1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-10-31 20:08:43 +01:00
gnupg/doc/whats-new-in-2.1.txt
Werner Koch 6b54759976 build: Update README.maint.
--
Also fixed some typos.
2014-11-05 08:55:17 +01:00

713 lines
31 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

━━━━━━━━━━━━━━━━━━━━━━━━━━━
GNUPG - WHATS NEW IN 2.1
Werner Koch
━━━━━━━━━━━━━━━━━━━━━━━━━━━
2014-11-04
Table of Contents
─────────────────
1 Whats new in GnuPG 2.1
.. 1.1 Removal of the secret keyring
.. 1.2 Removal of PGP-2 support
.. 1.3 Leaner key generation interface
.. 1.4 Support for ECC
.. 1.5 Quick generate and sign commands
.. 1.6 Improved Pinentry support
.. 1.7 Auto-start of the gpg-agent
.. 1.8 Duplicate long key id fixes
.. 1.9 Enhanced Dirmngr
.. 1.10 Better keyserver pool support
.. 1.11 Faster keyring format
.. 1.12 Auto-generated revocation certificates
.. 1.13 Improved card support
.. 1.14 New format for key listings
.. 1.15 Support for Putty
.. 1.16 Improved X.509 certificate creation
.. 1.17 Scripts to create a Windows installer
A possibly revised version of this article can be found at:
https://gnupg.org/faq/whats-new-in-2.1.html
1 Whats new in GnuPG 2.1
═════════════════════════
GnuPG version 2.1 comes with a bag of new features which changes some
things old-timers are used to. This page explains the more important
ones. It expects that the reader is familiar with GnuPG version 2.0
and aware that GnuPG consists of /gpg/, /gpgsm/, and /gpg-agent/ as
its main components.
• The file /secring.gpg/ is not anymore used to store the secret keys.
Merging of secret keys is now supported.
• All support for /PGP-2 keys/ has been removed for security reasons.
• The standard key generation interface is now much leaner. This will
help a new user to quickly generate a suitable key.
• Support for /Elliptic Curve Cryptography/ (ECC) is now available.
• Commands to create and sign keys from the command line without any
extra prompts are now available.
• The Pinentry may now show the new passphrase entry and the
passphrase confirmation entry in one dialog.
• There is no more need to manually start the gpg-agent. It is now
started by any part of GnuPG as needed.
• Problems with importing keys with the same long key id have been
addressed.
• The /dirmngr/ is now part of GnuPG proper and also takes care of
accessing keyserver.
• Keyserver pools are now handled in a smarter way.
• A new format for locally storing the public keys is now used. This
considerable speeds up operations on large keyrings.
• /Revocation certificates/ are now created by default.
• Card support has been updated, new readers and token types are
supported.
• The format of the key listing has been changed to better identify
the properties of a key.
• The gpg-agent may now be used on Windows as /pageant/ replacement
for /putty/ in the same way it is used for years on Unix as
/ssh-agent/ replacement.
• Creation of X.509 certificates has been improved. It is now also
possible to export them directly in PKCS#8 and PEM format for use on
TLS servers.
• The scripts to create a Windows installer are now part of GnuPG.
Now for the detailed description of these new features:
1.1 Removal of the secret keyring
─────────────────────────────────
gpg used to keep the public key pairs in two files: `pubring.gpg' and
`secring.gpg'. The only difference is that secring stored in addition
to the public part also the private part of the key pair. The secret
keyring thus contained only the keys for which a private key is
available, that is the users key. It required a lot of code to keep
both versions of the key in sync and led to sometimes surprising
inconsistencies.
The design of GnuPG-2 demands that only the gpg-agent has control over
the private parts of the keys and the actual encryption engine (gpg or
gpgsm) does not know about the private key but care only about session
keys and keys for symmetric encryption. This has been implemented
about 10 years ago for /gpgsm/ (the S/MIME part of GnuPG). However,
/gpg/ (the OpenPGP part) used the gpg-agent only as passphrase entry
and cache device but handles the private key itself.
With GnuPG 2.1 this changed and /gpg/ now also delegates all private
key operations to the gpg-agent. Thus there is no more code in the
/gpg/ binary for handling private keys. En passant this allows the
long time requested “merging of secret keys” and several other
advanced key management techniques.
To ease the migration to the no-secring method, /gpg/ detects the
presence of a `secring.gpg' and converts the keys on-the-fly to the
the key store of /gpg-agent/ (this is the `private-keys-v1.d'
directory below the GnuPG home directory (`~/.gnupg')). This is done
only once and an existing `secring.gpg' is then not anymore touched by
/gpg/. This allows co-existence of older GnuPG versions with GnuPG
2.1. However, any change to the private keys using the new /gpg/ will
not show up when using pre-2.1 versions of GnuPG and vice versa.
Note that the command `--export-secret-keys' still creates an OpenPGP
compliant file with the secret keys. This is achieved by asking
/gpg-agent/ to convert a key and return it in the OpenPGP protected
format. The export operation requires that the passphrase for the key
is entered so that /gpg-agent/ is able to change the protection from
its internal format to the OpenPGP required format.
1.2 Removal of PGP-2 support
────────────────────────────
Some algorithms and parts of the protocols as used by the 20 years old
[PGP-2] software are meanwhile considered unsafe. In particular the
baked in use of the [MD5] hash algorithm limits the security of PGP-2
keys to non-acceptable rate. Technically those PGP-2 keys are called
version 3 keys (v3) and are easily identified by a shorter fingerprint
which is commonly presented as 16 separate double hex digits.
With GnuPG 2.1 all support for those keys has gone. If they are in an
existing keyring they will eventually be removed. If GnuPG encounters
such a key on import it will not be imported due to the not anymore
implemented v3 key format. Removing the v3 key support also reduces
complexity of the code and is thus better than to keep on handling
them with a specific error message.
There is one use case where PGP-2 keys may still be required: For
existing encrypted data. We suggest to keep a version of GnuPG 1.4
around which still has support for these keys (it might be required to
use the `--allow-weak-digest-algos' option). A better solution is to
re-encrypt the data using a modern key.
[PGP-2] https://en.wikipedia.org/wiki/Pretty_Good_Privacy
[MD5] https://en.wikipedia.org/wiki/MD5
1.3 Leaner key generation interface
───────────────────────────────────
This is best shown with an example:
╭────
│ $ gpg2 --gen-key
│ gpg (GnuPG) 2.1.0; Copyright (C) 2014 Free Software Foundation, Inc.
│ This is free software: you are free to change and redistribute it.
│ There is NO WARRANTY, to the extent permitted by law.
│ gpg: keybox '/home/foo/.gnupg/pubring.kbx' created
│ Note: Use "gpg --full-gen-key" for a full featured key generation dialog.
│ GnuPG needs to construct a user ID to identify your key.
│ Real name: Glenn Greenwald
│ Email address: glenn@example.org
│ You selected this USER-ID:
│ "Glenn Greenwald <glenn@example.org>"
│ Change (N)ame, (E)mail, or (O)kay/(Q)uit? o
│ [...]
│ pub rsa2048/68FD0088 2014-11-03
│ Key fingerprint = 0290 5ABF 17C7 81FB C390 9B00 636A 1BBD 68FD 0088
│ uid [ultimate] Glenn Greenwald <glenn@example.org>
│ sub rsa2048/84439DCD 2014-11-03
╰────
Thus only the name and the mail address are required. For all other
parameters the default values are used. Many graphical frontends
works in the same way. Note that /gpg/ prints a hint for the old time
gpg users on how to get the full option menu.
1.4 Support for ECC
───────────────────
GnuPG now support Elliptic Curve keys for public key encryption. This
is defined in [RFC-6637]. Because there is no other mainstream
OpenPGP implementation yet available which supports ECC, the use of
such keys is still very limited. Thus GnuPG 2.1 currently hides the
options to create an ECC key.
For those who want to experiment with ECC or already want to prepare a
key for future use, the command `--gen-full-key' along with the option
`--expert' is the enabler:
╭────
│ $ gpg2 --expert --full-gen-key
│ gpg (GnuPG) 2.1.0; Copyright (C) 2014 Free Software Foundation, Inc.
│ This is free software: you are free to change and redistribute it.
│ There is NO WARRANTY, to the extent permitted by law.
│ Please select what kind of key you want:
│ (1) RSA and RSA (default)
│ (2) DSA and Elgamal
│ (3) DSA (sign only)
│ (4) RSA (sign only)
│ (7) DSA (set your own capabilities)
│ (8) RSA (set your own capabilities)
│ (9) ECC and ECC
│ (10) ECC (sign only)
│ (11) ECC (set your own capabilities)
│ Your selection? 9
│ Please select which elliptic curve you want:
│ (2) NIST P-256
│ (3) NIST P-384
│ (4) NIST P-521
│ (5) Brainpool P-256
│ (6) Brainpool P-384
│ (7) Brainpool P-512
│ Your selection? 2
│ Please specify how long the key should be valid.
│ 0 = key does not expire
│ <n> = key expires in n days
│ <n>w = key expires in n weeks
│ <n>m = key expires in n months
│ <n>y = key expires in n years
│ Key is valid for? (0)
│ Key does not expire at all
│ Is this correct? (y/N) y
│ GnuPG needs to construct a user ID to identify your key.
│ Real name: Edward Snowden
│ Email address: edward@example.org
│ Comment:
│ You selected this USER-ID:
│ "Edward Snowden <edward@example.org>"
│ Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
│ [...]
│ pub nistp256/382660E3 2014-11-03
│ Key fingerprint = E630 27CF 3D68 22A7 6FF2 093E D179 9E72 3826 60E3
│ uid [ultimate] Edward Snowden <edward@example.org>
│ sub nistp256/48C9A997 2014-11-03 nistp256
╰────
In this example we created a primary ECC key for signing and an subkey
for encryption. For both we use the NIST P-256 curve. The key may
now be used in the same way as any other key. It is possible to add
an RSA subkey or one can create an RSA or DSA main key and add an ECC
subkey for signing or encryption. Note that the list of offered
curves depends on the installed Libgcrypt version.
For many people the NIST and also the Brainpool curves have an
doubtful origin and thus the plan for GnuPG is to use Bernsteins
[Curve 25519] as default. GnuPG 2.1.0 already comes with support for
signing keys using the [Ed25519] variant of this curve. This has not
yet been standardized by the IETF (i.e. there is no RFC) but we wont
wait any longer and go ahead using the proposed format for this
signing algorithm. The format for an encryption key has not yet been
finalized and will be added to GnuPG in one of the next point
releases. Recall that an encryption subkey can be added to a key at
any time. If you want to create a signing key you may do it this way:
╭────
│ $ gpg2 --expert --full-gen-key
│ gpg (GnuPG) 2.1.0; Copyright (C) 2014 Free Software Foundation, Inc.
│ This is free software: you are free to change and redistribute it.
│ There is NO WARRANTY, to the extent permitted by law.
│ Please select what kind of key you want:
│ (1) RSA and RSA (default)
│ (2) DSA and Elgamal
│ (3) DSA (sign only)
│ (4) RSA (sign only)
│ (7) DSA (set your own capabilities)
│ (8) RSA (set your own capabilities)
│ (9) ECC and ECC
│ (10) ECC (sign only)
│ (11) ECC (set your own capabilities)
│ Your selection? 10
│ Please select which elliptic curve you want:
│ (1) Curve 25519
│ (2) NIST P-256
│ (3) NIST P-384
│ (4) NIST P-521
│ (5) Brainpool P-256
│ (6) Brainpool P-384
│ (7) Brainpool P-512
│ Your selection? 1
│ gpg: WARNING: Curve25519 is not yet part of the OpenPGP standard.
│ Use this curve anyway? (y/N) y
│ Please specify how long the key should be valid.
│ 0 = key does not expire
│ <n> = key expires in n days
│ <n>w = key expires in n weeks
│ <n>m = key expires in n months
│ <n>y = key expires in n years
│ Key is valid for? (0)
│ Key does not expire at all
│ Is this correct? (y/N) y
│ GnuPG needs to construct a user ID to identify your key.
│ Real name: Laura Poitras
│ Email address: laura@example.org
│ Comment:
│ You selected this USER-ID:
│ "Laura Poitras <laura@example.org>"
│ Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
│ [...]
│ pub ed25519/5C1AFC2A 2014-11-03
│ Key fingerprint = ED85 4D98 5D8F 502F C6C5 FFB2 AA81 319E 5C1A FC2A
│ uid [ultimate] Laura Poitras <laura@example.org>
╰────
Support for ECC keys is available only on some keyservers but it is
expected that this will be fixed over the next few months.
[RFC-6637] https://rfc-editor.org/info/rfc6637
[Curve 25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
[Ed25519] http://dx.doi.org/10.1007/s13389-012-0027-1
1.5 Quick generate and sign commands
────────────────────────────────────
Sometimes it is useful to use only command line options without any
parameter file or interactive prompts for generating a key or to sign
a key. This can now be accomplished with a few new commands:
╭────
│ $ gpg2 --batch --quick-gen-key 'Daniel Ellsberg <ellsberg@example.org>'
│ gpg: key 911B90A9 marked as ultimately trusted
╰────
If a key with that user id already exists, gpg bails out with an error
message. You can force creation using the option `--yes'. If you
want some more control, you may not use `--batch' and gpg will ask for
confirmation and show the resulting key:
╭────
│ $ gpg2 --quick-gen-key 'Daniel Ellsberg <ellsberg@example.org>'
│ About to create a key for:
│ "Daniel Ellsberg <ellsberg@example.org>"
│ Continue? (Y/n) y
│ gpg: A key for "Daniel Ellsberg <ellsberg@example.org>" already exists
│ Create anyway? (y/N) y
│ gpg: creating anyway
│ [...]
│ pub rsa2048/BD19AC1C 2014-11-04
│ Key fingerprint = 15CB 723E 2000 A1A8 2505 F3B7 CC00 B501 BD19 AC1C
│ uid [ultimate] Daniel Ellsberg <ellsberg@example.org>
│ sub rsa2048/72A4D018 2014-11-04
╰────
Another common operation is to sign a key. /gpg/ can do this directly
from the command line by giving the fingerprint of the to-be-signed
key:
╭────
│ $ gpg2 --quick-sign-key '15CB 723E 2000 A1A8 2505 F3B7 CC00 B501 BD19 AC1C'
│ pub rsa2048/BD19AC1C
│ created: 2014-11-04 expires: never usage: SC
│ trust: ultimate validity: ultimate
│ Primary key fingerprint: 15CB 723E 2000 A1A8 2505 F3B7 CC00 B501 BD19 AC1C
│ Daniel Ellsberg <ellsberg@example.org>
╰────
In case the key has already been signed, the command prints a note and
exits with success. In case you want to check that it really worked,
use `=--check-sigs' as usual:
╭────
│ $ gpg2 --check-sigs '15CB 723E 2000 A1A8 2505 F3B7 CC00 B501 BD19 AC1C'
│ gpg: checking the trustdb
│ gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
│ gpg: depth: 0 valid: 6 signed: 1 trust: 0-, 0q, 0n, 0m, 0f, 6u
│ pub rsa2048/BD19AC1C 2014-11-04
│ uid [ full ] Daniel Ellsberg <ellsberg@example.org>
│ sig!3 BD19AC1C 2014-11-04 Daniel Ellsberg <ellsberg@example.org>
│ sig! 68FD0088 2014-11-04 Glenn Greenwald <glenn@example.org>
│ sub rsa2048/72A4D018 2014-11-04
│ sig! BD19AC1C 2014-11-04 Daniel Ellsberg <ellsberg@example.org>
╰────
The fingerprint may also be given without the spaces in which case
there is no need for the quotes. If you want to sign only certain
user ids of a key, list those user id verbatim after the fingerprint.
To create a non-exportable key signature, use the command
`--quick-lsign-key' instead.
1.6 Improved Pinentry support
─────────────────────────────
When using a recent Pinentry module (0.90, GTK+ variant), the
gpg-agent will not anymore show two separate Pinentry dialogs to enter
a new passphrase and later to confirm the new passphrase. Instead the
first dialog also has the confirm/repeat entry and internally checks
whether they match.
With any Pinentry version the several separate dialogs to inform and
ask for confirmation about questionable properties of a new passphrase
(e.g. length, only alpha letters) have been combined into one dialog
to show all non-asserted constraints at once.
The GTK+ Pinentry does now allow pasting of values into the entries.
Copying them from the entries is still inhibited on purpose.
Depending on the system, the option `no-grab' may be required for in
the `gpg-agent.conf' file to actually make use of the paste feature.
1.7 Auto-start of the gpg-agent
───────────────────────────────
The /gpg-agent/ is the central part of the GnuPG system. It takes
care of all private (secret) keys and if required diverts operations
to a smartcard or other token. It also provides support for the
Secure Shell by implementing the ssh-agent protocol.
The classic way to run /gpg-agent/ on Unix systems is by launching it
at login time and use an environment variable (`GPG_AGENT_INFO') to
tell the other GnuPG modules how to connect to the agent. However,
correctly managing the start up and this environment variable is
cumbersome so that that an easier method is required. Since GnuPG
2.0.16 the `--use-standard-socket' option already allowed to start the
agent on the fly; however the environment variable was still required.
With GnuPG 2.1 the need of `GPG_AGENT_INFO' has been completely
removed and the variable is ignored. Instead a fixed Unix domain
socket named `S.gpg-agent' in the GnuPG home directory (by default
`~/.gnupg') is used. The agent is also started on demand by all tools
requiring services from the agent.
If the option `--enable-ssh-support' is used the auto-start mechanism
does not work because /ssh/ does not know about this mechanism.
Instead it is required that the environment variable `SSH_AUTH_SOCK'
is set to the `S.gpg-agent.ssh' socket in the GnuPG home directory.
Further /gpg-agent/ must be started: Either by using a GnuPG command
which implicitly starts /gpg-agent/ or by using `gpgconf --launch
gpg-agent' to explicitly start it if not yet done.
1.8 Duplicate long key id fixes
───────────────────────────────
A deficit of the OpenPGP protocol is that signatures carry only a
limited indication on which public has been used to create a
signature. Thus a verification engine may only use this “long key id”
to look up the the key in its own store or from a public keyserver.
Unfortunately it has now become possible to create a key with a long
key id matching the key id of another key. Importing a key with a
long key id already used by another key in gpgs local key store was
not possible due to checks done on import. Now, if the “wrong” key
has been imported first /gpg/ would not allow to later import the
second “correct” key. This problem has been fixed in 2.1 by allowing
the import and by doing trial verification against all matching keys.
1.9 Enhanced Dirmngr
────────────────────
Before version 2.1, /gpg/ used so-called keyserver helpers to access
the OpenPGP keyservers. A problem with that is that they are short
living processes which are not able to keep a state. With 2.1, the
formerly separate package Dirmngr (which was separate due to copyright
assignment reasons) has been integrated into GnuPG.
In the past /dirmngr/ was only used by /gpgsm/ for X.509 (S/MIME) CRL
and OCSP handling. Being a proper part of GnuPG /dirmngr/ does now
also care about accessing OpenPGP keyservers. This make its easier to
debug problems with the keyservers and to exchange additional
information about the keyserver between /gpg/ and /dirmngr/. It will
eventually also be possible to run background tasks to refresh keys.
Although the ability to start /dirmngr/ as a system service is still
available, this is not anymore recommended and instead /dirmngr/ is
now by default started on-demand, very similar to /gpg-agent/.
1.10 Better keyserver pool support
──────────────────────────────────
For load balancing reasons, keyservers are organized in pools to
enable instant round-robin DNS assignment of random keyservers. A
problem with that approach is that the DNS resolver is not aware of
the state of the keyserver. If a keyserver has gone down or a routing
problems occurs, /gpg/ and its keyserver helpers were not ware of it
and would try over and over to use the same, dead, keyserver up until
the DNS information expires and a the DNS resolver assigned a new
server from the pool.
The new /dirmngr/ in GnuPG does not use the implicit round-robin of
the DNS resolver but uses its own DNS look up and keeps an internal
table of all hosts from the pool along with the encountered aliveness
state. Thus after a failure (timeout) of a request, /dirmngr/ flags a
host as dead and randomly selects another one from the pool. After a
few hours the flag is removed so that the host will be tried again.
It is also possible to mark a specif host from a pool explicitly as
dead so that it wont be used in future. To interact with the
/dirmngr/ the `gpg-connect-agent' tool is used:
╭────
│ $ gpg-connect-agent --dirmngr 'help keyserver' /bye
│ $ gpg-connect-agent --dirmngr 'keyserver --hosttable' /bye
╰────
The first command prints a help screen for the keyserver command and
the second command prints the current host table.
1.11 Faster keyring format
──────────────────────────
The format GnuPG has always used for the public keyring is actually a
slightly extended version of the on-the-wire format for OpenPGP key
exchange. This format is quite inflexible to work with when random
access to keys in the keyring is required. In fact /gpg/ always
parsed all keys in the keyring until it encountered the desired one.
With a large keyring (more than a few thousand keys) this could be
quite slow.
From its very beginning /gpgsm/ has used a different format to store
public keys (certificates) which we call a /keybox/. That file format
carries meta information about the stored keys and thus allows
searching without actually parsing the key and computing fingerprints
and such. The /keybox/ format has been designed protocol independent
and with 2.1 support for OpenPGP keys has been added. Random access
to the keys is now really fast and keyrings with 30000 keys and more
are now easily possible. That change also enables us to easily
introduce other storage methods
If no `pubring.gpg' is found, /gpg/ defaults to the new /keybox/
format and creates a `pubring.kbx' keybox file. If such a keybox file
already exists, for example due to the use of /gpgsm/, it will also be
used for OpenPGP keys. However, if a `pubring.gpg' is found and no
keybox file with OpenPGP keys exists, the old `pubring.gpg' will be
used. Take care: GnuPG versions before 2.1 will always use the
`pubring.gpg' file and not know anything about keys stored in the
keybox file.
To convert an existing `pubring.gpg' file to the keybox format, you
first rename the file to (for example) `publickeys' so it wont be
recognized by any GnuPG version and then you run the command
╭────
│ $ gpg2 --import publickeys
╰────
You may then rename the `publickeys' file back so that it can be used
by older GnuPG versions. Remember that in this case you have two
independent copies of the public keys.
1.12 Auto-generated revocation certificates
───────────────────────────────────────────
This version creates an ASCII armored revocation certificate for each
generated keypair and stores that certificate in a file named after
the fingerprint of the key in the `openpgp-revocs.d' directory below
the GnuPG home directory. Brief instructions on how to use this
revocation certificate are put at the top of the file.
1.13 Improved card support
──────────────────────────
The /scdaemon/, which is responsible for accessing smardcards and
other tokens, has received may updates. In particular plugable USB
readers with a fixed card now work smoothless and similar to standard
readers. The latest features of the /gnuk/ token are supported. Code
for the HSM smartcard has been added. More card readers with a PIN
pad are supported. The internal CCID driver does now also work with
certain non-auto configuration equipped readers.
1.14 New format for key listings
────────────────────────────────
Due to the introduction of ECC keys the old format to list keys was
not anymore suitable. In particular, the length of an ECC key is
defined but its expressiveness is limited without the other parameters
of the curve. The common way to describe an ECC key is by using the
assigned name of its curve. To allow for a common description we now
either use the algorithm name with appended key length or use the name
of the curve:
╭────
│ pub 2048D/1E42B367 2007-12-31 [expires: 2018-12-31]
│ pub dsa2048/1E42B367 2007-12-31 [expires: 2018-12-31]
│ pub ed25519/0AA914C9 2014-10-18
╰────
The first two lines show the same key in the old format and in the new
format. The third line shows an example of an ECC key using the
ed25519 curve.
As a further change the validity of a key is now shown by default;
that is `show-uid-validity' is implicitly used for the
`--list-options'.
The annotated key listing produced by the `--with-colons' options did
not change. However a couple of new fields have been added, for
example if the new option `--with-secret-' is used the “S/N of a token
field” indicates the presence of a secret key even in a public key
listing. This option is supported by recent [GPGME] versions and
makes writing of key manager software easier.
[GPGME] https://gnupg.org/related_software/gpgme/
1.15 Support for Putty
──────────────────────
On Windows the new option `--enable-putty-support' allows gpg-agent to
act as a replacement for [Putty]s authentication agent /Pageant/. It
is the Windows counterpart for the `--enable-ssh-support' option as
used on Unix.
[Putty] http://www.chiark.greenend.org.uk/~sgtatham/putty/
1.16 Improved X.509 certificate creation
────────────────────────────────────────
In addition to an improved certificate signing request menu, it is now
possible to create a self-signed certificate using the interactive
menu of /gpgsm/.
In batch mode the certificate creation dialog can now be controlled by
a parameter file with several new keywords. Such a parameter file
allows the creation of arbitrary X.509 certificates similar to what
can be done with /openssl/. It may this be used as the base for a CA
software. For details see the “CSR and certificate creation” section
in the manual.
The new commands `--export-secret-key-p8' and export-secret-key-raw=
may be used to export a secret key directly in PKCS#8 or PKCS#1
format. Thus X.509 certificates for TLS use may be managed by /gpgsm/
and directly exported in a format suitable for OpenSSL based servers.
1.17 Scripts to create a Windows installer
──────────────────────────────────────────
GnuPG now comes with the /speedo/ build system which may be used to
quickly download and build GnuPG and all its direct dependencies on a
decent Unix system. See the README file for more instructions.
The very same script may also be used to build a complete NSIS based
installer for Windows using the mingw-w64 cross-compiler toolchain.
That installer will feature GnuPG proper, GPA as graphical frontend,
and GpgEX as a Windows Explorer extension. GnuPG needs to be unpacked
and from the top source directory you run this command
╭────
│ make -f build-aux/speedo.mk w32-installer
╰────
This command downloads all direct dependencies, checks the signatures
using the GnuPG version from the build system (all Linux distros
feature a suitable GnuPG tool), builds everything from source, and
uses NSIS to create the installer. Although this sounds easy, some
experience in setting up a development machine is still required.
Some versions of the toolchain exhibit bugs and thus your mileage may
vary. Support for keyserver access over TLS is currently not
available but will be added with one of the next point releases.
# Copyright 2014 The GnuPG Project.
# This work is licensed under the Creative Commons
# Attribution-ShareAlike 4.0 International License. To view a copy of
# this license, visit http://creativecommons.org/licenses/by-sa/4.0/
# or send a letter to Creative Commons, PO Box 1866, Mountain View, CA
# 94042, USA.
#
# The canonical source for this article can be found in the gnupg-doc
# git repository as web/faq/whats-new-in-2.1.org.