Loïc Lecrenier f6524a6858 Adjust costs of edges in position ranking rule
To ensure good performance
2023-05-16 11:28:56 +02:00

127 lines
4.4 KiB
Rust

use fxhash::{FxHashMap, FxHashSet};
use roaring::RoaringBitmap;
use super::{ComputedCondition, RankingRuleGraphTrait};
use crate::search::new::interner::{DedupInterner, Interned};
use crate::search::new::query_term::LocatedQueryTermSubset;
use crate::search::new::resolve_query_graph::compute_query_term_subset_docids_within_position;
use crate::search::new::SearchContext;
use crate::Result;
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct PositionCondition {
term: LocatedQueryTermSubset,
positions: Vec<u16>,
}
pub enum PositionGraph {}
impl RankingRuleGraphTrait for PositionGraph {
type Condition = PositionCondition;
fn resolve_condition(
ctx: &mut SearchContext,
condition: &Self::Condition,
universe: &RoaringBitmap,
) -> Result<ComputedCondition> {
let PositionCondition { term, positions } = condition;
let mut docids = RoaringBitmap::new();
for position in positions {
// maybe compute_query_term_subset_docids_within_position should accept a universe as argument
docids |= universe
& compute_query_term_subset_docids_within_position(
ctx,
&term.term_subset,
*position,
)?;
}
Ok(ComputedCondition {
docids,
universe_len: universe.len(),
start_term_subset: None,
end_term_subset: term.clone(),
})
}
fn build_edges(
ctx: &mut SearchContext,
conditions_interner: &mut DedupInterner<Self::Condition>,
_from: Option<&LocatedQueryTermSubset>,
to_term: &LocatedQueryTermSubset,
) -> Result<Vec<(u32, Interned<Self::Condition>)>> {
let term = to_term;
let mut all_positions = FxHashSet::default();
for word in term.term_subset.all_single_words_except_prefix_db(ctx)? {
let positions = ctx.get_db_word_positions(word.interned())?;
all_positions.extend(positions);
}
for phrase in term.term_subset.all_phrases(ctx)? {
// Only check the position of the first word in the phrase
// this is not correct, but it is the best we can do, since
// it is difficult/impossible to know the expected position
// of a word in a phrase.
// There is probably a more correct way to do it though.
if let Some(word) = phrase.words(ctx).iter().flatten().next() {
let positions = ctx.get_db_word_positions(*word)?;
all_positions.extend(positions);
}
}
if let Some(word_prefix) = term.term_subset.use_prefix_db(ctx) {
let positions = ctx.get_db_word_prefix_positions(word_prefix.interned())?;
all_positions.extend(positions);
}
let mut positions_for_costs = FxHashMap::<u32, Vec<u16>>::default();
for position in all_positions {
let cost = {
let mut cost = 0;
for i in 0..term.term_ids.len() {
// This is actually not fully correct and slightly penalises ngrams unfairly.
// Because if two words are in the same bucketed position (e.g. 32) and consecutive,
// then their position cost will be 32+32=64, but an ngram of these two words at the
// same position will have a cost of 32+32+1=65
cost += cost_from_position(position as u32 + i as u32);
}
cost
};
positions_for_costs.entry(cost).or_default().push(position);
}
let mut edges = vec![];
for (cost, positions) in positions_for_costs {
// TODO: We can improve performances and relevancy by storing
// the term subsets associated to each position fetched
edges.push((
cost,
conditions_interner.insert(PositionCondition {
term: term.clone(), // TODO remove this ugly clone
positions,
}),
));
}
Ok(edges)
}
}
fn cost_from_position(sum_positions: u32) -> u32 {
match sum_positions {
0 => 0,
1 => 1,
2..=4 => 2,
5..=7 => 3,
8..=11 => 4,
12..=16 => 5,
17..=24 => 6,
25..=64 => 7,
65..=256 => 8,
257..=1024 => 9,
_ => 10,
}
}