mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-11-23 21:34:27 +01:00
0a40a98bb6
* Make milli use edition 2021 * Add lifetime annotations to milli. * Run cargo fmt
399 lines
12 KiB
Rust
399 lines
12 KiB
Rust
use std::fmt;
|
|
use std::sync::Arc;
|
|
|
|
use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA};
|
|
use once_cell::sync::Lazy;
|
|
use roaring::bitmap::RoaringBitmap;
|
|
|
|
pub use self::facet::{FacetDistribution, Filter, OrderBy, DEFAULT_VALUES_PER_FACET};
|
|
pub use self::new::matches::{FormatOptions, MatchBounds, MatcherBuilder, MatchingWords};
|
|
use self::new::{execute_vector_search, PartialSearchResult};
|
|
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
|
use crate::vector::Embedder;
|
|
use crate::{
|
|
execute_search, filtered_universe, AscDesc, DefaultSearchLogger, DocumentId, Error, Index,
|
|
Result, SearchContext, TimeBudget, UserError,
|
|
};
|
|
|
|
// Building these factories is not free.
|
|
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
|
|
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
|
|
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
|
|
|
|
pub mod facet;
|
|
mod fst_utils;
|
|
pub mod hybrid;
|
|
pub mod new;
|
|
pub mod similar;
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct SemanticSearch {
|
|
vector: Option<Vec<f32>>,
|
|
embedder_name: String,
|
|
embedder: Arc<Embedder>,
|
|
}
|
|
|
|
pub struct Search<'a> {
|
|
query: Option<String>,
|
|
// this should be linked to the String in the query
|
|
filter: Option<Filter<'a>>,
|
|
offset: usize,
|
|
limit: usize,
|
|
sort_criteria: Option<Vec<AscDesc>>,
|
|
distinct: Option<String>,
|
|
searchable_attributes: Option<&'a [String]>,
|
|
geo_strategy: new::GeoSortStrategy,
|
|
terms_matching_strategy: TermsMatchingStrategy,
|
|
scoring_strategy: ScoringStrategy,
|
|
words_limit: usize,
|
|
exhaustive_number_hits: bool,
|
|
rtxn: &'a heed::RoTxn<'a>,
|
|
index: &'a Index,
|
|
semantic: Option<SemanticSearch>,
|
|
time_budget: TimeBudget,
|
|
ranking_score_threshold: Option<f64>,
|
|
}
|
|
|
|
impl<'a> Search<'a> {
|
|
pub fn new(rtxn: &'a heed::RoTxn<'a>, index: &'a Index) -> Search<'a> {
|
|
Search {
|
|
query: None,
|
|
filter: None,
|
|
offset: 0,
|
|
limit: 20,
|
|
sort_criteria: None,
|
|
distinct: None,
|
|
searchable_attributes: None,
|
|
geo_strategy: new::GeoSortStrategy::default(),
|
|
terms_matching_strategy: TermsMatchingStrategy::default(),
|
|
scoring_strategy: Default::default(),
|
|
exhaustive_number_hits: false,
|
|
words_limit: 10,
|
|
rtxn,
|
|
index,
|
|
semantic: None,
|
|
time_budget: TimeBudget::max(),
|
|
ranking_score_threshold: None,
|
|
}
|
|
}
|
|
|
|
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
|
|
self.query = Some(query.into());
|
|
self
|
|
}
|
|
|
|
pub fn semantic(
|
|
&mut self,
|
|
embedder_name: String,
|
|
embedder: Arc<Embedder>,
|
|
vector: Option<Vec<f32>>,
|
|
) -> &mut Search<'a> {
|
|
self.semantic = Some(SemanticSearch { embedder_name, embedder, vector });
|
|
self
|
|
}
|
|
|
|
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
|
|
self.offset = offset;
|
|
self
|
|
}
|
|
|
|
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
|
|
self.limit = limit;
|
|
self
|
|
}
|
|
|
|
pub fn sort_criteria(&mut self, criteria: Vec<AscDesc>) -> &mut Search<'a> {
|
|
self.sort_criteria = Some(criteria);
|
|
self
|
|
}
|
|
|
|
pub fn distinct(&mut self, distinct: String) -> &mut Search<'a> {
|
|
self.distinct = Some(distinct);
|
|
self
|
|
}
|
|
|
|
pub fn searchable_attributes(&mut self, searchable: &'a [String]) -> &mut Search<'a> {
|
|
self.searchable_attributes = Some(searchable);
|
|
self
|
|
}
|
|
|
|
pub fn terms_matching_strategy(&mut self, value: TermsMatchingStrategy) -> &mut Search<'a> {
|
|
self.terms_matching_strategy = value;
|
|
self
|
|
}
|
|
|
|
pub fn scoring_strategy(&mut self, value: ScoringStrategy) -> &mut Search<'a> {
|
|
self.scoring_strategy = value;
|
|
self
|
|
}
|
|
|
|
pub fn words_limit(&mut self, value: usize) -> &mut Search<'a> {
|
|
self.words_limit = value;
|
|
self
|
|
}
|
|
|
|
pub fn filter(&mut self, condition: Filter<'a>) -> &mut Search<'a> {
|
|
self.filter = Some(condition);
|
|
self
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub fn geo_sort_strategy(&mut self, strategy: new::GeoSortStrategy) -> &mut Search<'a> {
|
|
self.geo_strategy = strategy;
|
|
self
|
|
}
|
|
|
|
/// Forces the search to exhaustively compute the number of candidates,
|
|
/// this will increase the search time but allows finite pagination.
|
|
pub fn exhaustive_number_hits(&mut self, exhaustive_number_hits: bool) -> &mut Search<'a> {
|
|
self.exhaustive_number_hits = exhaustive_number_hits;
|
|
self
|
|
}
|
|
|
|
pub fn time_budget(&mut self, time_budget: TimeBudget) -> &mut Search<'a> {
|
|
self.time_budget = time_budget;
|
|
self
|
|
}
|
|
|
|
pub fn ranking_score_threshold(&mut self, ranking_score_threshold: f64) -> &mut Search<'a> {
|
|
self.ranking_score_threshold = Some(ranking_score_threshold);
|
|
self
|
|
}
|
|
|
|
pub fn execute_for_candidates(&self, has_vector_search: bool) -> Result<RoaringBitmap> {
|
|
if has_vector_search {
|
|
let ctx = SearchContext::new(self.index, self.rtxn)?;
|
|
filtered_universe(ctx.index, ctx.txn, &self.filter)
|
|
} else {
|
|
Ok(self.execute()?.candidates)
|
|
}
|
|
}
|
|
|
|
pub fn execute(&self) -> Result<SearchResult> {
|
|
let mut ctx = SearchContext::new(self.index, self.rtxn)?;
|
|
|
|
if let Some(searchable_attributes) = self.searchable_attributes {
|
|
ctx.attributes_to_search_on(searchable_attributes)?;
|
|
}
|
|
|
|
if let Some(distinct) = &self.distinct {
|
|
let filterable_fields = ctx.index.filterable_fields(ctx.txn)?;
|
|
if !crate::is_faceted(distinct, &filterable_fields) {
|
|
let (valid_fields, hidden_fields) =
|
|
ctx.index.remove_hidden_fields(ctx.txn, filterable_fields)?;
|
|
return Err(Error::UserError(UserError::InvalidDistinctAttribute {
|
|
field: distinct.clone(),
|
|
valid_fields,
|
|
hidden_fields,
|
|
}));
|
|
}
|
|
}
|
|
|
|
let universe = filtered_universe(ctx.index, ctx.txn, &self.filter)?;
|
|
let PartialSearchResult {
|
|
located_query_terms,
|
|
candidates,
|
|
documents_ids,
|
|
document_scores,
|
|
degraded,
|
|
used_negative_operator,
|
|
} = match self.semantic.as_ref() {
|
|
Some(SemanticSearch { vector: Some(vector), embedder_name, embedder }) => {
|
|
execute_vector_search(
|
|
&mut ctx,
|
|
vector,
|
|
self.scoring_strategy,
|
|
universe,
|
|
&self.sort_criteria,
|
|
&self.distinct,
|
|
self.geo_strategy,
|
|
self.offset,
|
|
self.limit,
|
|
embedder_name,
|
|
embedder,
|
|
self.time_budget.clone(),
|
|
self.ranking_score_threshold,
|
|
)?
|
|
}
|
|
_ => execute_search(
|
|
&mut ctx,
|
|
self.query.as_deref(),
|
|
self.terms_matching_strategy,
|
|
self.scoring_strategy,
|
|
self.exhaustive_number_hits,
|
|
universe,
|
|
&self.sort_criteria,
|
|
&self.distinct,
|
|
self.geo_strategy,
|
|
self.offset,
|
|
self.limit,
|
|
Some(self.words_limit),
|
|
&mut DefaultSearchLogger,
|
|
&mut DefaultSearchLogger,
|
|
self.time_budget.clone(),
|
|
self.ranking_score_threshold,
|
|
)?,
|
|
};
|
|
|
|
// consume context and located_query_terms to build MatchingWords.
|
|
let matching_words = match located_query_terms {
|
|
Some(located_query_terms) => MatchingWords::new(ctx, located_query_terms),
|
|
None => MatchingWords::default(),
|
|
};
|
|
|
|
Ok(SearchResult {
|
|
matching_words,
|
|
candidates,
|
|
document_scores,
|
|
documents_ids,
|
|
degraded,
|
|
used_negative_operator,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for Search<'_> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
let Search {
|
|
query,
|
|
filter,
|
|
offset,
|
|
limit,
|
|
sort_criteria,
|
|
distinct,
|
|
searchable_attributes,
|
|
geo_strategy: _,
|
|
terms_matching_strategy,
|
|
scoring_strategy,
|
|
words_limit,
|
|
exhaustive_number_hits,
|
|
rtxn: _,
|
|
index: _,
|
|
semantic,
|
|
time_budget,
|
|
ranking_score_threshold,
|
|
} = self;
|
|
f.debug_struct("Search")
|
|
.field("query", query)
|
|
.field("vector", &"[...]")
|
|
.field("filter", filter)
|
|
.field("offset", offset)
|
|
.field("limit", limit)
|
|
.field("sort_criteria", sort_criteria)
|
|
.field("distinct", distinct)
|
|
.field("searchable_attributes", searchable_attributes)
|
|
.field("terms_matching_strategy", terms_matching_strategy)
|
|
.field("scoring_strategy", scoring_strategy)
|
|
.field("exhaustive_number_hits", exhaustive_number_hits)
|
|
.field("words_limit", words_limit)
|
|
.field(
|
|
"semantic.embedder_name",
|
|
&semantic.as_ref().map(|semantic| &semantic.embedder_name),
|
|
)
|
|
.field("time_budget", time_budget)
|
|
.field("ranking_score_threshold", ranking_score_threshold)
|
|
.finish()
|
|
}
|
|
}
|
|
|
|
#[derive(Default, Debug)]
|
|
pub struct SearchResult {
|
|
pub matching_words: MatchingWords,
|
|
pub candidates: RoaringBitmap,
|
|
pub documents_ids: Vec<DocumentId>,
|
|
pub document_scores: Vec<Vec<ScoreDetails>>,
|
|
pub degraded: bool,
|
|
pub used_negative_operator: bool,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
pub enum TermsMatchingStrategy {
|
|
// remove last word first
|
|
Last,
|
|
// all words are mandatory
|
|
All,
|
|
// remove more frequent word first
|
|
Frequency,
|
|
}
|
|
|
|
impl Default for TermsMatchingStrategy {
|
|
fn default() -> Self {
|
|
Self::Last
|
|
}
|
|
}
|
|
|
|
fn get_first(s: &str) -> &str {
|
|
match s.chars().next() {
|
|
Some(c) => &s[..c.len_utf8()],
|
|
None => panic!("unexpected empty query"),
|
|
}
|
|
}
|
|
|
|
pub fn build_dfa(word: &str, typos: u8, is_prefix: bool) -> DFA {
|
|
let lev = match typos {
|
|
0 => &LEVDIST0,
|
|
1 => &LEVDIST1,
|
|
_ => &LEVDIST2,
|
|
};
|
|
|
|
if is_prefix {
|
|
lev.build_prefix_dfa(word)
|
|
} else {
|
|
lev.build_dfa(word)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
#[allow(unused_imports)]
|
|
use super::*;
|
|
|
|
#[cfg(feature = "japanese")]
|
|
#[test]
|
|
fn test_kanji_language_detection() {
|
|
use crate::index::tests::TempIndex;
|
|
|
|
let index = TempIndex::new();
|
|
|
|
index
|
|
.add_documents(documents!([
|
|
{ "id": 0, "title": "The quick (\"brown\") fox can't jump 32.3 feet, right? Brr, it's 29.3°F!" },
|
|
{ "id": 1, "title": "東京のお寿司。" },
|
|
{ "id": 2, "title": "הַשּׁוּעָל הַמָּהִיר (״הַחוּם״) לֹא יָכוֹל לִקְפֹּץ 9.94 מֶטְרִים, נָכוֹן? ברר, 1.5°C- בַּחוּץ!" }
|
|
]))
|
|
.unwrap();
|
|
|
|
let txn = index.write_txn().unwrap();
|
|
let mut search = Search::new(&txn, &index);
|
|
|
|
search.query("東京");
|
|
let SearchResult { documents_ids, .. } = search.execute().unwrap();
|
|
|
|
assert_eq!(documents_ids, vec![1]);
|
|
}
|
|
|
|
#[cfg(feature = "korean")]
|
|
#[test]
|
|
fn test_hangul_language_detection() {
|
|
use crate::index::tests::TempIndex;
|
|
|
|
let index = TempIndex::new();
|
|
|
|
index
|
|
.add_documents(documents!([
|
|
{ "id": 0, "title": "The quick (\"brown\") fox can't jump 32.3 feet, right? Brr, it's 29.3°F!" },
|
|
{ "id": 1, "title": "김밥먹을래。" },
|
|
{ "id": 2, "title": "הַשּׁוּעָל הַמָּהִיר (״הַחוּם״) לֹא יָכוֹל לִקְפֹּץ 9.94 מֶטְרִים, נָכוֹן? ברר, 1.5°C- בַּחוּץ!" }
|
|
]))
|
|
.unwrap();
|
|
|
|
let txn = index.write_txn().unwrap();
|
|
let mut search = Search::new(&txn, &index);
|
|
|
|
search.query("김밥");
|
|
let SearchResult { documents_ids, .. } = search.execute().unwrap();
|
|
|
|
assert_eq!(documents_ids, vec![1]);
|
|
}
|
|
}
|