mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-01-16 00:07:28 +01:00
382 lines
10 KiB
Rust
382 lines
10 KiB
Rust
use meili_snap::{json_string, snapshot};
|
|
|
|
use crate::common::{GetAllDocumentsOptions, Server};
|
|
use crate::json;
|
|
use crate::vector::generate_default_user_provided_documents;
|
|
|
|
#[actix_rt::test]
|
|
async fn retrieve_binary_quantize_status_in_the_settings() {
|
|
let server = Server::new().await;
|
|
let index = server.index("doggo");
|
|
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(value, @r###"
|
|
{
|
|
"vectorStore": true,
|
|
"metrics": false,
|
|
"logsRoute": false,
|
|
"editDocumentsByFunction": false,
|
|
"containsFilter": false
|
|
}
|
|
"###);
|
|
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"manual": {
|
|
"source": "userProvided",
|
|
"dimensions": 3,
|
|
}
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
server.wait_task(response.uid()).await.succeeded();
|
|
|
|
let (settings, code) = index.settings().await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(settings["embedders"]["manual"], @r#"{"source":"userProvided","dimensions":3}"#);
|
|
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"manual": {
|
|
"source": "userProvided",
|
|
"dimensions": 3,
|
|
"binaryQuantized": false,
|
|
}
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
server.wait_task(response.uid()).await.succeeded();
|
|
|
|
let (settings, code) = index.settings().await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(settings["embedders"]["manual"], @r#"{"source":"userProvided","dimensions":3,"binaryQuantized":false}"#);
|
|
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"manual": {
|
|
"source": "userProvided",
|
|
"dimensions": 3,
|
|
"binaryQuantized": true,
|
|
}
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
server.wait_task(response.uid()).await.succeeded();
|
|
|
|
let (settings, code) = index.settings().await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(settings["embedders"]["manual"], @r#"{"source":"userProvided","dimensions":3,"binaryQuantized":true}"#);
|
|
}
|
|
|
|
#[actix_rt::test]
|
|
async fn binary_quantize_before_sending_documents() {
|
|
let server = Server::new().await;
|
|
let index = server.index("doggo");
|
|
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(value, @r###"
|
|
{
|
|
"vectorStore": true,
|
|
"metrics": false,
|
|
"logsRoute": false,
|
|
"editDocumentsByFunction": false,
|
|
"containsFilter": false
|
|
}
|
|
"###);
|
|
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"manual": {
|
|
"source": "userProvided",
|
|
"dimensions": 3,
|
|
"binaryQuantized": true,
|
|
}
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
server.wait_task(response.uid()).await.succeeded();
|
|
|
|
let documents = json!([
|
|
{"id": 0, "name": "kefir", "_vectors": { "manual": [-1.2, -2.3, 3.2] }},
|
|
{"id": 1, "name": "echo", "_vectors": { "manual": [2.5, 1.5, -130] }},
|
|
]);
|
|
let (value, code) = index.add_documents(documents, None).await;
|
|
snapshot!(code, @"202 Accepted");
|
|
index.wait_task(value.uid()).await.succeeded();
|
|
|
|
// Make sure the documents are binary quantized
|
|
let (documents, _code) = index
|
|
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
|
|
.await;
|
|
snapshot!(json_string!(documents), @r###"
|
|
{
|
|
"results": [
|
|
{
|
|
"id": 0,
|
|
"name": "kefir",
|
|
"_vectors": {
|
|
"manual": {
|
|
"embeddings": [
|
|
[
|
|
-1.0,
|
|
-1.0,
|
|
1.0
|
|
]
|
|
],
|
|
"regenerate": false
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"id": 1,
|
|
"name": "echo",
|
|
"_vectors": {
|
|
"manual": {
|
|
"embeddings": [
|
|
[
|
|
1.0,
|
|
1.0,
|
|
-1.0
|
|
]
|
|
],
|
|
"regenerate": false
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"offset": 0,
|
|
"limit": 20,
|
|
"total": 2
|
|
}
|
|
"###);
|
|
}
|
|
|
|
#[actix_rt::test]
|
|
async fn binary_quantize_after_sending_documents() {
|
|
let server = Server::new().await;
|
|
let index = server.index("doggo");
|
|
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(value, @r###"
|
|
{
|
|
"vectorStore": true,
|
|
"metrics": false,
|
|
"logsRoute": false,
|
|
"editDocumentsByFunction": false,
|
|
"containsFilter": false
|
|
}
|
|
"###);
|
|
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"manual": {
|
|
"source": "userProvided",
|
|
"dimensions": 3,
|
|
}
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
server.wait_task(response.uid()).await.succeeded();
|
|
|
|
let documents = json!([
|
|
{"id": 0, "name": "kefir", "_vectors": { "manual": [-1.2, -2.3, 3.2] }},
|
|
{"id": 1, "name": "echo", "_vectors": { "manual": [2.5, 1.5, -130] }},
|
|
]);
|
|
let (value, code) = index.add_documents(documents, None).await;
|
|
snapshot!(code, @"202 Accepted");
|
|
index.wait_task(value.uid()).await.succeeded();
|
|
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"manual": {
|
|
"source": "userProvided",
|
|
"dimensions": 3,
|
|
"binaryQuantized": true,
|
|
}
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
server.wait_task(response.uid()).await.succeeded();
|
|
|
|
// Make sure the documents are binary quantized
|
|
let (documents, _code) = index
|
|
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
|
|
.await;
|
|
snapshot!(json_string!(documents), @r###"
|
|
{
|
|
"results": [
|
|
{
|
|
"id": 0,
|
|
"name": "kefir",
|
|
"_vectors": {
|
|
"manual": {
|
|
"embeddings": [
|
|
[
|
|
-1.0,
|
|
-1.0,
|
|
1.0
|
|
]
|
|
],
|
|
"regenerate": false
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"id": 1,
|
|
"name": "echo",
|
|
"_vectors": {
|
|
"manual": {
|
|
"embeddings": [
|
|
[
|
|
1.0,
|
|
1.0,
|
|
-1.0
|
|
]
|
|
],
|
|
"regenerate": false
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"offset": 0,
|
|
"limit": 20,
|
|
"total": 2
|
|
}
|
|
"###);
|
|
}
|
|
|
|
#[actix_rt::test]
|
|
async fn try_to_disable_binary_quantization() {
|
|
let server = Server::new().await;
|
|
let index = server.index("doggo");
|
|
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
|
|
snapshot!(code, @"200 OK");
|
|
snapshot!(value, @r###"
|
|
{
|
|
"vectorStore": true,
|
|
"metrics": false,
|
|
"logsRoute": false,
|
|
"editDocumentsByFunction": false,
|
|
"containsFilter": false
|
|
}
|
|
"###);
|
|
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"manual": {
|
|
"source": "userProvided",
|
|
"dimensions": 3,
|
|
"binaryQuantized": true,
|
|
}
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
server.wait_task(response.uid()).await.succeeded();
|
|
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"manual": {
|
|
"source": "userProvided",
|
|
"dimensions": 3,
|
|
"binaryQuantized": false,
|
|
}
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
let ret = server.wait_task(response.uid()).await;
|
|
snapshot!(ret, @r#"
|
|
{
|
|
"uid": "[uid]",
|
|
"batchUid": "[batch_uid]",
|
|
"indexUid": "doggo",
|
|
"status": "failed",
|
|
"type": "settingsUpdate",
|
|
"canceledBy": null,
|
|
"details": {
|
|
"embedders": {
|
|
"manual": {
|
|
"source": "userProvided",
|
|
"dimensions": 3,
|
|
"binaryQuantized": false
|
|
}
|
|
}
|
|
},
|
|
"error": {
|
|
"message": "Index `doggo`: `.embedders.manual.binaryQuantized`: Cannot disable the binary quantization.\n - Note: Binary quantization is a lossy operation that cannot be reverted.\n - Hint: Add a new embedder that is non-quantized and regenerate the vectors.",
|
|
"code": "invalid_settings_embedders",
|
|
"type": "invalid_request",
|
|
"link": "https://docs.meilisearch.com/errors#invalid_settings_embedders"
|
|
},
|
|
"duration": "[duration]",
|
|
"enqueuedAt": "[date]",
|
|
"startedAt": "[date]",
|
|
"finishedAt": "[date]"
|
|
}
|
|
"#);
|
|
}
|
|
|
|
#[actix_rt::test]
|
|
async fn binary_quantize_clear_documents() {
|
|
let server = Server::new().await;
|
|
let index = generate_default_user_provided_documents(&server).await;
|
|
|
|
let (response, code) = index
|
|
.update_settings(json!({
|
|
"embedders": {
|
|
"manual": {
|
|
"binaryQuantized": true,
|
|
}
|
|
},
|
|
}))
|
|
.await;
|
|
snapshot!(code, @"202 Accepted");
|
|
server.wait_task(response.uid()).await.succeeded();
|
|
|
|
let (value, _code) = index.clear_all_documents().await;
|
|
index.wait_task(value.uid()).await.succeeded();
|
|
|
|
// Make sure the documents DB has been cleared
|
|
let (documents, _code) = index
|
|
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
|
|
.await;
|
|
snapshot!(json_string!(documents), @r###"
|
|
{
|
|
"results": [],
|
|
"offset": 0,
|
|
"limit": 20,
|
|
"total": 0
|
|
}
|
|
"###);
|
|
|
|
// Make sure the arroy DB has been cleared
|
|
let (documents, _code) =
|
|
index.search_post(json!({ "hybrid": { "embedder": "manual" }, "vector": [1, 1, 1] })).await;
|
|
snapshot!(documents, @r###"
|
|
{
|
|
"hits": [],
|
|
"query": "",
|
|
"processingTimeMs": "[duration]",
|
|
"limit": 20,
|
|
"offset": 0,
|
|
"estimatedTotalHits": 0,
|
|
"semanticHitCount": 0
|
|
}
|
|
"###);
|
|
}
|