MeiliSearch/milli/src/update/index_documents/store.rs

944 lines
36 KiB
Rust

use std::borrow::Cow;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::convert::{TryFrom, TryInto};
use std::fs::File;
use std::iter::FromIterator;
use std::time::Instant;
use std::{cmp, iter};
use bstr::ByteSlice as _;
use fst::Set;
use grenad::{CompressionType, FileFuse, Reader, Sorter, Writer};
use heed::BytesEncode;
use linked_hash_map::LinkedHashMap;
use log::{debug, info};
use meilisearch_tokenizer::token::SeparatorKind;
use meilisearch_tokenizer::{Analyzer, AnalyzerConfig, Token, TokenKind};
use ordered_float::OrderedFloat;
use roaring::RoaringBitmap;
use serde_json::Value;
use tempfile::tempfile;
use super::merge_function::{
cbo_roaring_bitmap_merge, fst_merge, keep_first, roaring_bitmap_merge,
};
use super::{create_sorter, create_writer, writer_into_reader, MergeFn};
use crate::error::{Error, InternalError, SerializationError};
use crate::heed_codec::facet::{
FacetLevelValueF64Codec, FacetValueStringCodec, FieldDocIdFacetF64Codec,
FieldDocIdFacetStringCodec,
};
use crate::heed_codec::{BoRoaringBitmapCodec, CboRoaringBitmapCodec};
use crate::update::UpdateIndexingStep;
use crate::{json_to_string, DocumentId, FieldId, Position, Result, SmallVec32};
const LMDB_MAX_KEY_LENGTH: usize = 511;
const ONE_KILOBYTE: usize = 1024 * 1024;
const MAX_POSITION: usize = 1000;
const WORDS_FST_KEY: &[u8] = crate::index::main_key::WORDS_FST_KEY.as_bytes();
pub struct Readers {
pub main: Reader<FileFuse>,
pub word_docids: Reader<FileFuse>,
pub docid_word_positions: Reader<FileFuse>,
pub words_pairs_proximities_docids: Reader<FileFuse>,
pub word_level_position_docids: Reader<FileFuse>,
pub field_id_word_count_docids: Reader<FileFuse>,
pub facet_field_numbers_docids: Reader<FileFuse>,
pub facet_field_strings_docids: Reader<FileFuse>,
pub field_id_docid_facet_numbers: Reader<FileFuse>,
pub field_id_docid_facet_strings: Reader<FileFuse>,
pub documents: Reader<FileFuse>,
}
pub struct Store<'s, A> {
// Indexing parameters
searchable_fields: HashSet<FieldId>,
faceted_fields: HashSet<FieldId>,
// Caches
word_docids: LinkedHashMap<SmallVec32<u8>, RoaringBitmap>,
word_docids_limit: usize,
field_id_word_count_docids: HashMap<(FieldId, u8), RoaringBitmap>,
words_pairs_proximities_docids:
LinkedHashMap<(SmallVec32<u8>, SmallVec32<u8>, u8), RoaringBitmap>,
words_pairs_proximities_docids_limit: usize,
facet_field_number_docids: LinkedHashMap<(FieldId, OrderedFloat<f64>), RoaringBitmap>,
facet_field_string_docids: LinkedHashMap<(FieldId, String), RoaringBitmap>,
facet_field_value_docids_limit: usize,
// MTBL parameters
chunk_compression_type: CompressionType,
chunk_compression_level: Option<u32>,
chunk_fusing_shrink_size: Option<u64>,
// MTBL sorters
main_sorter: Sorter<MergeFn<Error>>,
word_docids_sorter: Sorter<MergeFn<Error>>,
words_pairs_proximities_docids_sorter: Sorter<MergeFn<Error>>,
word_level_position_docids_sorter: Sorter<MergeFn<Error>>,
field_id_word_count_docids_sorter: Sorter<MergeFn<Error>>,
facet_field_numbers_docids_sorter: Sorter<MergeFn<Error>>,
facet_field_strings_docids_sorter: Sorter<MergeFn<Error>>,
field_id_docid_facet_numbers_sorter: Sorter<MergeFn<Error>>,
field_id_docid_facet_strings_sorter: Sorter<MergeFn<Error>>,
// MTBL writers
docid_word_positions_writer: Writer<File>,
documents_writer: Writer<File>,
// tokenizer
analyzer: Analyzer<'s, A>,
}
impl<'s, A: AsRef<[u8]>> Store<'s, A> {
pub fn new(
searchable_fields: HashSet<FieldId>,
faceted_fields: HashSet<FieldId>,
linked_hash_map_size: Option<usize>,
max_nb_chunks: Option<usize>,
max_memory: Option<usize>,
chunk_compression_type: CompressionType,
chunk_compression_level: Option<u32>,
chunk_fusing_shrink_size: Option<u64>,
stop_words: Option<&'s Set<A>>,
) -> Result<Self> {
// We divide the max memory by the number of sorter the Store have.
let max_memory = max_memory.map(|mm| cmp::max(ONE_KILOBYTE, mm / 5));
let linked_hash_map_size = linked_hash_map_size.unwrap_or(500);
let main_sorter = create_sorter(
fst_merge,
chunk_compression_type,
chunk_compression_level,
chunk_fusing_shrink_size,
max_nb_chunks,
max_memory,
);
let word_docids_sorter = create_sorter(
roaring_bitmap_merge,
chunk_compression_type,
chunk_compression_level,
chunk_fusing_shrink_size,
max_nb_chunks,
max_memory,
);
let words_pairs_proximities_docids_sorter = create_sorter(
cbo_roaring_bitmap_merge,
chunk_compression_type,
chunk_compression_level,
chunk_fusing_shrink_size,
max_nb_chunks,
max_memory,
);
let word_level_position_docids_sorter = create_sorter(
cbo_roaring_bitmap_merge,
chunk_compression_type,
chunk_compression_level,
chunk_fusing_shrink_size,
max_nb_chunks,
max_memory,
);
let field_id_word_count_docids_sorter = create_sorter(
cbo_roaring_bitmap_merge,
chunk_compression_type,
chunk_compression_level,
chunk_fusing_shrink_size,
max_nb_chunks,
max_memory,
);
let facet_field_numbers_docids_sorter = create_sorter(
cbo_roaring_bitmap_merge,
chunk_compression_type,
chunk_compression_level,
chunk_fusing_shrink_size,
max_nb_chunks,
max_memory,
);
let facet_field_strings_docids_sorter = create_sorter(
cbo_roaring_bitmap_merge,
chunk_compression_type,
chunk_compression_level,
chunk_fusing_shrink_size,
max_nb_chunks,
max_memory,
);
let field_id_docid_facet_numbers_sorter = create_sorter(
keep_first,
chunk_compression_type,
chunk_compression_level,
chunk_fusing_shrink_size,
max_nb_chunks,
Some(1024 * 1024 * 1024), // 1MB
);
let field_id_docid_facet_strings_sorter = create_sorter(
keep_first,
chunk_compression_type,
chunk_compression_level,
chunk_fusing_shrink_size,
max_nb_chunks,
Some(1024 * 1024 * 1024), // 1MB
);
let documents_writer = tempfile()
.and_then(|f| create_writer(chunk_compression_type, chunk_compression_level, f))?;
let docid_word_positions_writer = tempfile()
.and_then(|f| create_writer(chunk_compression_type, chunk_compression_level, f))?;
let mut config = AnalyzerConfig::default();
if let Some(stop_words) = stop_words {
config.stop_words(stop_words);
}
let analyzer = Analyzer::new(config);
Ok(Store {
// Indexing parameters.
searchable_fields,
faceted_fields,
// Caches
word_docids: LinkedHashMap::with_capacity(linked_hash_map_size),
field_id_word_count_docids: HashMap::new(),
word_docids_limit: linked_hash_map_size,
words_pairs_proximities_docids: LinkedHashMap::with_capacity(linked_hash_map_size),
words_pairs_proximities_docids_limit: linked_hash_map_size,
facet_field_number_docids: LinkedHashMap::with_capacity(linked_hash_map_size),
facet_field_string_docids: LinkedHashMap::with_capacity(linked_hash_map_size),
facet_field_value_docids_limit: linked_hash_map_size,
// MTBL parameters
chunk_compression_type,
chunk_compression_level,
chunk_fusing_shrink_size,
// MTBL sorters
main_sorter,
word_docids_sorter,
words_pairs_proximities_docids_sorter,
word_level_position_docids_sorter,
field_id_word_count_docids_sorter,
facet_field_numbers_docids_sorter,
facet_field_strings_docids_sorter,
field_id_docid_facet_numbers_sorter,
field_id_docid_facet_strings_sorter,
// MTBL writers
docid_word_positions_writer,
documents_writer,
// tokenizer
analyzer,
})
}
// Save the documents ids under the position and word we have seen it.
fn insert_word_docid(&mut self, word: &str, id: DocumentId) -> Result<()> {
// if get_refresh finds the element it is assured to be at the end of the linked hash map.
match self.word_docids.get_refresh(word.as_bytes()) {
Some(old) => {
old.insert(id);
}
None => {
let word_vec = SmallVec32::from(word.as_bytes());
// A newly inserted element is append at the end of the linked hash map.
self.word_docids.insert(word_vec, RoaringBitmap::from_iter(Some(id)));
// If the word docids just reached it's capacity we must make sure to remove
// one element, this way next time we insert we doesn't grow the capacity.
if self.word_docids.len() == self.word_docids_limit {
// Removing the front element is equivalent to removing the LRU element.
let lru = self.word_docids.pop_front();
Self::write_word_docids(&mut self.word_docids_sorter, lru)?;
}
}
}
Ok(())
}
fn insert_facet_number_values_docid(
&mut self,
field_id: FieldId,
value: OrderedFloat<f64>,
id: DocumentId,
) -> Result<()> {
let sorter = &mut self.field_id_docid_facet_numbers_sorter;
Self::write_field_id_docid_facet_number_value(sorter, field_id, id, value)?;
let key = (field_id, value);
// if get_refresh finds the element it is assured to be at the end of the linked hash map.
match self.facet_field_number_docids.get_refresh(&key) {
Some(old) => {
old.insert(id);
}
None => {
// A newly inserted element is append at the end of the linked hash map.
self.facet_field_number_docids.insert(key, RoaringBitmap::from_iter(Some(id)));
// If the word docids just reached it's capacity we must make sure to remove
// one element, this way next time we insert we doesn't grow the capacity.
if self.facet_field_number_docids.len() == self.facet_field_value_docids_limit {
// Removing the front element is equivalent to removing the LRU element.
Self::write_facet_field_number_docids(
&mut self.facet_field_numbers_docids_sorter,
self.facet_field_number_docids.pop_front(),
)?;
}
}
}
Ok(())
}
// Save the documents ids under the facet field id and value we have seen it.
fn insert_facet_string_values_docid(
&mut self,
field_id: FieldId,
value: String,
id: DocumentId,
) -> Result<()> {
let sorter = &mut self.field_id_docid_facet_strings_sorter;
Self::write_field_id_docid_facet_string_value(sorter, field_id, id, &value)?;
let key = (field_id, value);
// if get_refresh finds the element it is assured to be at the end of the linked hash map.
match self.facet_field_string_docids.get_refresh(&key) {
Some(old) => {
old.insert(id);
}
None => {
// A newly inserted element is append at the end of the linked hash map.
self.facet_field_string_docids.insert(key, RoaringBitmap::from_iter(Some(id)));
// If the word docids just reached it's capacity we must make sure to remove
// one element, this way next time we insert we doesn't grow the capacity.
if self.facet_field_string_docids.len() == self.facet_field_value_docids_limit {
// Removing the front element is equivalent to removing the LRU element.
Self::write_facet_field_string_docids(
&mut self.facet_field_strings_docids_sorter,
self.facet_field_string_docids.pop_front(),
)?;
}
}
}
Ok(())
}
// Save the documents ids under the words pairs proximities that it contains.
fn insert_words_pairs_proximities_docids<'a>(
&mut self,
words_pairs_proximities: impl IntoIterator<Item = ((&'a str, &'a str), u8)>,
id: DocumentId,
) -> Result<()> {
for ((w1, w2), prox) in words_pairs_proximities {
let w1 = SmallVec32::from(w1.as_bytes());
let w2 = SmallVec32::from(w2.as_bytes());
let key = (w1, w2, prox);
// if get_refresh finds the element it is assured
// to be at the end of the linked hash map.
match self.words_pairs_proximities_docids.get_refresh(&key) {
Some(old) => {
old.insert(id);
}
None => {
// A newly inserted element is append at the end of the linked hash map.
let ids = RoaringBitmap::from_iter(Some(id));
self.words_pairs_proximities_docids.insert(key, ids);
}
}
}
// If the linked hashmap is over capacity we must remove the overflowing elements.
let len = self.words_pairs_proximities_docids.len();
let overflow = len.checked_sub(self.words_pairs_proximities_docids_limit);
if let Some(overflow) = overflow {
let mut lrus = Vec::with_capacity(overflow);
// Removing front elements is equivalent to removing the LRUs.
let iter = iter::from_fn(|| self.words_pairs_proximities_docids.pop_front());
iter.take(overflow).for_each(|x| lrus.push(x));
Self::write_words_pairs_proximities(
&mut self.words_pairs_proximities_docids_sorter,
lrus,
)?;
}
Ok(())
}
fn write_document(
&mut self,
document_id: DocumentId,
words_positions: &mut HashMap<String, SmallVec32<Position>>,
facet_numbers_values: &mut HashMap<FieldId, Vec<f64>>,
facet_strings_values: &mut HashMap<FieldId, Vec<String>>,
record: &[u8],
) -> Result<()> {
// We compute the list of words pairs proximities (self-join) and write it directly to disk.
let words_pair_proximities = compute_words_pair_proximities(&words_positions);
self.insert_words_pairs_proximities_docids(words_pair_proximities, document_id)?;
// We store document_id associated with all the words the record contains.
for (word, _) in words_positions.iter() {
self.insert_word_docid(word, document_id)?;
}
self.documents_writer.insert(document_id.to_be_bytes(), record)?;
Self::write_docid_word_positions(
&mut self.docid_word_positions_writer,
document_id,
words_positions,
)?;
Self::write_word_position_docids(
&mut self.word_level_position_docids_sorter,
document_id,
words_positions,
)?;
words_positions.clear();
// We store document_id associated with all the facet numbers fields ids and values.
for (field, values) in facet_numbers_values.drain() {
for value in values {
let value = OrderedFloat::from(value);
self.insert_facet_number_values_docid(field, value, document_id)?;
}
}
// We store document_id associated with all the facet strings fields ids and values.
for (field, values) in facet_strings_values.drain() {
for value in values {
self.insert_facet_string_values_docid(field, value, document_id)?;
}
}
Ok(())
}
fn write_words_pairs_proximities<E>(
sorter: &mut Sorter<MergeFn<E>>,
iter: impl IntoIterator<Item = ((SmallVec32<u8>, SmallVec32<u8>, u8), RoaringBitmap)>,
) -> Result<()>
where
Error: From<E>,
{
let mut key = Vec::new();
let mut buffer = Vec::new();
for ((w1, w2, min_prox), docids) in iter {
key.clear();
key.extend_from_slice(w1.as_bytes());
key.push(0);
key.extend_from_slice(w2.as_bytes());
// Storing the minimun proximity found between those words
key.push(min_prox);
// We serialize the document ids into a buffer
buffer.clear();
buffer.reserve(CboRoaringBitmapCodec::serialized_size(&docids));
CboRoaringBitmapCodec::serialize_into(&docids, &mut buffer);
// that we write under the generated key into MTBL
if lmdb_key_valid_size(&key) {
sorter.insert(&key, &buffer)?;
}
}
Ok(())
}
fn write_docid_word_positions(
writer: &mut Writer<File>,
id: DocumentId,
words_positions: &HashMap<String, SmallVec32<Position>>,
) -> Result<()> {
// We prefix the words by the document id.
let mut key = id.to_be_bytes().to_vec();
let mut buffer = Vec::new();
let base_size = key.len();
// We order the words lexicographically, this way we avoid passing by a sorter.
let words_positions = BTreeMap::from_iter(words_positions);
for (word, positions) in words_positions {
key.truncate(base_size);
key.extend_from_slice(word.as_bytes());
buffer.clear();
// We serialize the positions into a buffer.
let positions = RoaringBitmap::from_iter(positions.iter().cloned());
BoRoaringBitmapCodec::serialize_into(&positions, &mut buffer);
// that we write under the generated key into MTBL
if lmdb_key_valid_size(&key) {
writer.insert(&key, &buffer)?;
}
}
Ok(())
}
fn write_word_position_docids<E>(
writer: &mut Sorter<MergeFn<E>>,
document_id: DocumentId,
words_positions: &HashMap<String, SmallVec32<Position>>,
) -> Result<()>
where
Error: From<E>,
{
let mut key_buffer = Vec::new();
let mut data_buffer = Vec::new();
for (word, positions) in words_positions {
key_buffer.clear();
key_buffer.extend_from_slice(word.as_bytes());
key_buffer.push(0); // level 0
for position in positions {
key_buffer.truncate(word.len() + 1);
let position_bytes = position.to_be_bytes();
key_buffer.extend_from_slice(position_bytes.as_bytes());
key_buffer.extend_from_slice(position_bytes.as_bytes());
data_buffer.clear();
let positions = RoaringBitmap::from_iter(Some(document_id));
// We serialize the positions into a buffer.
CboRoaringBitmapCodec::serialize_into(&positions, &mut data_buffer);
// that we write under the generated key into MTBL
if lmdb_key_valid_size(&key_buffer) {
writer.insert(&key_buffer, &data_buffer)?;
}
}
}
Ok(())
}
fn write_facet_field_string_docids<I, E>(sorter: &mut Sorter<MergeFn<E>>, iter: I) -> Result<()>
where
I: IntoIterator<Item = ((FieldId, String), RoaringBitmap)>,
Error: From<E>,
{
let mut key_buffer = Vec::new();
let mut data_buffer = Vec::new();
for ((field_id, value), docids) in iter {
key_buffer.clear();
data_buffer.clear();
FacetValueStringCodec::serialize_into(field_id, &value, &mut key_buffer);
CboRoaringBitmapCodec::serialize_into(&docids, &mut data_buffer);
if lmdb_key_valid_size(&key_buffer) {
sorter.insert(&key_buffer, &data_buffer)?;
}
}
Ok(())
}
fn write_facet_field_number_docids<I, E>(sorter: &mut Sorter<MergeFn<E>>, iter: I) -> Result<()>
where
I: IntoIterator<Item = ((FieldId, OrderedFloat<f64>), RoaringBitmap)>,
Error: From<E>,
{
let mut data_buffer = Vec::new();
for ((field_id, value), docids) in iter {
data_buffer.clear();
let key = FacetLevelValueF64Codec::bytes_encode(&(field_id, 0, *value, *value))
.map(Cow::into_owned)
.ok_or(SerializationError::Encoding { db_name: Some("facet level value") })?;
CboRoaringBitmapCodec::serialize_into(&docids, &mut data_buffer);
if lmdb_key_valid_size(&key) {
sorter.insert(&key, &data_buffer)?;
}
}
Ok(())
}
fn write_field_id_docid_facet_number_value<E>(
sorter: &mut Sorter<MergeFn<E>>,
field_id: FieldId,
document_id: DocumentId,
value: OrderedFloat<f64>,
) -> Result<()>
where
Error: From<E>,
{
let key = FieldDocIdFacetF64Codec::bytes_encode(&(field_id, document_id, *value))
.map(Cow::into_owned)
.ok_or(SerializationError::Encoding { db_name: Some("facet level value") })?;
if lmdb_key_valid_size(&key) {
sorter.insert(&key, &[])?;
}
Ok(())
}
fn write_field_id_docid_facet_string_value<E>(
sorter: &mut Sorter<MergeFn<E>>,
field_id: FieldId,
document_id: DocumentId,
value: &str,
) -> Result<()>
where
Error: From<E>,
{
let mut buffer = Vec::new();
FieldDocIdFacetStringCodec::serialize_into(field_id, document_id, value, &mut buffer);
if lmdb_key_valid_size(&buffer) {
sorter.insert(&buffer, &[])?;
}
Ok(())
}
fn write_word_docids<I, E>(sorter: &mut Sorter<MergeFn<E>>, iter: I) -> Result<()>
where
I: IntoIterator<Item = (SmallVec32<u8>, RoaringBitmap)>,
Error: From<E>,
{
let mut key = Vec::new();
let mut buffer = Vec::new();
for (word, ids) in iter {
key.clear();
key.extend_from_slice(&word);
// We serialize the document ids into a buffer
buffer.clear();
let ids = RoaringBitmap::from_iter(ids);
buffer.reserve(ids.serialized_size());
ids.serialize_into(&mut buffer)?;
// that we write under the generated key into MTBL
if lmdb_key_valid_size(&key) {
sorter.insert(&key, &buffer)?;
}
}
Ok(())
}
pub fn index<F>(
mut self,
mut documents: grenad::Reader<&[u8]>,
documents_count: usize,
thread_index: usize,
num_threads: usize,
log_every_n: Option<usize>,
mut progress_callback: F,
) -> Result<Readers>
where
F: FnMut(UpdateIndexingStep),
{
debug!("{:?}: Indexing in a Store...", thread_index);
let mut before = Instant::now();
let mut words_positions = HashMap::new();
let mut facet_numbers_values = HashMap::new();
let mut facet_strings_values = HashMap::new();
let mut count: usize = 0;
while let Some((key, value)) = documents.next()? {
let document_id = key.try_into().map(u32::from_be_bytes).unwrap();
let document = obkv::KvReader::new(value);
// We skip documents that must not be indexed by this thread.
if count % num_threads == thread_index {
// This is a log routine that we do every `log_every_n` documents.
if thread_index == 0 && log_every_n.map_or(false, |len| count % len == 0) {
info!(
"We have seen {} documents so far ({:.02?}).",
format_count(count),
before.elapsed()
);
progress_callback(UpdateIndexingStep::IndexDocuments {
documents_seen: count,
total_documents: documents_count,
});
before = Instant::now();
}
for (attr, content) in document.iter() {
if self.faceted_fields.contains(&attr) || self.searchable_fields.contains(&attr)
{
let value =
serde_json::from_slice(content).map_err(InternalError::SerdeJson)?;
let (facet_numbers, facet_strings) = extract_facet_values(&value);
facet_numbers_values
.entry(attr)
.or_insert_with(Vec::new)
.extend(facet_numbers);
facet_strings_values
.entry(attr)
.or_insert_with(Vec::new)
.extend(facet_strings);
if self.searchable_fields.contains(&attr) {
let content = match json_to_string(&value) {
Some(content) => content,
None => continue,
};
let analyzed = self.analyzer.analyze(&content);
let tokens = process_tokens(analyzed.tokens());
let mut last_pos = None;
for (pos, token) in tokens.take_while(|(pos, _)| *pos < MAX_POSITION) {
last_pos = Some(pos);
let position = (attr as usize * MAX_POSITION + pos) as u32;
words_positions
.entry(token.text().to_string())
.or_insert_with(SmallVec32::new)
.push(position);
}
if let Some(last_pos) = last_pos.filter(|p| *p <= 10) {
let key = (attr, last_pos as u8 + 1);
self.field_id_word_count_docids
.entry(key)
.or_insert_with(RoaringBitmap::new)
.insert(document_id);
}
}
}
}
// We write the document in the documents store.
self.write_document(
document_id,
&mut words_positions,
&mut facet_numbers_values,
&mut facet_strings_values,
value,
)?;
}
// Compute the document id of the next document.
count += 1;
}
progress_callback(UpdateIndexingStep::IndexDocuments {
documents_seen: count,
total_documents: documents_count,
});
let readers = self.finish()?;
debug!("{:?}: Store created!", thread_index);
Ok(readers)
}
fn finish(mut self) -> Result<Readers> {
let comp_type = self.chunk_compression_type;
let comp_level = self.chunk_compression_level;
let shrink_size = self.chunk_fusing_shrink_size;
Self::write_word_docids(&mut self.word_docids_sorter, self.word_docids)?;
Self::write_words_pairs_proximities(
&mut self.words_pairs_proximities_docids_sorter,
self.words_pairs_proximities_docids,
)?;
Self::write_facet_field_number_docids(
&mut self.facet_field_numbers_docids_sorter,
self.facet_field_number_docids,
)?;
Self::write_facet_field_string_docids(
&mut self.facet_field_strings_docids_sorter,
self.facet_field_string_docids,
)?;
let mut word_docids_wtr =
tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
let mut builder = fst::SetBuilder::memory();
let mut iter = self.word_docids_sorter.into_iter()?;
while let Some((word, val)) = iter.next()? {
// This is a lexicographically ordered word position
// we use the key to construct the words fst.
builder.insert(word)?;
word_docids_wtr.insert(word, val)?;
}
let mut docids_buffer = Vec::new();
for ((fid, count), docids) in self.field_id_word_count_docids {
docids_buffer.clear();
CboRoaringBitmapCodec::serialize_into(&docids, &mut docids_buffer);
self.field_id_word_count_docids_sorter.insert([fid, count], &docids_buffer)?;
}
let fst = builder.into_set();
self.main_sorter.insert(WORDS_FST_KEY, fst.as_fst().as_bytes())?;
let mut main_wtr = tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
self.main_sorter.write_into(&mut main_wtr)?;
let mut words_pairs_proximities_docids_wtr =
tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
self.words_pairs_proximities_docids_sorter
.write_into(&mut words_pairs_proximities_docids_wtr)?;
let mut word_level_position_docids_wtr =
tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
self.word_level_position_docids_sorter.write_into(&mut word_level_position_docids_wtr)?;
let mut field_id_word_count_docids_wtr =
tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
self.field_id_word_count_docids_sorter.write_into(&mut field_id_word_count_docids_wtr)?;
let mut facet_field_numbers_docids_wtr =
tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
self.facet_field_numbers_docids_sorter.write_into(&mut facet_field_numbers_docids_wtr)?;
let mut facet_field_strings_docids_wtr =
tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
self.facet_field_strings_docids_sorter.write_into(&mut facet_field_strings_docids_wtr)?;
let mut field_id_docid_facet_numbers_wtr =
tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
self.field_id_docid_facet_numbers_sorter
.write_into(&mut field_id_docid_facet_numbers_wtr)?;
let mut field_id_docid_facet_strings_wtr =
tempfile().and_then(|f| create_writer(comp_type, comp_level, f))?;
self.field_id_docid_facet_strings_sorter
.write_into(&mut field_id_docid_facet_strings_wtr)?;
let main = writer_into_reader(main_wtr, shrink_size)?;
let word_docids = writer_into_reader(word_docids_wtr, shrink_size)?;
let words_pairs_proximities_docids =
writer_into_reader(words_pairs_proximities_docids_wtr, shrink_size)?;
let word_level_position_docids =
writer_into_reader(word_level_position_docids_wtr, shrink_size)?;
let field_id_word_count_docids =
writer_into_reader(field_id_word_count_docids_wtr, shrink_size)?;
let facet_field_numbers_docids =
writer_into_reader(facet_field_numbers_docids_wtr, shrink_size)?;
let facet_field_strings_docids =
writer_into_reader(facet_field_strings_docids_wtr, shrink_size)?;
let field_id_docid_facet_numbers =
writer_into_reader(field_id_docid_facet_numbers_wtr, shrink_size)?;
let field_id_docid_facet_strings =
writer_into_reader(field_id_docid_facet_strings_wtr, shrink_size)?;
let docid_word_positions =
writer_into_reader(self.docid_word_positions_writer, shrink_size)?;
let documents = writer_into_reader(self.documents_writer, shrink_size)?;
Ok(Readers {
main,
word_docids,
docid_word_positions,
words_pairs_proximities_docids,
word_level_position_docids,
field_id_word_count_docids,
facet_field_numbers_docids,
facet_field_strings_docids,
field_id_docid_facet_numbers,
field_id_docid_facet_strings,
documents,
})
}
}
/// Outputs a list of all pairs of words with the shortest proximity between 1 and 7 inclusive.
///
/// This list is used by the engine to calculate the documents containing words that are
/// close to each other.
fn compute_words_pair_proximities(
word_positions: &HashMap<String, SmallVec32<Position>>,
) -> HashMap<(&str, &str), u8> {
use itertools::Itertools;
let mut words_pair_proximities = HashMap::new();
for ((w1, ps1), (w2, ps2)) in word_positions.iter().cartesian_product(word_positions) {
let mut min_prox = None;
for (ps1, ps2) in ps1.iter().cartesian_product(ps2) {
let prox = crate::proximity::positions_proximity(*ps1, *ps2);
let prox = u8::try_from(prox).unwrap();
// We don't care about a word that appear at the
// same position or too far from the other.
if prox >= 1 && prox <= 7 && min_prox.map_or(true, |mp| prox < mp) {
min_prox = Some(prox)
}
}
if let Some(min_prox) = min_prox {
words_pair_proximities.insert((w1.as_str(), w2.as_str()), min_prox);
}
}
words_pair_proximities
}
fn format_count(n: usize) -> String {
human_format::Formatter::new().with_decimals(1).with_separator("").format(n as f64)
}
fn lmdb_key_valid_size(key: &[u8]) -> bool {
!key.is_empty() && key.len() <= LMDB_MAX_KEY_LENGTH
}
/// take an iterator on tokens and compute their relative position depending on separator kinds
/// if it's an `Hard` separator we add an additional relative proximity of 8 between words,
/// else we keep the standart proximity of 1 between words.
fn process_tokens<'a>(
tokens: impl Iterator<Item = Token<'a>>,
) -> impl Iterator<Item = (usize, Token<'a>)> {
tokens
.skip_while(|token| token.is_separator().is_some())
.scan((0, None), |(offset, prev_kind), token| {
match token.kind {
TokenKind::Word | TokenKind::StopWord | TokenKind::Unknown => {
*offset += match *prev_kind {
Some(TokenKind::Separator(SeparatorKind::Hard)) => 8,
Some(_) => 1,
None => 0,
};
*prev_kind = Some(token.kind)
}
TokenKind::Separator(SeparatorKind::Hard) => {
*prev_kind = Some(token.kind);
}
TokenKind::Separator(SeparatorKind::Soft)
if *prev_kind != Some(TokenKind::Separator(SeparatorKind::Hard)) =>
{
*prev_kind = Some(token.kind);
}
_ => (),
}
Some((*offset, token))
})
.filter(|(_, t)| t.is_word())
}
fn extract_facet_values(value: &Value) -> (Vec<f64>, Vec<String>) {
fn inner_extract_facet_values(
value: &Value,
can_recurse: bool,
output_numbers: &mut Vec<f64>,
output_strings: &mut Vec<String>,
) {
match value {
Value::Null => (),
Value::Bool(b) => output_strings.push(b.to_string()),
Value::Number(number) => {
if let Some(float) = number.as_f64() {
output_numbers.push(float);
}
}
Value::String(string) => {
let string = string.trim().to_lowercase();
output_strings.push(string);
}
Value::Array(values) => {
if can_recurse {
for value in values {
inner_extract_facet_values(value, false, output_numbers, output_strings);
}
}
}
Value::Object(_) => (),
}
}
let mut facet_number_values = Vec::new();
let mut facet_string_values = Vec::new();
inner_extract_facet_values(value, true, &mut facet_number_values, &mut facet_string_values);
(facet_number_values, facet_string_values)
}