MeiliSearch/meilisearch-lib/src/tasks/scheduler.rs

527 lines
16 KiB
Rust

use std::cmp::Ordering;
use std::collections::{hash_map::Entry, BinaryHeap, HashMap, VecDeque};
use std::ops::{Deref, DerefMut};
use std::path::Path;
use std::sync::Arc;
use std::time::Duration;
use atomic_refcell::AtomicRefCell;
use chrono::Utc;
use milli::update::IndexDocumentsMethod;
use tokio::sync::{watch, RwLock};
use crate::options::SchedulerConfig;
use crate::update_file_store::UpdateFileStore;
use super::batch::Batch;
use super::error::Result;
use super::task::{Job, Task, TaskContent, TaskEvent, TaskId};
use super::update_loop::UpdateLoop;
use super::{TaskFilter, TaskPerformer, TaskStore};
#[derive(Eq, Debug, Clone, Copy)]
enum TaskType {
DocumentAddition { number: usize },
DocumentUpdate { number: usize },
Other,
}
/// Two tasks are equal if they have the same type.
impl PartialEq for TaskType {
fn eq(&self, other: &Self) -> bool {
matches!(
(self, other),
(Self::DocumentAddition { .. }, Self::DocumentAddition { .. })
| (Self::DocumentUpdate { .. }, Self::DocumentUpdate { .. })
)
}
}
#[derive(Eq, Debug, Clone, Copy)]
struct PendingTask {
kind: TaskType,
id: TaskId,
}
impl PartialEq for PendingTask {
fn eq(&self, other: &Self) -> bool {
self.id.eq(&other.id)
}
}
impl PartialOrd for PendingTask {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for PendingTask {
fn cmp(&self, other: &Self) -> Ordering {
self.id.cmp(&other.id).reverse()
}
}
#[derive(Debug)]
struct TaskList {
index: String,
tasks: BinaryHeap<PendingTask>,
}
impl Deref for TaskList {
type Target = BinaryHeap<PendingTask>;
fn deref(&self) -> &Self::Target {
&self.tasks
}
}
impl DerefMut for TaskList {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.tasks
}
}
impl TaskList {
fn new(index: String) -> Self {
Self {
index,
tasks: Default::default(),
}
}
}
impl PartialEq for TaskList {
fn eq(&self, other: &Self) -> bool {
self.index == other.index
}
}
impl Eq for TaskList {}
impl Ord for TaskList {
fn cmp(&self, other: &Self) -> Ordering {
match (self.peek(), other.peek()) {
(None, None) => Ordering::Equal,
(None, Some(_)) => Ordering::Less,
(Some(_), None) => Ordering::Greater,
(Some(lhs), Some(rhs)) => lhs.cmp(rhs),
}
}
}
impl PartialOrd for TaskList {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[derive(Default)]
struct TaskQueue {
/// Maps index uids to their TaskList, for quick access
index_tasks: HashMap<String, Arc<AtomicRefCell<TaskList>>>,
/// A queue that orders TaskList by the priority of their fist update
queue: BinaryHeap<Arc<AtomicRefCell<TaskList>>>,
}
impl TaskQueue {
fn insert(&mut self, task: Task) {
let uid = task.index_uid.into_inner();
let id = task.id;
let kind = match task.content {
TaskContent::DocumentAddition {
documents_count,
merge_strategy: IndexDocumentsMethod::ReplaceDocuments,
..
} => TaskType::DocumentAddition {
number: documents_count,
},
TaskContent::DocumentAddition {
documents_count,
merge_strategy: IndexDocumentsMethod::UpdateDocuments,
..
} => TaskType::DocumentUpdate {
number: documents_count,
},
_ => TaskType::Other,
};
let task = PendingTask { kind, id };
match self.index_tasks.entry(uid) {
Entry::Occupied(entry) => {
// A task list already exists for this index, all we have to to is to push the new
// update to the end of the list. This won't change the order since ids are
// monotically increasing.
let mut list = entry.get().borrow_mut();
// We only need the first element to be lower than the one we want to
// insert to preserve the order in the queue.
assert!(list.peek().map(|old_id| id >= old_id.id).unwrap_or(true));
list.push(task);
}
Entry::Vacant(entry) => {
let mut task_list = TaskList::new(entry.key().to_owned());
task_list.push(task);
let task_list = Arc::new(AtomicRefCell::new(task_list));
entry.insert(task_list.clone());
self.queue.push(task_list);
}
}
}
/// Passes a context with a view to the task list of the next index to schedule. It is
/// guaranteed that the first id from task list will be the lowest pending task id.
fn head_mut<R>(&mut self, mut f: impl FnMut(&mut TaskList) -> R) -> Option<R> {
let head = self.queue.pop()?;
let result = {
let mut ref_head = head.borrow_mut();
f(&mut *ref_head)
};
if !head.borrow().tasks.is_empty() {
// After being mutated, the head is reinserted to the correct position.
self.queue.push(head);
} else {
self.index_tasks.remove(&head.borrow().index);
}
Some(result)
}
pub fn is_empty(&self) -> bool {
self.queue.is_empty() && self.index_tasks.is_empty()
}
}
pub struct Scheduler {
jobs: VecDeque<Job>,
tasks: TaskQueue,
store: TaskStore,
processing: Vec<TaskId>,
next_fetched_task_id: TaskId,
config: SchedulerConfig,
/// Notifies the update loop that a new task was received
notifier: watch::Sender<()>,
}
impl Scheduler {
pub fn new<P>(
store: TaskStore,
performer: Arc<P>,
mut config: SchedulerConfig,
) -> Result<Arc<RwLock<Self>>>
where
P: TaskPerformer,
{
let (notifier, rcv) = watch::channel(());
let debounce_time = config.debounce_duration_sec;
// Disable autobatching
if !config.enable_autobatching {
config.max_batch_size = Some(1);
}
let this = Self {
jobs: VecDeque::new(),
tasks: TaskQueue::default(),
store,
processing: Vec::new(),
next_fetched_task_id: 0,
config,
notifier,
};
// Notify update loop to start processing pending updates immediately after startup.
this.notify();
let this = Arc::new(RwLock::new(this));
let update_loop = UpdateLoop::new(
this.clone(),
performer,
debounce_time.filter(|&v| v > 0).map(Duration::from_secs),
rcv,
);
tokio::task::spawn_local(update_loop.run());
Ok(this)
}
pub async fn dump(&self, path: &Path, file_store: UpdateFileStore) -> Result<()> {
self.store.dump(path, file_store).await
}
fn register_task(&mut self, task: Task) {
assert!(!task.is_finished());
self.tasks.insert(task);
}
/// Clears the processing list, this method should be called when the processing of a batch is finished.
pub fn finish(&mut self) {
self.processing.clear();
}
pub fn notify(&self) {
let _ = self.notifier.send(());
}
fn notify_if_not_empty(&self) {
if !self.jobs.is_empty() || !self.tasks.is_empty() {
self.notify();
}
}
pub async fn update_tasks(&self, tasks: Vec<Task>) -> Result<Vec<Task>> {
self.store.update_tasks(tasks).await
}
pub async fn get_task(&self, id: TaskId, filter: Option<TaskFilter>) -> Result<Task> {
self.store.get_task(id, filter).await
}
pub async fn list_tasks(
&self,
offset: Option<TaskId>,
filter: Option<TaskFilter>,
limit: Option<usize>,
) -> Result<Vec<Task>> {
self.store.list_tasks(offset, filter, limit).await
}
pub async fn get_processing_tasks(&self) -> Result<Vec<Task>> {
let mut tasks = Vec::new();
for id in self.processing.iter() {
let task = self.store.get_task(*id, None).await?;
tasks.push(task);
}
Ok(tasks)
}
pub async fn schedule_job(&mut self, job: Job) {
self.jobs.push_back(job);
self.notify();
}
async fn fetch_pending_tasks(&mut self) -> Result<()> {
// We must NEVER re-enqueue an already processed task! It's content uuid would point to an unexisting file.
//
// TODO(marin): This may create some latency when the first batch lazy loads the pending updates.
let mut filter = TaskFilter::default();
filter.filter_fn(|task| !task.is_finished());
self.store
.list_tasks(Some(self.next_fetched_task_id), Some(filter), None)
.await?
.into_iter()
// The tasks arrive in reverse order, and we need to insert them in order.
.rev()
.for_each(|t| {
self.next_fetched_task_id = t.id + 1;
self.register_task(t);
});
Ok(())
}
/// Prepare the next batch, and set `processing` to the ids in that batch.
pub async fn prepare(&mut self) -> Result<Pending> {
// If there is a job to process, do it first.
if let Some(job) = self.jobs.pop_front() {
// There is more work to do, notify the update loop
self.notify_if_not_empty();
return Ok(Pending::Job(job));
}
// Try to fill the queue with pending tasks.
self.fetch_pending_tasks().await?;
make_batch(&mut self.tasks, &mut self.processing, &self.config);
log::debug!("prepared batch with {} tasks", self.processing.len());
if !self.processing.is_empty() {
let ids = std::mem::take(&mut self.processing);
let (ids, mut tasks) = self.store.get_pending_tasks(ids).await?;
// The batch id is the id of the first update it contains
let id = match tasks.first() {
Some(Task { id, .. }) => *id,
_ => panic!("invalid batch"),
};
tasks.iter_mut().for_each(|t| {
t.events.push(TaskEvent::Batched {
batch_id: id,
timestamp: Utc::now(),
})
});
self.processing = ids;
let batch = Batch {
id,
created_at: Utc::now(),
tasks,
};
// There is more work to do, notify the update loop
self.notify_if_not_empty();
Ok(Pending::Batch(batch))
} else {
Ok(Pending::Nothing)
}
}
}
#[derive(Debug)]
pub enum Pending {
Batch(Batch),
Job(Job),
Nothing,
}
fn make_batch(tasks: &mut TaskQueue, processing: &mut Vec<TaskId>, config: &SchedulerConfig) {
processing.clear();
let mut doc_count = 0;
tasks.head_mut(|list| match list.peek().copied() {
Some(PendingTask {
kind: TaskType::Other,
id,
}) => {
processing.push(id);
list.pop();
}
Some(PendingTask { kind, .. }) => loop {
match list.peek() {
Some(pending) if pending.kind == kind => {
// We always need to process at least one task for the scheduler to make progress.
if processing.len() >= config.max_batch_size.unwrap_or(usize::MAX).max(1) {
break;
}
let pending = list.pop().unwrap();
processing.push(pending.id);
// We add the number of documents to the count if we are scheduling document additions and
// stop adding if we already have enough.
//
// We check that bound only after adding the current task to the batch, so that a batch contains at least one task.
match pending.kind {
TaskType::DocumentUpdate { number }
| TaskType::DocumentAddition { number } => {
doc_count += number;
if doc_count >= config.max_documents_per_batch.unwrap_or(usize::MAX) {
break;
}
}
_ => (),
}
}
_ => break,
}
},
None => (),
});
}
#[cfg(test)]
mod test {
use milli::update::IndexDocumentsMethod;
use uuid::Uuid;
use crate::{index_resolver::IndexUid, tasks::task::TaskContent};
use super::*;
fn gen_task(id: TaskId, index_uid: &str, content: TaskContent) -> Task {
Task {
id,
index_uid: IndexUid::new_unchecked(index_uid.to_owned()),
content,
events: vec![],
}
}
#[test]
fn register_updates_multiples_indexes() {
let mut queue = TaskQueue::default();
queue.insert(gen_task(0, "test1", TaskContent::IndexDeletion));
queue.insert(gen_task(1, "test2", TaskContent::IndexDeletion));
queue.insert(gen_task(2, "test2", TaskContent::IndexDeletion));
queue.insert(gen_task(3, "test2", TaskContent::IndexDeletion));
queue.insert(gen_task(4, "test1", TaskContent::IndexDeletion));
queue.insert(gen_task(5, "test1", TaskContent::IndexDeletion));
queue.insert(gen_task(6, "test2", TaskContent::IndexDeletion));
let test1_tasks = queue
.head_mut(|tasks| tasks.drain().map(|t| t.id).collect::<Vec<_>>())
.unwrap();
assert_eq!(test1_tasks, &[0, 4, 5]);
let test2_tasks = queue
.head_mut(|tasks| tasks.drain().map(|t| t.id).collect::<Vec<_>>())
.unwrap();
assert_eq!(test2_tasks, &[1, 2, 3, 6]);
assert!(queue.index_tasks.is_empty());
assert!(queue.queue.is_empty());
}
#[test]
fn test_make_batch() {
let mut queue = TaskQueue::default();
let content = TaskContent::DocumentAddition {
content_uuid: Uuid::new_v4(),
merge_strategy: IndexDocumentsMethod::ReplaceDocuments,
primary_key: Some("test".to_string()),
documents_count: 0,
allow_index_creation: true,
};
queue.insert(gen_task(0, "test1", content.clone()));
queue.insert(gen_task(1, "test2", content.clone()));
queue.insert(gen_task(2, "test2", TaskContent::IndexDeletion));
queue.insert(gen_task(3, "test2", content.clone()));
queue.insert(gen_task(4, "test1", content.clone()));
queue.insert(gen_task(5, "test1", TaskContent::IndexDeletion));
queue.insert(gen_task(6, "test2", content.clone()));
queue.insert(gen_task(7, "test1", content));
let mut batch = Vec::new();
let config = SchedulerConfig::default();
make_batch(&mut queue, &mut batch, &config);
assert_eq!(batch, &[0, 4]);
batch.clear();
make_batch(&mut queue, &mut batch, &config);
assert_eq!(batch, &[1]);
batch.clear();
make_batch(&mut queue, &mut batch, &config);
assert_eq!(batch, &[2]);
batch.clear();
make_batch(&mut queue, &mut batch, &config);
assert_eq!(batch, &[3, 6]);
batch.clear();
make_batch(&mut queue, &mut batch, &config);
assert_eq!(batch, &[5]);
batch.clear();
make_batch(&mut queue, &mut batch, &config);
assert_eq!(batch, &[7]);
assert!(queue.is_empty());
}
}