MeiliSearch/src/bin/indexer.rs
Kerollmops 2ae3f40971
Make the indexer ignore certain words
This is a preparation for making the indexing fully parallel by making the
indexer only be aware of certain words for each threads to avoid postings lists
conflicts for each words
2020-07-01 17:49:46 +02:00

244 lines
8.4 KiB
Rust

use std::collections::hash_map::Entry;
use std::collections::{HashMap, BTreeSet};
use std::convert::{TryFrom, TryInto};
use std::hash::{Hash, BuildHasher};
use std::io;
use std::path::PathBuf;
use std::sync::atomic::{AtomicUsize, Ordering};
use anyhow::Context;
use cow_utils::CowUtils;
use fst::Streamer;
use heed::EnvOpenOptions;
use heed::types::*;
use roaring::RoaringBitmap;
use slice_group_by::StrGroupBy;
use structopt::StructOpt;
use mega_mini_indexer::cache::ArcCache;
use mega_mini_indexer::{BEU32, Index, DocumentId, FastMap4};
const MAX_POSITION: usize = 1000;
const MAX_ATTRIBUTES: usize = u32::max_value() as usize / MAX_POSITION;
#[cfg(target_os = "linux")]
#[global_allocator]
static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc;
static ID_GENERATOR: AtomicUsize = AtomicUsize::new(0); // AtomicU32 ?
pub fn simple_alphanumeric_tokens(string: &str) -> impl Iterator<Item = &str> {
let is_alphanumeric = |s: &&str| s.chars().next().map_or(false, char::is_alphanumeric);
string.linear_group_by_key(|c| c.is_alphanumeric()).filter(is_alphanumeric)
}
#[derive(Debug, StructOpt)]
#[structopt(name = "mm-indexer", about = "The indexer side of the MMI project.")]
struct Opt {
/// The database path where the database is located.
/// It is created if it doesn't already exist.
#[structopt(long = "db", parse(from_os_str))]
database: PathBuf,
/// CSV file to index.
csv_file: Option<PathBuf>,
}
fn put_evicted_into_heed<I>(wtxn: &mut heed::RwTxn, index: &Index, iter: I) -> anyhow::Result<()>
where
I: IntoIterator<Item = (String, (RoaringBitmap, FastMap4<u32, RoaringBitmap>))>
{
for (word, (positions, positions_docids)) in iter {
index.word_positions.put(wtxn, &word, &positions)?;
for (position, docids) in positions_docids {
let mut key = word.as_bytes().to_vec();
key.extend_from_slice(&position.to_be_bytes());
index.word_position_docids.put(wtxn, &key, &docids)?;
}
}
Ok(())
}
fn merge_hashmaps<K, V, S, F>(mut a: HashMap<K, V, S>, mut b: HashMap<K, V, S>, mut merge: F) -> HashMap<K, V, S>
where
K: Hash + Eq,
S: BuildHasher,
F: FnMut(&K, &mut V, V)
{
for (k, v) in a.iter_mut() {
if let Some(vb) = b.remove(k) {
(merge)(k, v, vb)
}
}
a.extend(b);
a
}
fn index_csv<R: io::Read>(
wtxn: &mut heed::RwTxn,
mut rdr: csv::Reader<R>,
index: &Index,
num_threads: usize,
thread_index: usize,
) -> anyhow::Result<()>
{
eprintln!("Indexing into LMDB...");
let mut words_cache = ArcCache::<_, (RoaringBitmap, FastMap4<_, RoaringBitmap>)>::new(100_000);
// Write the headers into a Vec of bytes.
let headers = rdr.headers()?;
let mut writer = csv::WriterBuilder::new().has_headers(false).from_writer(Vec::new());
writer.write_byte_record(headers.as_byte_record())?;
let headers = writer.into_inner()?;
let mut document = csv::StringRecord::new();
while rdr.read_record(&mut document)? {
let document_id = ID_GENERATOR.fetch_add(1, Ordering::SeqCst);
let document_id = DocumentId::try_from(document_id).context("Generated id is too big")?;
for (attr, content) in document.iter().enumerate().take(MAX_ATTRIBUTES) {
for (pos, word) in simple_alphanumeric_tokens(&content).enumerate().take(MAX_POSITION) {
if !word.is_empty() && word.len() < 500 { // LMDB limits
let word = word.to_lowercase(); // TODO cow_to_lowercase
let position = (attr * 1000 + pos) as u32;
// If this indexing process is not concerned by this word, then ignore it.
if fxhash::hash32(&word) as usize % num_threads != thread_index { continue; }
match words_cache.get_mut(&word) {
(Some(entry), evicted) => {
let (ids, positions) = entry;
ids.insert(position);
positions.entry(position).or_default().insert(document_id);
put_evicted_into_heed(wtxn, index, evicted)?;
},
(None, _evicted) => {
let mut key = word.as_bytes().to_vec();
key.extend_from_slice(&position.to_be_bytes());
let mut words_positions = index.word_positions.get(wtxn, &word)?.unwrap_or_default();
let mut words_position_docids = index.word_position_docids.get(wtxn, &key)?.unwrap_or_default();
words_positions.insert(position);
words_position_docids.insert(document_id);
let mut map = FastMap4::default();
map.insert(position, words_position_docids);
let value = (words_positions, map);
let evicted = words_cache.insert(word.clone(), value, |(pa, pda), (pb, pdb)| {
(pa | pb, merge_hashmaps(pda, pdb, |_, a, b| RoaringBitmap::union_with(a, &b)))
});
put_evicted_into_heed(wtxn, index, evicted)?;
}
}
}
}
}
// We write the document in the database.
let mut writer = csv::WriterBuilder::new().has_headers(false).from_writer(Vec::new());
writer.write_byte_record(document.as_byte_record())?;
let document = writer.into_inner()?;
index.documents.put(wtxn, &BEU32::new(document_id), &document)?;
}
put_evicted_into_heed(wtxn, index, words_cache)?;
// We store the words from the postings.
let mut new_words = BTreeSet::default();
let iter = index.word_positions.as_polymorph().iter::<_, Str, DecodeIgnore>(wtxn)?;
for result in iter {
let (word, ()) = result?;
new_words.insert(word);
}
let new_words_fst = fst::Set::from_iter(new_words)?;
index.put_fst(wtxn, &new_words_fst)?;
index.put_headers(wtxn, &headers)?;
Ok(())
}
fn compute_words_attributes_docids(wtxn: &mut heed::RwTxn, index: &Index) -> anyhow::Result<()> {
eprintln!("Computing the attributes documents ids...");
let fst = match index.fst(&wtxn)? {
Some(fst) => fst.map_data(|s| s.to_vec())?,
None => return Ok(()),
};
let mut word_attributes = HashMap::new();
let mut stream = fst.stream();
while let Some(word) = stream.next() {
word_attributes.clear();
// Loop on the word attributes and unions all the documents ids by attribute.
for result in index.word_position_docids.prefix_iter(wtxn, word)? {
let (key, docids) = result?;
let (_key_word, key_pos) = key.split_at(key.len() - 4);
let key_pos = key_pos.try_into().map(u32::from_be_bytes)?;
// If the key corresponds to the word (minus the attribute)
if key.len() == word.len() + 4 {
let attribute = key_pos / 1000;
match word_attributes.entry(attribute) {
Entry::Vacant(entry) => { entry.insert(docids); },
Entry::Occupied(mut entry) => entry.get_mut().union_with(&docids),
}
}
}
// Write this word attributes unions into LMDB.
let mut key = word.to_vec();
for (attribute, docids) in word_attributes.drain() {
key.truncate(word.len());
key.extend_from_slice(&attribute.to_be_bytes());
index.word_attribute_docids.put(wtxn, &key, &docids)?;
}
}
Ok(())
}
fn main() -> anyhow::Result<()> {
let opt = Opt::from_args();
std::fs::create_dir_all(&opt.database)?;
let env = EnvOpenOptions::new()
.map_size(100 * 1024 * 1024 * 1024) // 100 GB
.max_readers(10)
.max_dbs(10)
.open(opt.database)?;
let index = Index::new(&env)?;
let mut wtxn = env.write_txn()?;
match opt.csv_file {
Some(path) => {
let rdr = csv::Reader::from_path(path)?;
index_csv(&mut wtxn, rdr, &index, 1, 0)?;
},
None => {
let rdr = csv::Reader::from_reader(io::stdin());
index_csv(&mut wtxn, rdr, &index, 1, 0)?;
}
};
compute_words_attributes_docids(&mut wtxn, &index)?;
let count = index.documents.len(&wtxn)?;
wtxn.commit()?;
eprintln!("Wrote {} documents into LMDB", count);
Ok(())
}