2025-02-20 16:48:18 +01:00

216 lines
8.5 KiB
Rust

use std::sync::atomic::AtomicBool;
use bstr::ByteSlice as _;
use hashbrown::HashMap;
use heed::RwTxn;
use rand::SeedableRng as _;
use time::OffsetDateTime;
use super::super::channel::*;
use crate::documents::PrimaryKey;
use crate::fields_ids_map::metadata::FieldIdMapWithMetadata;
use crate::index::IndexEmbeddingConfig;
use crate::update::settings::InnerIndexSettings;
use crate::vector::{ArroyWrapper, Embedder, EmbeddingConfigs, Embeddings};
use crate::{Error, Index, InternalError, Result};
pub fn write_to_db(
mut writer_receiver: WriterBbqueueReceiver<'_>,
finished_extraction: &AtomicBool,
index: &Index,
wtxn: &mut RwTxn<'_>,
arroy_writers: &HashMap<u8, (&str, &Embedder, ArroyWrapper, usize)>,
) -> Result<ChannelCongestion> {
// Used by by the ArroySetVector to copy the embedding into an
// aligned memory area, required by arroy to accept a new vector.
let mut aligned_embedding = Vec::new();
let span = tracing::trace_span!(target: "indexing::write_db", "all");
let _entered = span.enter();
let span = tracing::trace_span!(target: "indexing::write_db", "post_merge");
let mut _entered_post_merge = None;
while let Some(action) = writer_receiver.recv_action() {
if _entered_post_merge.is_none()
&& finished_extraction.load(std::sync::atomic::Ordering::Relaxed)
{
_entered_post_merge = Some(span.enter());
}
match action {
ReceiverAction::WakeUp => (),
ReceiverAction::LargeEntry(LargeEntry { database, key, value }) => {
let database_name = database.database_name();
let database = database.database(index);
if let Err(error) = database.put(wtxn, &key, &value) {
return Err(Error::InternalError(InternalError::StorePut {
database_name,
key: bstr::BString::from(&key[..]),
value_length: value.len(),
error,
}));
}
}
ReceiverAction::LargeVectors(large_vectors) => {
let LargeVectors { docid, embedder_id, .. } = large_vectors;
let (_, _, writer, dimensions) =
arroy_writers.get(&embedder_id).expect("requested a missing embedder");
let mut embeddings = Embeddings::new(*dimensions);
for embedding in large_vectors.read_embeddings(*dimensions) {
embeddings.push(embedding.to_vec()).unwrap();
}
writer.del_items(wtxn, *dimensions, docid)?;
writer.add_items(wtxn, docid, &embeddings)?;
}
}
// Every time the is a message in the channel we search
// for new entries in the BBQueue buffers.
write_from_bbqueue(
&mut writer_receiver,
index,
wtxn,
arroy_writers,
&mut aligned_embedding,
)?;
}
write_from_bbqueue(&mut writer_receiver, index, wtxn, arroy_writers, &mut aligned_embedding)?;
Ok(ChannelCongestion {
attempts: writer_receiver.sent_messages_attempts(),
blocking_attempts: writer_receiver.blocking_sent_messages_attempts(),
})
}
/// Stats exposing the congestion of a channel.
#[derive(Debug, Copy, Clone)]
pub struct ChannelCongestion {
/// Number of attempts to send a message into the bbqueue buffer.
pub attempts: usize,
/// Number of blocking attempts which require a retry.
pub blocking_attempts: usize,
}
impl ChannelCongestion {
pub fn congestion_ratio(&self) -> f32 {
self.blocking_attempts as f32 / self.attempts as f32
}
}
#[tracing::instrument(level = "debug", skip_all, target = "indexing::vectors")]
pub fn build_vectors<MSP>(
index: &Index,
wtxn: &mut RwTxn<'_>,
index_embeddings: Vec<IndexEmbeddingConfig>,
arroy_writers: &mut HashMap<u8, (&str, &Embedder, ArroyWrapper, usize)>,
must_stop_processing: &MSP,
) -> Result<()>
where
MSP: Fn() -> bool + Sync + Send,
{
if index_embeddings.is_empty() {
return Ok(());
}
let mut rng = rand::rngs::StdRng::seed_from_u64(42);
for (_index, (_embedder_name, _embedder, writer, dimensions)) in arroy_writers {
let dimensions = *dimensions;
writer.build_and_quantize(wtxn, &mut rng, dimensions, false, must_stop_processing)?;
}
index.put_embedding_configs(wtxn, index_embeddings)?;
Ok(())
}
pub fn update_index(
index: &Index,
wtxn: &mut RwTxn<'_>,
new_fields_ids_map: FieldIdMapWithMetadata,
new_primary_key: Option<PrimaryKey<'_>>,
embedders: EmbeddingConfigs,
field_distribution: std::collections::BTreeMap<String, u64>,
document_ids: roaring::RoaringBitmap,
) -> Result<()> {
index.put_fields_ids_map(wtxn, new_fields_ids_map.as_fields_ids_map())?;
if let Some(new_primary_key) = new_primary_key {
index.put_primary_key(wtxn, new_primary_key.name())?;
}
let mut inner_index_settings = InnerIndexSettings::from_index(index, wtxn, Some(embedders))?;
inner_index_settings.recompute_facets(wtxn, index)?;
inner_index_settings.recompute_searchables(wtxn, index)?;
index.put_field_distribution(wtxn, &field_distribution)?;
index.put_documents_ids(wtxn, &document_ids)?;
index.set_updated_at(wtxn, &OffsetDateTime::now_utc())?;
Ok(())
}
/// A function dedicated to manage all the available BBQueue frames.
///
/// It reads all the available frames, do the corresponding database operations
/// and stops when no frame are available.
pub fn write_from_bbqueue(
writer_receiver: &mut WriterBbqueueReceiver<'_>,
index: &Index,
wtxn: &mut RwTxn<'_>,
arroy_writers: &HashMap<u8, (&str, &crate::vector::Embedder, ArroyWrapper, usize)>,
aligned_embedding: &mut Vec<f32>,
) -> crate::Result<()> {
while let Some(frame_with_header) = writer_receiver.recv_frame() {
match frame_with_header.header() {
EntryHeader::DbOperation(operation) => {
let database_name = operation.database.database_name();
let database = operation.database.database(index);
let frame = frame_with_header.frame();
match operation.key_value(frame) {
(key, Some(value)) => {
if let Err(error) = database.put(wtxn, key, value) {
return Err(Error::InternalError(InternalError::StorePut {
database_name,
key: key.into(),
value_length: value.len(),
error,
}));
}
}
(key, None) => match database.delete(wtxn, key) {
Ok(false) => {
tracing::error!(
database_name,
key_bytes = ?key,
formatted_key = ?key.as_bstr(),
"Attempt to delete an unknown key"
);
}
Ok(_) => (),
Err(error) => {
return Err(Error::InternalError(InternalError::StoreDeletion {
database_name,
key: key.into(),
error,
}));
}
},
}
}
EntryHeader::ArroyDeleteVector(ArroyDeleteVector { docid }) => {
for (_index, (_name, _embedder, writer, dimensions)) in arroy_writers {
let dimensions = *dimensions;
writer.del_items(wtxn, dimensions, docid)?;
}
}
EntryHeader::ArroySetVectors(asvs) => {
let ArroySetVectors { docid, embedder_id, .. } = asvs;
let frame = frame_with_header.frame();
let (_, _, writer, dimensions) =
arroy_writers.get(&embedder_id).expect("requested a missing embedder");
let mut embeddings = Embeddings::new(*dimensions);
let all_embeddings = asvs.read_all_embeddings_into_vec(frame, aligned_embedding);
embeddings.append(all_embeddings.to_vec()).unwrap();
writer.del_items(wtxn, *dimensions, docid)?;
writer.add_items(wtxn, docid, &embeddings)?;
}
}
}
Ok(())
}