|
|
|
|
},
|
|
|
|
None => {
|
|
|
|
eprintln!("result: {:?}", None as Option<()>);
|
|
|
|
self.best_proximity += 1;
|
|
|
|
None
|
|
|
|
},
|
2020-06-10 14:20:35 +02:00
|
|
|
}
|
2020-06-08 18:05:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use super::*;
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn same_attribute() {
|
|
|
|
let positions = vec![
|
|
|
|
vec![0, 2, 3, 4 ],
|
|
|
|
vec![ 1, ],
|
|
|
|
vec![ 3, 6],
|
|
|
|
];
|
|
|
|
let mut iter = BestProximity::new(positions);
|
|
|
|
|
2020-06-10 14:20:35 +02:00
|
|
|
assert_eq!(iter.next(), Some((1+2, vec![vec![0, 1, 3]]))); // 3
|
|
|
|
assert_eq!(iter.next(), Some((2+2, vec![vec![2, 1, 3]]))); // 4
|
|
|
|
assert_eq!(iter.next(), Some((3+2, vec![vec![3, 1, 3]]))); // 5
|
|
|
|
assert_eq!(iter.next(), Some((1+5, vec![vec![0, 1, 6], vec![4, 1, 3]]))); // 6
|
|
|
|
assert_eq!(iter.next(), Some((2+5, vec![vec![2, 1, 6]]))); // 7
|
|
|
|
assert_eq!(iter.next(), Some((3+5, vec![vec![3, 1, 6]]))); // 8
|
|
|
|
assert_eq!(iter.next(), Some((4+5, vec![vec![4, 1, 6]]))); // 9
|
|
|
|
assert_eq!(iter.next(), None);
|
2020-06-08 18:05:14 +02:00
|
|
|
}
|
2020-06-10 16:27:02 +02:00
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn different_attributes() {
|
|
|
|
let positions = vec![
|
|
|
|
vec![0, 2, 1000, 1001, 2000 ],
|
|
|
|
vec![ 1, 1000, 2001 ],
|
|
|
|
vec![ 3, 6, 2002, 3000],
|
|
|
|
];
|
|
|
|
let mut iter = BestProximity::new(positions);
|
|
|
|
|
|
|
|
assert_eq!(iter.next(), Some((1+1, vec![vec![2000, 2001, 2002]]))); // 2
|
|
|
|
assert_eq!(iter.next(), Some((1+2, vec![vec![0, 1, 3]]))); // 3
|
|
|
|
assert_eq!(iter.next(), Some((2+2, vec![vec![2, 1, 3]]))); // 4
|
|
|
|
assert_eq!(iter.next(), Some((1+5, vec![vec![0, 1, 6]]))); // 6
|
|
|
|
// We ignore others here...
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn easy_proximities() {
|
|
|
|
fn slice_proximity(positions: &[u32]) -> u32 {
|
|
|
|
positions.windows(2).map(|ps| positions_proximity(ps[0], ps[1])).sum::<u32>()
|
|
|
|
}
|
|
|
|
|
|
|
|
assert_eq!(slice_proximity(&[1000, 1000, 2002]), 8);
|
|
|
|
}
|
2020-06-08 18:05:14 +02:00
|
|
|
}
|