894 lines
32 KiB
Rust

use std::fmt::Write as _;
use std::path::PathBuf;
use std::{str, io, fmt};
use anyhow::Context;
use byte_unit::Byte;
use heed::EnvOpenOptions;
use milli::Index;
use structopt::StructOpt;
use Command::*;
#[cfg(target_os = "linux")]
#[global_allocator]
static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc;
const MAIN_DB_NAME: &str = "main";
const WORD_DOCIDS_DB_NAME: &str = "word-docids";
const WORD_PREFIX_DOCIDS_DB_NAME: &str = "word-prefix-docids";
const DOCID_WORD_POSITIONS_DB_NAME: &str = "docid-word-positions";
const WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME: &str = "word-pair-proximity-docids";
const FACET_FIELD_ID_VALUE_DOCIDS_NAME: &str = "facet-field-id-value-docids";
const FIELD_ID_DOCID_FACET_VALUES_NAME: &str = "field-id-docid-facet-values";
const WORD_PREFIX_PAIR_PROXIMITY_DOCIDS_DB_NAME: &str = "word-prefix-pair-proximity-docids";
const DOCUMENTS_DB_NAME: &str = "documents";
const ALL_DATABASE_NAMES: &[&str] = &[
MAIN_DB_NAME,
WORD_DOCIDS_DB_NAME,
WORD_PREFIX_DOCIDS_DB_NAME,
DOCID_WORD_POSITIONS_DB_NAME,
WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME,
WORD_PREFIX_PAIR_PROXIMITY_DOCIDS_DB_NAME,
FACET_FIELD_ID_VALUE_DOCIDS_NAME,
FIELD_ID_DOCID_FACET_VALUES_NAME,
DOCUMENTS_DB_NAME,
];
const POSTINGS_DATABASE_NAMES: &[&str] = &[
WORD_DOCIDS_DB_NAME,
WORD_PREFIX_DOCIDS_DB_NAME,
DOCID_WORD_POSITIONS_DB_NAME,
WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME,
WORD_PREFIX_PAIR_PROXIMITY_DOCIDS_DB_NAME,
];
#[derive(Debug, StructOpt)]
/// A stats fetcher for milli.
pub struct Opt {
/// The database path where the database is located.
/// It is created if it doesn't already exist.
#[structopt(long = "db", parse(from_os_str))]
database: PathBuf,
/// The maximum size the database can take on disk. It is recommended to specify
/// the whole disk space (value must be a multiple of a page size).
#[structopt(long = "db-size", default_value = "100 GiB")]
database_size: Byte,
/// Verbose mode (-v, -vv, -vvv, etc.)
#[structopt(short, long, parse(from_occurrences))]
verbose: usize,
#[structopt(subcommand)]
command: Command,
}
#[derive(Debug, StructOpt)]
enum Command {
/// Outputs a CSV of the most frequent words of this index.
///
/// `word` are displayed and ordered by frequency.
/// `document_frequency` defines the number of documents which contains the word.
MostCommonWords {
/// The maximum number of frequencies to return.
#[structopt(default_value = "10")]
limit: usize,
},
/// Outputs a CSV with the biggest entries of the database.
BiggestValues {
/// The maximum number of sizes to return.
#[structopt(default_value = "10")]
limit: usize,
},
/// Outputs a CSV with the documents ids where the given words appears.
WordsDocids {
/// Display the whole documents ids in details.
#[structopt(long)]
full_display: bool,
/// The words to display the documents ids of.
words: Vec<String>,
},
/// Outputs a CSV with the documents ids where the given words prefixes appears.
WordsPrefixesDocids {
/// Display the whole documents ids in details.
#[structopt(long)]
full_display: bool,
/// The prefixes to display the documents ids of.
prefixes: Vec<String>,
},
/// Outputs a CSV with the documents ids along with the facet values where it appears.
FacetValuesDocids {
/// Display the whole documents ids in details.
#[structopt(long)]
full_display: bool,
/// The field name in the document.
field_name: String,
},
/// Outputs a CSV with the documents ids, words and the positions where this word appears.
DocidsWordsPositions {
/// Display the whole positions in detail.
#[structopt(long)]
full_display: bool,
/// If defined, only retrieve the documents that corresponds to these internal ids.
internal_documents_ids: Vec<u32>,
},
/// Outputs some facets statistics for the given facet name.
FacetStats {
/// The field name in the document.
field_name: String,
},
/// Outputs the average number of *different* words by document.
AverageNumberOfWordsByDoc,
/// Outputs the average number of positions for each document words.
AverageNumberOfPositionsByWord,
/// Outputs some statistics about the given database (e.g. median, quartiles,
/// percentiles, minimum, maximum, averge, key size, value size).
DatabaseStats {
#[structopt(possible_values = POSTINGS_DATABASE_NAMES)]
database: String,
},
/// Outputs the size in bytes of the specified databases names.
SizeOfDatabase {
/// The name of the database to measure the size of, if not specified it's equivalent
/// to specifying all the databases names.
#[structopt(possible_values = ALL_DATABASE_NAMES)]
databases: Vec<String>,
},
/// Outputs a CSV with the proximities for the two specidied words and
/// the documents ids where these relations appears.
///
/// `word1`, `word2` defines the word pair specified *in this specific order*.
/// `proximity` defines the proximity between the two specified words.
/// `documents_ids` defines the documents ids where the relation appears.
WordPairProximitiesDocids {
/// Display the whole documents ids in details.
#[structopt(long)]
full_display: bool,
/// First word of the word pair.
word1: String,
/// Second word of the word pair.
word2: String,
},
/// Outputs the words FST to standard output.
///
/// One can use the FST binary helper to dissect and analyze it,
/// you can install it using `cargo install fst-bin`.
ExportWordsFst,
/// Outputs the words prefix FST to standard output.
///
/// One can use the FST binary helper to dissect and analyze it,
/// you can install it using `cargo install fst-bin`.
ExportWordsPrefixFst,
/// Outputs the documents as JSON lines to the standard output.
///
/// All of the fields are extracted, not just the displayed ones.
ExportDocuments {
/// If defined, only retrieve the documents that corresponds to these internal ids.
internal_documents_ids: Vec<u32>,
},
}
fn main() -> anyhow::Result<()> {
let opt = Opt::from_args();
stderrlog::new()
.verbosity(opt.verbose)
.show_level(false)
.timestamp(stderrlog::Timestamp::Off)
.init()?;
let mut options = EnvOpenOptions::new();
options.map_size(opt.database_size.get_bytes() as usize);
// Return an error if the database does not exist.
if !opt.database.exists() {
anyhow::bail!("The database ({}) does not exist.", opt.database.display());
}
// Open the LMDB database.
let index = Index::new(options, opt.database)?;
let rtxn = index.read_txn()?;
match opt.command {
MostCommonWords { limit } => most_common_words(&index, &rtxn, limit),
BiggestValues { limit } => biggest_value_sizes(&index, &rtxn, limit),
WordsDocids { full_display, words } => words_docids(&index, &rtxn, !full_display, words),
WordsPrefixesDocids { full_display, prefixes } => {
words_prefixes_docids(&index, &rtxn, !full_display, prefixes)
},
FacetValuesDocids { full_display, field_name } => {
facet_values_docids(&index, &rtxn, !full_display, field_name)
},
DocidsWordsPositions { full_display, internal_documents_ids } => {
docids_words_positions(&index, &rtxn, !full_display, internal_documents_ids)
},
FacetStats { field_name } => facet_stats(&index, &rtxn, field_name),
AverageNumberOfWordsByDoc => average_number_of_words_by_doc(&index, &rtxn),
AverageNumberOfPositionsByWord => {
average_number_of_positions_by_word(&index, &rtxn)
},
SizeOfDatabase { databases } => size_of_databases(&index, &rtxn, databases),
DatabaseStats { database } => database_stats(&index, &rtxn, &database),
WordPairProximitiesDocids { full_display, word1, word2 } => {
word_pair_proximities_docids(&index, &rtxn, !full_display, word1, word2)
},
ExportWordsFst => export_words_fst(&index, &rtxn),
ExportWordsPrefixFst => export_words_prefix_fst(&index, &rtxn),
ExportDocuments { internal_documents_ids } => {
export_documents(&index, &rtxn, internal_documents_ids)
},
}
}
fn most_common_words(index: &Index, rtxn: &heed::RoTxn, limit: usize) -> anyhow::Result<()> {
use std::collections::BinaryHeap;
use std::cmp::Reverse;
let mut heap = BinaryHeap::with_capacity(limit + 1);
for result in index.word_docids.iter(rtxn)? {
if limit == 0 { break }
let (word, docids) = result?;
heap.push((Reverse(docids.len()), word));
if heap.len() > limit { heap.pop(); }
}
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
wtr.write_record(&["word", "document_frequency"])?;
for (Reverse(document_frequency), word) in heap.into_sorted_vec() {
wtr.write_record(&[word, &document_frequency.to_string()])?;
}
Ok(wtr.flush()?)
}
/// Helper function that converts the facet value key to a unique type
/// that can be used to log or display purposes.
fn facet_values_iter<'txn, DC: 'txn, T>(
rtxn: &'txn heed::RoTxn,
db: heed::Database<heed::types::ByteSlice, DC>,
field_id: u8,
facet_type: milli::facet::FacetType,
string_fn: impl Fn(&str) -> T + 'txn,
float_fn: impl Fn(u8, f64, f64) -> T + 'txn,
integer_fn: impl Fn(u8, i64, i64) -> T + 'txn,
) -> heed::Result<Box<dyn Iterator<Item=heed::Result<(T, DC::DItem)>> + 'txn>>
where
DC: heed::BytesDecode<'txn>,
{
use milli::facet::FacetType;
use milli::heed_codec::facet::{
FacetValueStringCodec, FacetLevelValueF64Codec, FacetLevelValueI64Codec,
};
let iter = db.prefix_iter(&rtxn, &[field_id])?;
match facet_type {
FacetType::String => {
let iter = iter.remap_key_type::<FacetValueStringCodec>()
.map(move |r| r.map(|((_, key), value)| (string_fn(key), value)));
Ok(Box::new(iter) as Box<dyn Iterator<Item=_>>)
},
FacetType::Float => {
let iter = iter.remap_key_type::<FacetLevelValueF64Codec>()
.map(move |r| r.map(|((_, level, left, right), value)| {
(float_fn(level, left, right), value)
}));
Ok(Box::new(iter))
},
FacetType::Integer => {
let iter = iter.remap_key_type::<FacetLevelValueI64Codec>()
.map(move |r| r.map(|((_, level, left, right), value)| {
(integer_fn(level, left, right), value)
}));
Ok(Box::new(iter))
},
}
}
fn facet_number_value_to_string<T: fmt::Debug>(level: u8, left: T, right: T) -> (u8, String) {
if level == 0 {
(level, format!("{:?}", left))
} else {
(level, format!("{:?} to {:?}", left, right))
}
}
fn biggest_value_sizes(index: &Index, rtxn: &heed::RoTxn, limit: usize) -> anyhow::Result<()> {
use std::cmp::Reverse;
use std::collections::BinaryHeap;
use heed::types::{Str, ByteSlice};
let Index {
env: _env,
main,
word_docids,
word_prefix_docids,
docid_word_positions,
word_pair_proximity_docids,
word_prefix_pair_proximity_docids,
facet_field_id_value_docids,
field_id_docid_facet_values: _,
documents,
} = index;
let main_name = "main";
let word_docids_name = "word_docids";
let word_prefix_docids_name = "word_prefix_docids";
let docid_word_positions_name = "docid_word_positions";
let word_prefix_pair_proximity_docids_name = "word_prefix_pair_proximity_docids";
let word_pair_proximity_docids_name = "word_pair_proximity_docids";
let facet_field_id_value_docids_name = "facet_field_id_value_docids";
let documents_name = "documents";
let mut heap = BinaryHeap::with_capacity(limit + 1);
if limit > 0 {
// Fetch the words FST
let words_fst = index.words_fst(rtxn)?;
let length = words_fst.as_fst().as_bytes().len();
heap.push(Reverse((length, format!("words-fst"), main_name)));
if heap.len() > limit { heap.pop(); }
// Fetch the word prefix FST
let words_prefixes_fst = index.words_prefixes_fst(rtxn)?;
let length = words_prefixes_fst.as_fst().as_bytes().len();
heap.push(Reverse((length, format!("words-prefixes-fst"), main_name)));
if heap.len() > limit { heap.pop(); }
if let Some(documents_ids) = main.get::<_, Str, ByteSlice>(rtxn, "documents-ids")? {
heap.push(Reverse((documents_ids.len(), format!("documents-ids"), main_name)));
if heap.len() > limit { heap.pop(); }
}
for result in word_docids.remap_data_type::<ByteSlice>().iter(rtxn)? {
let (word, value) = result?;
heap.push(Reverse((value.len(), word.to_string(), word_docids_name)));
if heap.len() > limit { heap.pop(); }
}
for result in word_prefix_docids.remap_data_type::<ByteSlice>().iter(rtxn)? {
let (word, value) = result?;
heap.push(Reverse((value.len(), word.to_string(), word_prefix_docids_name)));
if heap.len() > limit { heap.pop(); }
}
for result in docid_word_positions.remap_data_type::<ByteSlice>().iter(rtxn)? {
let ((docid, word), value) = result?;
let key = format!("{} {}", docid, word);
heap.push(Reverse((value.len(), key, docid_word_positions_name)));
if heap.len() > limit { heap.pop(); }
}
for result in word_pair_proximity_docids.remap_data_type::<ByteSlice>().iter(rtxn)? {
let ((word1, word2, prox), value) = result?;
let key = format!("{} {} {}", word1, word2, prox);
heap.push(Reverse((value.len(), key, word_pair_proximity_docids_name)));
if heap.len() > limit { heap.pop(); }
}
for result in word_prefix_pair_proximity_docids.remap_data_type::<ByteSlice>().iter(rtxn)? {
let ((word, prefix, prox), value) = result?;
let key = format!("{} {} {}", word, prefix, prox);
heap.push(Reverse((value.len(), key, word_prefix_pair_proximity_docids_name)));
if heap.len() > limit { heap.pop(); }
}
let faceted_fields = index.faceted_fields_ids(rtxn)?;
let fields_ids_map = index.fields_ids_map(rtxn)?;
for (field_id, field_type) in faceted_fields {
let facet_name = fields_ids_map.name(field_id).unwrap();
let db = facet_field_id_value_docids.remap_data_type::<ByteSlice>();
let iter = facet_values_iter(
rtxn,
db,
field_id,
field_type,
|key| key.to_owned(),
|level, left, right| {
let mut output = facet_number_value_to_string(level, left, right).1;
let _ = write!(&mut output, " (level {})", level);
output
},
|level, left, right| {
let mut output = facet_number_value_to_string(level, left, right).1;
let _ = write!(&mut output, " (level {})", level);
output
},
)?;
for result in iter {
let (fvalue, value) = result?;
let key = format!("{} {}", facet_name, fvalue);
heap.push(Reverse((value.len(), key, facet_field_id_value_docids_name)));
if heap.len() > limit { heap.pop(); }
}
}
for result in documents.remap_data_type::<ByteSlice>().iter(rtxn)? {
let (id, value) = result?;
heap.push(Reverse((value.len(), id.to_string(), documents_name)));
if heap.len() > limit { heap.pop(); }
}
}
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
wtr.write_record(&["database_name", "key_name", "size"])?;
for Reverse((size, key_name, database_name)) in heap.into_sorted_vec() {
wtr.write_record(&[database_name.to_string(), key_name, size.to_string()])?;
}
Ok(wtr.flush()?)
}
fn words_docids(index: &Index, rtxn: &heed::RoTxn, debug: bool, words: Vec<String>) -> anyhow::Result<()> {
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
wtr.write_record(&["word", "documents_ids"])?;
for word in words {
if let Some(docids) = index.word_docids.get(rtxn, &word)? {
let docids = if debug {
format!("{:?}", docids)
} else {
format!("{:?}", docids.iter().collect::<Vec<_>>())
};
wtr.write_record(&[word, docids])?;
}
}
Ok(wtr.flush()?)
}
fn words_prefixes_docids(
index: &Index,
rtxn: &heed::RoTxn,
debug: bool,
prefixes: Vec<String>,
) -> anyhow::Result<()>
{
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
wtr.write_record(&["prefix", "documents_ids"])?;
if prefixes.is_empty() {
for result in index.word_prefix_docids.iter(rtxn)? {
let (prefix, docids) = result?;
let docids = if debug {
format!("{:?}", docids)
} else {
format!("{:?}", docids.iter().collect::<Vec<_>>())
};
wtr.write_record(&[prefix, &docids])?;
}
} else {
for prefix in prefixes {
if let Some(docids) = index.word_prefix_docids.get(rtxn, &prefix)? {
let docids = if debug {
format!("{:?}", docids)
} else {
format!("{:?}", docids.iter().collect::<Vec<_>>())
};
wtr.write_record(&[prefix, docids])?;
}
}
}
Ok(wtr.flush()?)
}
fn facet_values_docids(index: &Index, rtxn: &heed::RoTxn, debug: bool, field_name: String) -> anyhow::Result<()> {
let fields_ids_map = index.fields_ids_map(&rtxn)?;
let faceted_fields = index.faceted_fields_ids(&rtxn)?;
let field_id = fields_ids_map.id(&field_name)
.with_context(|| format!("field {} not found", field_name))?;
let field_type = faceted_fields.get(&field_id)
.with_context(|| format!("field {} is not faceted", field_name))?;
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
wtr.write_record(&["facet_value", "facet_level", "documents_count", "documents_ids"])?;
let db = index.facet_field_id_value_docids;
let iter = facet_values_iter(
rtxn,
db,
field_id,
*field_type,
|key| (0, key.to_owned()),
facet_number_value_to_string,
facet_number_value_to_string,
)?;
for result in iter {
let ((level, value), docids) = result?;
let count = docids.len();
let docids = if debug {
format!("{:?}", docids)
} else {
format!("{:?}", docids.iter().collect::<Vec<_>>())
};
wtr.write_record(&[value, level.to_string(), count.to_string(), docids])?;
}
Ok(wtr.flush()?)
}
fn docids_words_positions(
index: &Index,
rtxn: &heed::RoTxn,
debug: bool,
internal_ids: Vec<u32>,
) -> anyhow::Result<()>
{
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
wtr.write_record(&["document_id", "word", "positions"])?;
let iter: Box<dyn Iterator<Item = _>> = if internal_ids.is_empty() {
Box::new(index.docid_word_positions.iter(rtxn)?)
} else {
let vec: heed::Result<Vec<_>> = internal_ids.into_iter().map(|id| {
index.docid_word_positions.prefix_iter(rtxn, &(id, ""))
}).collect();
Box::new(vec?.into_iter().flatten())
};
for result in iter {
let ((id, word), positions) = result?;
let positions = if debug {
format!("{:?}", positions)
} else {
format!("{:?}", positions.iter().collect::<Vec<_>>())
};
wtr.write_record(&[&id.to_string(), word, &positions])?;
}
Ok(wtr.flush()?)
}
fn facet_stats(index: &Index, rtxn: &heed::RoTxn, field_name: String) -> anyhow::Result<()> {
let fields_ids_map = index.fields_ids_map(&rtxn)?;
let faceted_fields = index.faceted_fields_ids(&rtxn)?;
let field_id = fields_ids_map.id(&field_name)
.with_context(|| format!("field {} not found", field_name))?;
let field_type = faceted_fields.get(&field_id)
.with_context(|| format!("field {} is not faceted", field_name))?;
let db = index.facet_field_id_value_docids;
let iter = facet_values_iter(
rtxn,
db,
field_id,
*field_type,
|_key| 0u8,
|level, _left, _right| level,
|level, _left, _right| level,
)?;
println!("The database {:?} facet stats", field_name);
let mut level_size = 0;
let mut current_level = None;
for result in iter {
let (level, _) = result?;
if let Some(current) = current_level {
if current != level {
println!("\tnumber of groups at level {}: {}", current, level_size);
level_size = 0;
}
}
current_level = Some(level);
level_size += 1;
}
if let Some(current) = current_level {
println!("\tnumber of groups at level {}: {}", current, level_size);
}
Ok(())
}
fn export_words_fst(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> {
use std::io::Write as _;
let mut stdout = io::stdout();
let words_fst = index.words_fst(rtxn)?;
stdout.write_all(words_fst.as_fst().as_bytes())?;
Ok(())
}
fn export_words_prefix_fst(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> {
use std::io::Write as _;
let mut stdout = io::stdout();
let words_prefixes_fst = index.words_prefixes_fst(rtxn)?;
stdout.write_all(words_prefixes_fst.as_fst().as_bytes())?;
Ok(())
}
fn export_documents(index: &Index, rtxn: &heed::RoTxn, internal_ids: Vec<u32>) -> anyhow::Result<()> {
use std::io::{BufWriter, Write as _};
use milli::{BEU32, obkv_to_json};
let stdout = io::stdout();
let mut out = BufWriter::new(stdout);
let fields_ids_map = index.fields_ids_map(rtxn)?;
let displayed_fields: Vec<_> = fields_ids_map.iter().map(|(id, _name)| id).collect();
let iter: Box<dyn Iterator<Item = _>> = if internal_ids.is_empty() {
Box::new(index.documents.iter(rtxn)?.map(|result| {
result.map(|(_id, obkv)| obkv)
}))
} else {
Box::new(internal_ids.into_iter().flat_map(|id| {
index.documents.get(rtxn, &BEU32::new(id)).transpose()
}))
};
for result in iter {
let obkv = result?;
let document = obkv_to_json(&displayed_fields, &fields_ids_map, obkv)?;
serde_json::to_writer(&mut out, &document)?;
writeln!(&mut out)?;
}
out.into_inner()?;
Ok(())
}
fn average_number_of_words_by_doc(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> {
use heed::types::DecodeIgnore;
use milli::{DocumentId, BEU32StrCodec};
let mut words_counts = Vec::new();
let mut count = 0;
let mut prev = None as Option<(DocumentId, u32)>;
let iter = index.docid_word_positions.as_polymorph().iter::<_, BEU32StrCodec, DecodeIgnore>(rtxn)?;
for result in iter {
let ((docid, _word), ()) = result?;
match prev.as_mut() {
Some((prev_docid, prev_count)) if docid == *prev_docid => {
*prev_count += 1;
},
Some((prev_docid, prev_count)) => {
words_counts.push(*prev_count);
*prev_docid = docid;
*prev_count = 0;
count += 1;
},
None => prev = Some((docid, 1)),
}
}
if let Some((_, prev_count)) = prev.take() {
words_counts.push(prev_count);
count += 1;
}
let words_count = words_counts.into_iter().map(|c| c as usize).sum::<usize>() as f64;
let count = count as f64;
println!("average number of different words by document: {}", words_count / count);
Ok(())
}
fn average_number_of_positions_by_word(index: &Index, rtxn: &heed::RoTxn) -> anyhow::Result<()> {
use heed::types::DecodeIgnore;
use milli::BoRoaringBitmapCodec;
let mut values_length = Vec::new();
let mut count = 0;
let db = index.docid_word_positions.as_polymorph();
for result in db.iter::<_, DecodeIgnore, BoRoaringBitmapCodec>(rtxn)? {
let ((), val) = result?;
values_length.push(val.len() as u32);
count += 1;
}
let values_length_sum = values_length.into_iter().map(|c| c as usize).sum::<usize>() as f64;
let count = count as f64;
println!("average number of positions by word: {}", values_length_sum / count);
Ok(())
}
fn size_of_databases(index: &Index, rtxn: &heed::RoTxn, names: Vec<String>) -> anyhow::Result<()> {
use heed::types::ByteSlice;
let names = if names.is_empty() {
ALL_DATABASE_NAMES.iter().map(|s| s.to_string()).collect()
} else {
names
};
for name in names {
let database = match name.as_str() {
MAIN_DB_NAME => &index.main,
WORD_PREFIX_DOCIDS_DB_NAME => index.word_prefix_docids.as_polymorph(),
WORD_DOCIDS_DB_NAME => index.word_docids.as_polymorph(),
DOCID_WORD_POSITIONS_DB_NAME => index.docid_word_positions.as_polymorph(),
WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME => index.word_pair_proximity_docids.as_polymorph(),
WORD_PREFIX_PAIR_PROXIMITY_DOCIDS_DB_NAME => index.word_prefix_pair_proximity_docids.as_polymorph(),
FACET_FIELD_ID_VALUE_DOCIDS_NAME => index.facet_field_id_value_docids.as_polymorph(),
FIELD_ID_DOCID_FACET_VALUES_NAME => index.field_id_docid_facet_values.as_polymorph(),
DOCUMENTS_DB_NAME => index.documents.as_polymorph(),
unknown => anyhow::bail!("unknown database {:?}", unknown),
};
let mut key_size: u64 = 0;
let mut val_size: u64 = 0;
for result in database.iter::<_, ByteSlice, ByteSlice>(rtxn)? {
let (k, v) = result?;
key_size += k.len() as u64;
val_size += v.len() as u64;
}
println!("The {} database weigh:", name);
println!("\ttotal key size: {}", Byte::from(key_size).get_appropriate_unit(true));
println!("\ttotal val size: {}", Byte::from(val_size).get_appropriate_unit(true));
println!("\ttotal size: {}", Byte::from(key_size + val_size).get_appropriate_unit(true));
}
Ok(())
}
fn database_stats(index: &Index, rtxn: &heed::RoTxn, name: &str) -> anyhow::Result<()> {
use heed::types::ByteSlice;
use heed::{Error, BytesDecode};
use roaring::RoaringBitmap;
use milli::{BoRoaringBitmapCodec, CboRoaringBitmapCodec, RoaringBitmapCodec};
fn compute_stats<'a, DC: BytesDecode<'a, DItem = RoaringBitmap>>(
db: heed::PolyDatabase,
rtxn: &'a heed::RoTxn,
name: &str,
) -> anyhow::Result<()>
{
let mut key_size = 0u64;
let mut val_size = 0u64;
let mut values_length = Vec::new();
for result in db.iter::<_, ByteSlice, ByteSlice>(rtxn)? {
let (key, val) = result?;
key_size += key.len() as u64;
val_size += val.len() as u64;
let val = DC::bytes_decode(val).ok_or(Error::Decoding)?;
values_length.push(val.len() as u32);
}
values_length.sort_unstable();
let len = values_length.len();
let twenty_five_percentile = values_length.get(len / 4).unwrap_or(&0);
let fifty_percentile = values_length.get(len / 2).unwrap_or(&0);
let seventy_five_percentile = values_length.get(len * 3 / 4).unwrap_or(&0);
let ninety_percentile = values_length.get(len * 90 / 100).unwrap_or(&0);
let ninety_five_percentile = values_length.get(len * 95 / 100).unwrap_or(&0);
let ninety_nine_percentile = values_length.get(len * 99 / 100).unwrap_or(&0);
let minimum = values_length.first().unwrap_or(&0);
let maximum = values_length.last().unwrap_or(&0);
let count = values_length.len();
let sum = values_length.iter().map(|l| *l as u64).sum::<u64>();
println!("The {} database stats on the lengths", name);
println!("\tnumber of entries: {}", count);
println!("\t25th percentile (first quartile): {}", twenty_five_percentile);
println!("\t50th percentile (median): {}", fifty_percentile);
println!("\t75th percentile (third quartile): {}", seventy_five_percentile);
println!("\t90th percentile: {}", ninety_percentile);
println!("\t95th percentile: {}", ninety_five_percentile);
println!("\t99th percentile: {}", ninety_nine_percentile);
println!("\tminimum: {}", minimum);
println!("\tmaximum: {}", maximum);
println!("\taverage: {}", sum as f64 / count as f64);
println!("\ttotal key size: {}", Byte::from(key_size).get_appropriate_unit(true));
println!("\ttotal val size: {}", Byte::from(val_size).get_appropriate_unit(true));
println!("\ttotal size: {}", Byte::from(key_size + val_size).get_appropriate_unit(true));
Ok(())
}
match name {
WORD_DOCIDS_DB_NAME => {
let db = index.word_docids.as_polymorph();
compute_stats::<RoaringBitmapCodec>(*db, rtxn, name)
},
WORD_PREFIX_DOCIDS_DB_NAME => {
let db = index.word_prefix_docids.as_polymorph();
compute_stats::<RoaringBitmapCodec>(*db, rtxn, name)
},
DOCID_WORD_POSITIONS_DB_NAME => {
let db = index.docid_word_positions.as_polymorph();
compute_stats::<BoRoaringBitmapCodec>(*db, rtxn, name)
},
WORD_PAIR_PROXIMITY_DOCIDS_DB_NAME => {
let db = index.word_pair_proximity_docids.as_polymorph();
compute_stats::<CboRoaringBitmapCodec>(*db, rtxn, name)
},
WORD_PREFIX_PAIR_PROXIMITY_DOCIDS_DB_NAME => {
let db = index.word_prefix_pair_proximity_docids.as_polymorph();
compute_stats::<CboRoaringBitmapCodec>(*db, rtxn, name)
},
unknown => anyhow::bail!("unknown database {:?}", unknown),
}
}
fn word_pair_proximities_docids(
index: &Index,
rtxn: &heed::RoTxn,
debug: bool,
word1: String,
word2: String,
) -> anyhow::Result<()>
{
use heed::types::ByteSlice;
use milli::RoaringBitmapCodec;
let stdout = io::stdout();
let mut wtr = csv::Writer::from_writer(stdout.lock());
wtr.write_record(&["word1", "word2", "proximity", "documents_ids"])?;
// Create the prefix key with only the pair of words.
let mut prefix = Vec::with_capacity(word1.len() + word2.len() + 1);
prefix.extend_from_slice(word1.as_bytes());
prefix.push(0);
prefix.extend_from_slice(word2.as_bytes());
let db = index.word_pair_proximity_docids.as_polymorph();
let iter = db.prefix_iter::<_, ByteSlice, RoaringBitmapCodec>(rtxn, &prefix)?;
for result in iter {
let (key, docids) = result?;
// Skip keys that are longer than the requested one,
// a longer key means that the second word is a prefix of the request word.
if key.len() != prefix.len() + 1 { continue; }
let proximity = key.last().unwrap();
let docids = if debug {
format!("{:?}", docids)
} else {
format!("{:?}", docids.iter().collect::<Vec<_>>())
};
wtr.write_record(&[&word1, &word2, &proximity.to_string(), &docids])?;
}
Ok(wtr.flush()?)
}