1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-25 15:27:03 +01:00
gnupg/g10/ecdh.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

609 lines
17 KiB
C
Raw Normal View History

/* ecdh.c - ECDH public key operations used in public key glue code
* Copyright (C) 2010, 2011 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "gpg.h"
#include "../common/util.h"
#include "pkglue.h"
#include "main.h"
#include "options.h"
2011-01-25 17:48:51 +01:00
/* A table with the default KEK parameters used by GnuPG. */
static const struct
{
2011-01-25 17:48:51 +01:00
unsigned int qbits;
int openpgp_hash_id; /* KEK digest algorithm. */
int openpgp_cipher_id; /* KEK cipher algorithm. */
} kek_params_table[] =
2011-01-25 17:48:51 +01:00
/* Note: Must be sorted by ascending values for QBITS. */
{
{ 256, DIGEST_ALGO_SHA256, CIPHER_ALGO_AES },
{ 384, DIGEST_ALGO_SHA384, CIPHER_ALGO_AES256 },
/* Note: 528 is 521 rounded to the 8 bit boundary */
{ 528, DIGEST_ALGO_SHA512, CIPHER_ALGO_AES256 }
};
/* Return KEK parameters as an opaque MPI The caller must free the
returned value. Returns NULL and sets ERRNO on error. */
gcry_mpi_t
pk_ecdh_default_params (unsigned int qbits)
{
byte kek_params[4] = {
3, /* Number of bytes to follow. */
1 /* Version for KDF+AESWRAP. */
};
int i;
2011-01-25 17:48:51 +01:00
/* Search for matching KEK parameter. Defaults to the strongest
possible choices. Performance is not an issue here, only
interoperability. */
for (i=0; i < DIM (kek_params_table); i++)
{
2011-01-25 17:48:51 +01:00
if (kek_params_table[i].qbits >= qbits
|| i+1 == DIM (kek_params_table))
{
kek_params[2] = kek_params_table[i].openpgp_hash_id;
kek_params[3] = kek_params_table[i].openpgp_cipher_id;
break;
}
}
log_assert (i < DIM (kek_params_table));
if (DBG_CRYPTO)
log_printhex (kek_params, sizeof(kek_params), "ECDH KEK params are");
return gcry_mpi_set_opaque_copy (NULL, kek_params, 4 * 8);
}
/* Extract xcomponent from the point SHARED. POINT_NBYTES is the
size to represent an EC point which is determined by the public
key. SECRET_X_SIZE is the size of x component to represent an
integer which is determined by the curve. */
static gpg_error_t
extract_secret_x (byte **r_secret_x,
const char *shared, size_t nshared,
size_t point_nbytes, size_t secret_x_size)
{
byte *secret_x;
*r_secret_x = NULL;
/* Extract X from the result. It must be in the format of:
04 || X || Y
40 || X
41 || X
Since it may come with the prefix, the size of point is larger
than or equals to the size of an integer X. We also better check
that the provided shared point is not larger than the size needed
to represent the point. */
if (point_nbytes < secret_x_size)
return gpg_error (GPG_ERR_BAD_DATA);
if (point_nbytes < nshared)
return gpg_error (GPG_ERR_BAD_DATA);
/* Extract x component of the shared point: this is the actual
shared secret. */
secret_x = xtrymalloc_secure (point_nbytes);
if (!secret_x)
return gpg_error_from_syserror ();
memcpy (secret_x, shared, nshared);
/* Wrangle the provided point unless only the x-component w/o any
* prefix was provided. */
if (nshared != secret_x_size)
{
/* Remove the prefix. */
if ((point_nbytes & 1))
memmove (secret_x, secret_x+1, secret_x_size);
/* Clear the rest of data. */
if (point_nbytes - secret_x_size)
memset (secret_x+secret_x_size, 0, point_nbytes-secret_x_size);
}
if (DBG_CRYPTO)
log_printhex (secret_x, secret_x_size, "ECDH shared secret X is:");
*r_secret_x = secret_x;
return 0;
}
/* Build KDF parameters */
/* RFC 6637 defines the KDF parameters and its encoding in Section
8. EC DH Algorighm (ECDH). Since it was written for v4 key, it
said "20 octets representing a recipient encryption subkey or a
master key fingerprint". For v5 key, it is considered "adequate"
(in terms of NIST SP 800 56A, see 5.8.2 FixedInfo) to use the first
20 octets of its 32 octets fingerprint. */
static gpg_error_t
build_kdf_params (unsigned char kdf_params[256], size_t *r_size,
gcry_mpi_t *pkey, const byte pk_fp[MAX_FINGERPRINT_LEN])
{
IOBUF obuf;
gpg_error_t err;
*r_size = 0;
obuf = iobuf_temp();
if (!obuf)
return gpg_error_from_syserror ();
/* variable-length field 1, curve name OID */
gpg: Initial support for generating Kyber subkeys. * common/openpgpdefs.h (PUBKEY_ALGO_KY768_25519): Remove. (PUBKEY_ALGO_KY1024_448): Remove. (PUBKEY_ALGO_KYBER): New. Use them everywhere instead of the removed. * g10/build-packet.c (gpg_mpi_write_nohdr): Rename to (gpg_mpi_write_opaque_nohdr): this. Change callers. (gpg_mpi_write_opaque_32): New. (do_key): Support Kyber keys using the revised format. * g10/gpg.h (MAX_EXTERN_KEYPARM_BITS): New. * g10/parse-packet.c (read_octet_string): Add arg nbytes so support reading with a length prefix. Adjust callers. (parse_key): Parse Kyber public keys. * g10/misc.c (pubkey_get_npkey): Support Kyber. (pubkey_get_nskey): Ditto. * g10/keyid.c (pubkey_string): Support dual algorithms. (do_hash_public_key): Support Kyber. (nbits_from_pk): Ditto. (keygrip_from_pk): Return the Kyber part for the ECC+Kyber dual algo. * g10/keygen.c (struct common_gen_cb_parm_s): Add genkey_result2. Note that this callback is not yet used. (ecckey_from_sexp): Add optional arg sexp2 and use it for Kyber. Change callers. (ecckey_from_sexp): Do not leak LIST in case of an error. (common_gen): Add arg keyparms2, change callers, and support Kyber. (gen_kyber): New. (get_keysize_range): Support Kyber. (fixup_keysize): Simplify and support Kyber. (do_create): Handle Kyber. (parse_key_parameter_part): Remove algo strings "ky768" and "ky1024" and add a generic "kyber" with default parameters. -- This uses a revised format which is more aligned with the usual OpenPGP structure. A lot of things are still missing. For example support for handling two keygrips and checking both of them in a -K listing. There is also only ky768_bp384 as fixed algorithm for now. No passphrase for the Kyber part of the dual algorithm is on purpose. A test was done using gpg --quick-gen-key pqc1 nistp256 and then running gpg -v --quick-add-key <fingerprint> kyber which creates a v5 subkey on a v4 primary key. A second test using gpg --quick-gen-key pqc2 Ed448 followed by a --quick-add-key created a v5 key with a v5 subkey. GnuPG-bug-id: 6815
2024-04-03 18:00:44 +02:00
err = gpg_mpi_write_opaque_nohdr (obuf, pkey[0]);
/* fixed-length field 2 */
iobuf_put (obuf, PUBKEY_ALGO_ECDH);
/* variable-length field 3, KDF params */
gpg: Initial support for generating Kyber subkeys. * common/openpgpdefs.h (PUBKEY_ALGO_KY768_25519): Remove. (PUBKEY_ALGO_KY1024_448): Remove. (PUBKEY_ALGO_KYBER): New. Use them everywhere instead of the removed. * g10/build-packet.c (gpg_mpi_write_nohdr): Rename to (gpg_mpi_write_opaque_nohdr): this. Change callers. (gpg_mpi_write_opaque_32): New. (do_key): Support Kyber keys using the revised format. * g10/gpg.h (MAX_EXTERN_KEYPARM_BITS): New. * g10/parse-packet.c (read_octet_string): Add arg nbytes so support reading with a length prefix. Adjust callers. (parse_key): Parse Kyber public keys. * g10/misc.c (pubkey_get_npkey): Support Kyber. (pubkey_get_nskey): Ditto. * g10/keyid.c (pubkey_string): Support dual algorithms. (do_hash_public_key): Support Kyber. (nbits_from_pk): Ditto. (keygrip_from_pk): Return the Kyber part for the ECC+Kyber dual algo. * g10/keygen.c (struct common_gen_cb_parm_s): Add genkey_result2. Note that this callback is not yet used. (ecckey_from_sexp): Add optional arg sexp2 and use it for Kyber. Change callers. (ecckey_from_sexp): Do not leak LIST in case of an error. (common_gen): Add arg keyparms2, change callers, and support Kyber. (gen_kyber): New. (get_keysize_range): Support Kyber. (fixup_keysize): Simplify and support Kyber. (do_create): Handle Kyber. (parse_key_parameter_part): Remove algo strings "ky768" and "ky1024" and add a generic "kyber" with default parameters. -- This uses a revised format which is more aligned with the usual OpenPGP structure. A lot of things are still missing. For example support for handling two keygrips and checking both of them in a -K listing. There is also only ky768_bp384 as fixed algorithm for now. No passphrase for the Kyber part of the dual algorithm is on purpose. A test was done using gpg --quick-gen-key pqc1 nistp256 and then running gpg -v --quick-add-key <fingerprint> kyber which creates a v5 subkey on a v4 primary key. A second test using gpg --quick-gen-key pqc2 Ed448 followed by a --quick-add-key created a v5 key with a v5 subkey. GnuPG-bug-id: 6815
2024-04-03 18:00:44 +02:00
err = (err ? err : gpg_mpi_write_opaque_nohdr (obuf, pkey[2]));
/* fixed-length field 4 */
iobuf_write (obuf, "Anonymous Sender ", 20);
/* fixed-length field 5, recipient fp (or first 20 octets of fp) */
iobuf_write (obuf, pk_fp, 20);
if (!err)
*r_size = iobuf_temp_to_buffer (obuf, kdf_params, 256);
iobuf_close (obuf);
if (!err)
{
if (DBG_CRYPTO)
log_printhex (kdf_params, *r_size, "ecdh KDF message params are:");
}
return err;
}
/* Derive KEK with KEK_SIZE into the memory at SECRET_X. */
static gpg_error_t
derive_kek (size_t kek_size,
int kdf_hash_algo,
byte *secret_x, int secret_x_size,
const unsigned char *kdf_params, size_t kdf_params_size)
{
gpg_error_t err;
#if 0 /* GCRYPT_VERSION_NUMBER >= 0x010b00 */
/*
* Experimental: We will remove this if/endif-conditional
* compilation when we update NEED_LIBGCRYPT_VERSION to 1.11.0.
*/
gcry_kdf_hd_t hd;
unsigned long param[1];
param[0] = kek_size;
err = gcry_kdf_open (&hd, GCRY_KDF_ONESTEP_KDF, kdf_hash_algo,
param, 1,
secret_x, secret_x_size, NULL, 0, NULL, 0,
kdf_params, kdf_params_size);
if (!err)
{
gcry_kdf_compute (hd, NULL);
gcry_kdf_final (hd, kek_size, secret_x);
gcry_kdf_close (hd);
/* Clean the tail before returning. */
memset (secret_x+kek_size, 0, secret_x_size - kek_size);
}
#else
gcry_md_hd_t h;
log_assert( gcry_md_get_algo_dlen (kdf_hash_algo) >= 32 );
err = gcry_md_open (&h, kdf_hash_algo, 0);
if (err)
{
log_error ("gcry_md_open failed for kdf_hash_algo %d: %s",
kdf_hash_algo, gpg_strerror (err));
return err;
}
gcry_md_write(h, "\x00\x00\x00\x01", 4); /* counter = 1 */
gcry_md_write(h, secret_x, secret_x_size); /* x of the point X */
gcry_md_write(h, kdf_params, kdf_params_size); /* KDF parameters */
gcry_md_final (h);
memcpy (secret_x, gcry_md_read (h, kdf_hash_algo), kek_size);
gcry_md_close (h);
/* Clean the tail before returning. */
memset (secret_x+kek_size, 0, secret_x_size - kek_size);
#endif
if (DBG_CRYPTO)
log_printhex (secret_x, kek_size, "ecdh KEK is:");
return err;
}
/* Prepare ECDH using SHARED, PK_FP fingerprint, and PKEY array.
Returns the cipher handle in R_HD, which needs to be closed by
the caller. */
static gpg_error_t
prepare_ecdh_with_shared_point (const char *shared, size_t nshared,
const byte pk_fp[MAX_FINGERPRINT_LEN],
gcry_mpi_t *pkey, gcry_cipher_hd_t *r_hd)
{
gpg_error_t err;
byte *secret_x;
int secret_x_size;
unsigned int nbits;
const unsigned char *kek_params;
size_t kek_params_size;
int kdf_hash_algo;
int kdf_encr_algo;
unsigned char kdf_params[256];
size_t kdf_params_size;
size_t kek_size;
gcry_cipher_hd_t hd;
*r_hd = NULL;
if (!gcry_mpi_get_flag (pkey[2], GCRYMPI_FLAG_OPAQUE))
return gpg_error (GPG_ERR_BUG);
kek_params = gcry_mpi_get_opaque (pkey[2], &nbits);
kek_params_size = (nbits+7)/8;
if (DBG_CRYPTO)
log_printhex (kek_params, kek_params_size, "ecdh KDF params:");
/* Expect 4 bytes 03 01 hash_alg symm_alg. */
if (kek_params_size != 4 || kek_params[0] != 3 || kek_params[1] != 1)
return gpg_error (GPG_ERR_BAD_PUBKEY);
kdf_hash_algo = kek_params[2];
kdf_encr_algo = kek_params[3];
if (DBG_CRYPTO)
log_debug ("ecdh KDF algorithms %s+%s with aeswrap\n",
openpgp_md_algo_name (kdf_hash_algo),
openpgp_cipher_algo_name (kdf_encr_algo));
if (kdf_hash_algo != GCRY_MD_SHA256
&& kdf_hash_algo != GCRY_MD_SHA384
&& kdf_hash_algo != GCRY_MD_SHA512)
return gpg_error (GPG_ERR_BAD_PUBKEY);
if (kdf_encr_algo != CIPHER_ALGO_AES
&& kdf_encr_algo != CIPHER_ALGO_AES192
&& kdf_encr_algo != CIPHER_ALGO_AES256)
return gpg_error (GPG_ERR_BAD_PUBKEY);
kek_size = gcry_cipher_get_algo_keylen (kdf_encr_algo);
if (kek_size > gcry_md_get_algo_dlen (kdf_hash_algo))
return gpg_error (GPG_ERR_BAD_PUBKEY);
/* Build kdf_params. */
err = build_kdf_params (kdf_params, &kdf_params_size, pkey, pk_fp);
if (err)
return err;
nbits = pubkey_nbits (PUBKEY_ALGO_ECDH, pkey);
if (!nbits)
return gpg_error (GPG_ERR_TOO_SHORT);
secret_x_size = (nbits+7)/8;
if (kek_size > secret_x_size)
return gpg_error (GPG_ERR_BAD_PUBKEY);
err = extract_secret_x (&secret_x, shared, nshared,
/* pkey[1] is the public point */
(mpi_get_nbits (pkey[1])+7)/8,
secret_x_size);
if (err)
return err;
/*** We have now the shared secret bytes in secret_x. ***/
/* At this point we are done with PK encryption and the rest of the
* function uses symmetric key encryption techniques to protect the
* input DATA. The following two sections will simply replace
* current secret_x with a value derived from it. This will become
* a KEK.
*/
/* Derive a KEK (key wrapping key) using SECRET_X and KDF_PARAMS. */
err = derive_kek (kek_size, kdf_hash_algo, secret_x,
secret_x_size, kdf_params, kdf_params_size);
if (err)
{
xfree (secret_x);
return err;
}
/* And, finally, aeswrap with key secret_x. */
err = gcry_cipher_open (&hd, kdf_encr_algo, GCRY_CIPHER_MODE_AESWRAP, 0);
if (err)
{
log_error ("ecdh failed to initialize AESWRAP: %s\n",
gpg_strerror (err));
xfree (secret_x);
return err;
}
err = gcry_cipher_setkey (hd, secret_x, kek_size);
xfree (secret_x);
secret_x = NULL;
if (err)
{
gcry_cipher_close (hd);
log_error ("ecdh failed in gcry_cipher_setkey: %s\n",
gpg_strerror (err));
}
else
*r_hd = hd;
return err;
}
/* Encrypts DATA using a key derived from the ECC shared point SHARED
using the FIPS SP 800-56A compliant method
key_derivation+key_wrapping. PKEY is the public key and PK_FP the
fingerprint of this public key. On success the result is stored at
R_RESULT; on failure NULL is stored at R_RESULT and an error code
returned. */
gpg_error_t
pk_ecdh_encrypt_with_shared_point (const char *shared, size_t nshared,
const byte pk_fp[MAX_FINGERPRINT_LEN],
const byte *data, size_t ndata,
gcry_mpi_t *pkey, gcry_mpi_t *r_result)
{
gpg_error_t err;
gcry_cipher_hd_t hd;
byte *data_buf;
int data_buf_size;
gcry_mpi_t result;
byte *in;
*r_result = NULL;
err = prepare_ecdh_with_shared_point (shared, nshared, pk_fp, pkey, &hd);
if (err)
return err;
data_buf_size = ndata;
if ((data_buf_size & 7) != 0)
{
log_error ("can't use a shared secret of %d bytes for ecdh\n",
data_buf_size);
gcry_cipher_close (hd);
return gpg_error (GPG_ERR_BAD_DATA);
}
data_buf = xtrymalloc_secure( 1 + 2*data_buf_size + 8);
if (!data_buf)
{
err = gpg_error_from_syserror ();
gcry_cipher_close (hd);
return err;
}
in = data_buf+1+data_buf_size+8;
/* Write data MPI into the end of data_buf. data_buf is size
aeswrap data. */
memcpy (in, data, ndata);
if (DBG_CRYPTO)
log_printhex (in, data_buf_size, "ecdh encrypting :");
err = gcry_cipher_encrypt (hd, data_buf+1, data_buf_size+8,
in, data_buf_size);
memset (in, 0, data_buf_size);
gcry_cipher_close (hd);
if (err)
{
log_error ("ecdh failed in gcry_cipher_encrypt: %s\n",
gpg_strerror (err));
xfree (data_buf);
return err;
}
data_buf[0] = data_buf_size+8;
if (DBG_CRYPTO)
log_printhex (data_buf+1, data_buf[0], "ecdh encrypted to:");
result = gcry_mpi_set_opaque (NULL, data_buf, 8 * (1+data_buf[0]));
if (!result)
{
err = gpg_error_from_syserror ();
xfree (data_buf);
log_error ("ecdh failed to create an MPI: %s\n",
gpg_strerror (err));
return err;
}
*r_result = result;
return err;
}
static gcry_mpi_t
gen_k (unsigned nbits, int little_endian, int is_opaque)
{
gcry_mpi_t k;
if (is_opaque)
{
unsigned char *p;
size_t nbytes = (nbits+7)/8;
p = gcry_random_bytes_secure (nbytes, GCRY_STRONG_RANDOM);
if ((nbits % 8))
{
if (little_endian)
p[nbytes-1] &= ((1 << (nbits % 8)) - 1);
else
p[0] &= ((1 << (nbits % 8)) - 1);
}
k = gcry_mpi_set_opaque (NULL, p, nbits);
return k;
}
k = gcry_mpi_snew (nbits);
if (DBG_CRYPTO)
log_debug ("choosing a random k of %u bits\n", nbits);
gcry_mpi_randomize (k, nbits-1, GCRY_STRONG_RANDOM);
if (DBG_CRYPTO)
{
unsigned char *buffer;
if (gcry_mpi_aprint (GCRYMPI_FMT_HEX, &buffer, NULL, k))
BUG ();
log_debug ("ephemeral scalar MPI #0: %s\n", buffer);
gcry_free (buffer);
}
return k;
}
/* Generate an ephemeral key for the public ECDH key in PKEY. On
success the generated key is stored at R_K; on failure NULL is
stored at R_K and an error code returned. */
gpg_error_t
pk_ecdh_generate_ephemeral_key (gcry_mpi_t *pkey, gcry_mpi_t *r_k)
{
unsigned int nbits;
gcry_mpi_t k;
int is_little_endian = 0;
int require_opaque = 0;
if (openpgp_oid_is_cv448 (pkey[0]))
{
is_little_endian = 1;
require_opaque = 1;
}
*r_k = NULL;
nbits = pubkey_nbits (PUBKEY_ALGO_ECDH, pkey);
if (!nbits)
return gpg_error (GPG_ERR_TOO_SHORT);
k = gen_k (nbits, is_little_endian, require_opaque);
if (!k)
BUG ();
*r_k = k;
return 0;
}
/* Perform ECDH decryption. */
int
pk_ecdh_decrypt (gcry_mpi_t *r_result, const byte sk_fp[MAX_FINGERPRINT_LEN],
gcry_mpi_t data,
const byte *shared, size_t nshared, gcry_mpi_t * skey)
{
gpg_error_t err;
gcry_cipher_hd_t hd;
size_t nbytes;
byte *data_buf;
int data_buf_size;
const unsigned char *p;
unsigned int nbits;
*r_result = NULL;
err = prepare_ecdh_with_shared_point (shared, nshared, sk_fp, skey, &hd);
if (err)
return err;
p = gcry_mpi_get_opaque (data, &nbits);
nbytes = (nbits+7)/8;
data_buf_size = nbytes;
if ((data_buf_size & 7) != 1 || data_buf_size <= 1 + 8)
{
log_error ("can't use a shared secret of %d bytes for ecdh\n",
data_buf_size);
gcry_cipher_close (hd);
return gpg_error (GPG_ERR_BAD_DATA);
}
/* The first octet is for length. It's longer than the result
because of one additional block of AESWRAP. */
data_buf_size -= 1 + 8;
data_buf = xtrymalloc_secure (data_buf_size);
if (!data_buf)
{
err = gpg_error_from_syserror ();
gcry_cipher_close (hd);
return err;
}
if (!p)
{
xfree (data_buf);
gcry_cipher_close (hd);
return gpg_error (GPG_ERR_BAD_MPI);
}
if (p[0] != nbytes-1)
{
log_error ("ecdh inconsistent size\n");
xfree (data_buf);
gcry_cipher_close (hd);
return gpg_error (GPG_ERR_BAD_MPI);
}
if (DBG_CRYPTO)
log_printhex (p+1, nbytes-1, "ecdh decrypting :");
err = gcry_cipher_decrypt (hd, data_buf, data_buf_size, p+1, nbytes-1);
gcry_cipher_close (hd);
if (err)
{
log_error ("ecdh failed in gcry_cipher_decrypt: %s\n",
gpg_strerror (err));
xfree (data_buf);
return err;
}
if (DBG_CRYPTO)
log_printhex (data_buf, data_buf_size, "ecdh decrypted to :");
/* Padding is removed later. */
/* if (in[data_buf_size-1] > 8 ) */
/* { */
/* log_error ("ecdh failed at decryption: invalid padding." */
/* " 0x%02x > 8\n", in[data_buf_size-1] ); */
/* return gpg_error (GPG_ERR_BAD_KEY); */
/* } */
err = gcry_mpi_scan (r_result, GCRYMPI_FMT_USG, data_buf,
data_buf_size, NULL);
xfree (data_buf);
if (err)
{
log_error ("ecdh failed to create a plain text MPI: %s\n",
gpg_strerror (err));
return err;
}
return err;
}