MeiliSearch/crates/milli/src/documents/sort.rs
2025-07-01 14:21:55 +02:00

430 lines
16 KiB
Rust

use std::collections::{BTreeSet, VecDeque};
use crate::{
constants::RESERVED_GEO_FIELD_NAME,
documents::{geo_sort::next_bucket, GeoSortParameter},
heed_codec::{
facet::{FacetGroupKeyCodec, FacetGroupValueCodec},
BytesRefCodec,
},
is_faceted,
search::facet::{ascending_facet_sort, descending_facet_sort},
AscDesc, DocumentId, Member, UserError,
};
use heed::Database;
use roaring::RoaringBitmap;
#[derive(Debug, Clone, Copy)]
enum AscDescId {
Facet { field_id: u16, ascending: bool },
Geo { field_ids: [u16; 2], target_point: [f64; 2], ascending: bool },
}
/// A [`SortedDocumentsIterator`] allows efficient access to a continuous range of sorted documents.
/// This is ideal in the context of paginated queries in which only a small number of documents are needed at a time.
/// Search operations will only be performed upon access.
pub enum SortedDocumentsIterator<'ctx> {
Leaf {
/// The exact number of documents remaining
size: usize,
values: Box<dyn Iterator<Item = DocumentId> + 'ctx>,
},
Branch {
/// The current child, got from the children iterator
current_child: Option<Box<SortedDocumentsIterator<'ctx>>>,
/// The exact number of documents remaining, excluding documents in the current child
next_children_size: usize,
/// Iterators to become the current child once it is exhausted
next_children:
Box<dyn Iterator<Item = crate::Result<SortedDocumentsIteratorBuilder<'ctx>>> + 'ctx>,
},
}
impl SortedDocumentsIterator<'_> {
/// Takes care of updating the current child if it is `None`, and also updates the size
fn update_current<'ctx>(
current_child: &mut Option<Box<SortedDocumentsIterator<'ctx>>>,
next_children_size: &mut usize,
next_children: &mut Box<
dyn Iterator<Item = crate::Result<SortedDocumentsIteratorBuilder<'ctx>>> + 'ctx,
>,
) -> crate::Result<()> {
if current_child.is_none() {
*current_child = match next_children.next() {
Some(Ok(builder)) => {
let next_child = Box::new(builder.build()?);
*next_children_size -= next_child.size_hint().0;
Some(next_child)
}
Some(Err(e)) => return Err(e),
None => return Ok(()),
};
}
Ok(())
}
}
impl Iterator for SortedDocumentsIterator<'_> {
type Item = crate::Result<DocumentId>;
/// Implementing the `nth` method allows for efficient access to the nth document in the sorted order.
/// It's used by `skip` internally.
/// The default implementation of `nth` would iterate over all children, which is inefficient for large datasets.
/// This implementation will jump over whole chunks of children until it gets close.
fn nth(&mut self, n: usize) -> Option<Self::Item> {
// If it's at the leaf level, just forward the call to the values iterator
let (current_child, next_children, next_children_size) = match self {
SortedDocumentsIterator::Leaf { values, size } => {
*size = size.saturating_sub(n);
return values.nth(n).map(Ok);
}
SortedDocumentsIterator::Branch {
current_child,
next_children,
next_children_size,
} => (current_child, next_children, next_children_size),
};
// Otherwise don't directly iterate over children, skip them if we know we will go further
let mut to_skip = n - 1;
while to_skip > 0 {
if let Err(e) = SortedDocumentsIterator::update_current(
current_child,
next_children_size,
next_children,
) {
return Some(Err(e));
}
let Some(inner) = current_child else {
return None; // No more inner iterators, everything has been consumed.
};
if to_skip >= inner.size_hint().0 {
// The current child isn't large enough to contain the nth element.
// Skip it and continue with the next one.
to_skip -= inner.size_hint().0;
*current_child = None;
continue;
} else {
// The current iterator is large enough, so we can forward the call to it.
return inner.nth(to_skip + 1);
}
}
self.next()
}
/// Iterators need to keep track of their size so that they can be skipped efficiently by the `nth` method.
fn size_hint(&self) -> (usize, Option<usize>) {
let size = match self {
SortedDocumentsIterator::Leaf { size, .. } => *size,
SortedDocumentsIterator::Branch {
next_children_size,
current_child: Some(current_child),
..
} => current_child.size_hint().0 + next_children_size,
SortedDocumentsIterator::Branch { next_children_size, current_child: None, .. } => {
*next_children_size
}
};
(size, Some(size))
}
fn next(&mut self) -> Option<Self::Item> {
match self {
SortedDocumentsIterator::Leaf { values, size } => {
let result = values.next().map(Ok);
if result.is_some() {
*size -= 1;
}
result
}
SortedDocumentsIterator::Branch {
current_child,
next_children_size,
next_children,
} => {
let mut result = None;
while result.is_none() {
// Ensure we have selected an iterator to work with
if let Err(e) = SortedDocumentsIterator::update_current(
current_child,
next_children_size,
next_children,
) {
return Some(Err(e));
}
let Some(inner) = current_child else {
return None;
};
result = inner.next();
// If the current iterator is exhausted, we need to try the next one
if result.is_none() {
*current_child = None;
}
}
result
}
}
}
}
/// Builder for a [`SortedDocumentsIterator`].
/// Most builders won't ever be built, because pagination will skip them.
pub struct SortedDocumentsIteratorBuilder<'ctx> {
index: &'ctx crate::Index,
rtxn: &'ctx heed::RoTxn<'ctx>,
number_db: Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
string_db: Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
fields: &'ctx [AscDescId],
candidates: RoaringBitmap,
geo_candidates: &'ctx RoaringBitmap,
}
impl<'ctx> SortedDocumentsIteratorBuilder<'ctx> {
/// Performs the sort and builds a [`SortedDocumentsIterator`].
fn build(self) -> crate::Result<SortedDocumentsIterator<'ctx>> {
let size = self.candidates.len() as usize;
// There is no point sorting a 1-element array
if size <= 1 {
return Ok(SortedDocumentsIterator::Leaf {
size,
values: Box::new(self.candidates.into_iter()),
});
}
match self.fields.first().copied() {
Some(AscDescId::Facet { field_id, ascending }) => self.build_facet(field_id, ascending),
Some(AscDescId::Geo { field_ids, target_point, ascending }) => {
self.build_geo(field_ids, target_point, ascending)
}
None => Ok(SortedDocumentsIterator::Leaf {
size,
values: Box::new(self.candidates.into_iter()),
}),
}
}
/// Builds a [`SortedDocumentsIterator`] based on the results of a facet sort.
fn build_facet(
self,
field_id: u16,
ascending: bool,
) -> crate::Result<SortedDocumentsIterator<'ctx>> {
let SortedDocumentsIteratorBuilder {
index,
rtxn,
number_db,
string_db,
fields,
candidates,
geo_candidates,
} = self;
let size = candidates.len() as usize;
// Perform the sort on the first field
let (number_iter, string_iter) = if ascending {
let number_iter = ascending_facet_sort(rtxn, number_db, field_id, candidates.clone())?;
let string_iter = ascending_facet_sort(rtxn, string_db, field_id, candidates)?;
(itertools::Either::Left(number_iter), itertools::Either::Left(string_iter))
} else {
let number_iter = descending_facet_sort(rtxn, number_db, field_id, candidates.clone())?;
let string_iter = descending_facet_sort(rtxn, string_db, field_id, candidates)?;
(itertools::Either::Right(number_iter), itertools::Either::Right(string_iter))
};
// Create builders for the next level of the tree
let number_iter = number_iter.map(|r| r.map(|(d, _)| d));
let string_iter = string_iter.map(|r| r.map(|(d, _)| d));
let next_children = number_iter.chain(string_iter).map(move |r| {
Ok(SortedDocumentsIteratorBuilder {
index,
rtxn,
number_db,
string_db,
fields: &fields[1..],
candidates: r?,
geo_candidates,
})
});
Ok(SortedDocumentsIterator::Branch {
current_child: None,
next_children_size: size,
next_children: Box::new(next_children),
})
}
/// Builds a [`SortedDocumentsIterator`] based on the (lazy) results of a geo sort.
fn build_geo(
self,
field_ids: [u16; 2],
target_point: [f64; 2],
ascending: bool,
) -> crate::Result<SortedDocumentsIterator<'ctx>> {
let SortedDocumentsIteratorBuilder {
index,
rtxn,
number_db,
string_db,
fields,
candidates,
geo_candidates,
} = self;
let mut cache = VecDeque::new();
let mut rtree = None;
let size = candidates.len() as usize;
let not_geo_candidates = candidates.clone() - geo_candidates;
let mut geo_remaining = size - not_geo_candidates.len() as usize;
let mut not_geo_candidates = Some(not_geo_candidates);
let next_children = std::iter::from_fn(move || {
// Find the next bucket of geo-sorted documents.
// next_bucket loops and will go back to the beginning so we use a variable to track how many are left.
if geo_remaining > 0 {
if let Ok(Some((docids, _point))) = next_bucket(
index,
rtxn,
&candidates,
ascending,
target_point,
&Some(field_ids),
&mut rtree,
&mut cache,
geo_candidates,
GeoSortParameter::default(),
) {
geo_remaining -= docids.len() as usize;
return Some(Ok(SortedDocumentsIteratorBuilder {
index,
rtxn,
number_db,
string_db,
fields: &fields[1..],
candidates: docids,
geo_candidates,
}));
}
}
// Once all geo candidates have been processed, we can return the others
if let Some(not_geo_candidates) = not_geo_candidates.take() {
if !not_geo_candidates.is_empty() {
return Some(Ok(SortedDocumentsIteratorBuilder {
index,
rtxn,
number_db,
string_db,
fields: &fields[1..],
candidates: not_geo_candidates,
geo_candidates,
}));
}
}
None
});
Ok(SortedDocumentsIterator::Branch {
current_child: None,
next_children_size: size,
next_children: Box::new(next_children),
})
}
}
/// A structure owning the data needed during the lifetime of a [`SortedDocumentsIterator`].
pub struct SortedDocuments<'ctx> {
index: &'ctx crate::Index,
rtxn: &'ctx heed::RoTxn<'ctx>,
fields: Vec<AscDescId>,
number_db: Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
string_db: Database<FacetGroupKeyCodec<BytesRefCodec>, FacetGroupValueCodec>,
candidates: &'ctx RoaringBitmap,
geo_candidates: RoaringBitmap,
}
impl<'ctx> SortedDocuments<'ctx> {
pub fn iter(&'ctx self) -> crate::Result<SortedDocumentsIterator<'ctx>> {
let builder = SortedDocumentsIteratorBuilder {
index: self.index,
rtxn: self.rtxn,
number_db: self.number_db,
string_db: self.string_db,
fields: &self.fields,
candidates: self.candidates.clone(),
geo_candidates: &self.geo_candidates,
};
builder.build()
}
}
pub fn recursive_sort<'ctx>(
index: &'ctx crate::Index,
rtxn: &'ctx heed::RoTxn<'ctx>,
sort: Vec<AscDesc>,
candidates: &'ctx RoaringBitmap,
) -> crate::Result<SortedDocuments<'ctx>> {
let sortable_fields: BTreeSet<_> = index.sortable_fields(rtxn)?.into_iter().collect();
let fields_ids_map = index.fields_ids_map(rtxn)?;
// Retrieve the field ids that are used for sorting
let mut fields = Vec::new();
let mut need_geo_candidates = false;
for asc_desc in sort {
let (field, geofield) = match asc_desc {
AscDesc::Asc(Member::Field(field)) => (Some((field, true)), None),
AscDesc::Desc(Member::Field(field)) => (Some((field, false)), None),
AscDesc::Asc(Member::Geo(target_point)) => (None, Some((target_point, true))),
AscDesc::Desc(Member::Geo(target_point)) => (None, Some((target_point, false))),
};
if let Some((field, ascending)) = field {
if is_faceted(&field, &sortable_fields) {
if let Some(field_id) = fields_ids_map.id(&field) {
fields.push(AscDescId::Facet { field_id, ascending });
continue;
}
}
return Err(UserError::InvalidDocumentSortableAttribute {
field: field.to_string(),
sortable_fields: sortable_fields.clone(),
}
.into());
}
if let Some((target_point, ascending)) = geofield {
if sortable_fields.contains(RESERVED_GEO_FIELD_NAME) {
if let (Some(lat), Some(lng)) =
(fields_ids_map.id("_geo.lat"), fields_ids_map.id("_geo.lng"))
{
need_geo_candidates = true;
fields.push(AscDescId::Geo { field_ids: [lat, lng], target_point, ascending });
continue;
}
}
return Err(UserError::InvalidDocumentSortableAttribute {
field: RESERVED_GEO_FIELD_NAME.to_string(),
sortable_fields: sortable_fields.clone(),
}
.into());
}
}
let geo_candidates = if need_geo_candidates {
index.geo_faceted_documents_ids(rtxn)?
} else {
RoaringBitmap::new()
};
let number_db = index.facet_id_f64_docids.remap_key_type::<FacetGroupKeyCodec<BytesRefCodec>>();
let string_db =
index.facet_id_string_docids.remap_key_type::<FacetGroupKeyCodec<BytesRefCodec>>();
Ok(SortedDocuments { index, rtxn, fields, number_db, string_db, candidates, geo_candidates })
}