MeiliSearch/milli/src/heed_codec/cbo_roaring_bitmap_codec.rs

109 lines
3.6 KiB
Rust

use std::borrow::Cow;
use std::io;
use std::mem::size_of;
use byteorder::{NativeEndian, ReadBytesExt, WriteBytesExt};
use roaring::RoaringBitmap;
/// This is the limit where using a byteorder became less size efficient
/// than using a direct roaring encoding, it is also the point where we are able
/// to determine the encoding used only by using the array of bytes length.
const THRESHOLD: usize = 7;
/// A conditionnal codec that either use the RoaringBitmap
/// or a lighter ByteOrder en/decoding method.
pub struct CboRoaringBitmapCodec;
impl CboRoaringBitmapCodec {
pub fn serialized_size(roaring: &RoaringBitmap) -> usize {
if roaring.len() <= THRESHOLD as u64 {
roaring.len() as usize * size_of::<u32>()
} else {
roaring.serialized_size()
}
}
pub fn serialize_into(roaring: &RoaringBitmap, vec: &mut Vec<u8>) -> io::Result<()> {
if roaring.len() <= THRESHOLD as u64 {
// If the number of items (u32s) to encode is less than or equal to the threshold
// it means that it would weigh the same or less than the RoaringBitmap
// header, so we directly encode them using ByteOrder instead.
for integer in roaring {
vec.write_u32::<NativeEndian>(integer)?;
}
Ok(())
} else {
// Otherwise, we use the classic RoaringBitmapCodec that writes a header.
roaring.serialize_into(vec)
}
}
pub fn deserialize_from(mut bytes: &[u8]) -> io::Result<RoaringBitmap> {
if bytes.len() <= THRESHOLD * size_of::<u32>() {
// If there is threshold or less than threshold integers that can fit into this array
// of bytes it means that we used the ByteOrder codec serializer.
let mut bitmap = RoaringBitmap::new();
while let Ok(integer) = bytes.read_u32::<NativeEndian>() {
bitmap.insert(integer);
}
Ok(bitmap)
} else {
// Otherwise, it means we used the classic RoaringBitmapCodec and
// that the header takes threshold integers.
RoaringBitmap::deserialize_from(bytes)
}
}
}
impl heed::BytesDecode<'_> for CboRoaringBitmapCodec {
type DItem = RoaringBitmap;
fn bytes_decode(bytes: &[u8]) -> Option<Self::DItem> {
Self::deserialize_from(bytes).ok()
}
}
impl heed::BytesEncode<'_> for CboRoaringBitmapCodec {
type EItem = RoaringBitmap;
fn bytes_encode(item: &Self::EItem) -> Option<Cow<[u8]>> {
let mut vec = Vec::with_capacity(Self::serialized_size(item));
Self::serialize_into(item, &mut vec).ok()?;
Some(Cow::Owned(vec))
}
}
#[cfg(test)]
mod tests {
use std::iter::FromIterator;
use heed::{BytesEncode, BytesDecode};
use super::*;
#[test]
fn verify_encoding_decoding() {
let input = RoaringBitmap::from_iter(0..THRESHOLD as u32);
let bytes = CboRoaringBitmapCodec::bytes_encode(&input).unwrap();
let output = CboRoaringBitmapCodec::bytes_decode(&bytes).unwrap();
assert_eq!(input, output);
}
#[test]
fn verify_threshold() {
let input = RoaringBitmap::from_iter(0..THRESHOLD as u32);
// use roaring bitmap
let mut bytes = Vec::new();
input.serialize_into(&mut bytes).unwrap();
let roaring_size = bytes.len();
// use byteorder directly
let mut bytes = Vec::new();
for integer in input {
bytes.write_u32::<NativeEndian>(integer).unwrap();
}
let bo_size = bytes.len();
assert!(roaring_size > bo_size);
}
}