MeiliSearch/meilisearch-core/src/criterion/mod.rs
2020-06-30 11:01:07 +02:00

293 lines
9.6 KiB
Rust

use std::cmp::{self, Ordering};
use std::collections::HashMap;
use std::ops::Range;
use compact_arena::SmallArena;
use sdset::SetBuf;
use slice_group_by::GroupBy;
use crate::bucket_sort::{SimpleMatch, PostingsListView};
use crate::database::MainT;
use crate::query_tree::QueryId;
use crate::{store, RawDocument, MResult};
mod typo;
mod words;
mod proximity;
mod attribute;
mod words_position;
mod exactness;
mod document_id;
mod sort_by_attr;
pub use self::typo::Typo;
pub use self::words::Words;
pub use self::proximity::Proximity;
pub use self::attribute::Attribute;
pub use self::words_position::WordsPosition;
pub use self::exactness::Exactness;
pub use self::document_id::DocumentId;
pub use self::sort_by_attr::SortByAttr;
pub trait Criterion {
fn name(&self) -> &str;
fn prepare<'h, 'p, 'tag, 'txn, 'q, 'r>(
&self,
_ctx: ContextMut<'h, 'p, 'tag, 'txn, 'q>,
_documents: &mut [RawDocument<'r, 'tag>],
) -> MResult<()>
{
Ok(())
}
fn evaluate<'p, 'tag, 'txn, 'q, 'r>(
&self,
ctx: &Context<'p, 'tag, 'txn, 'q>,
lhs: &RawDocument<'r, 'tag>,
rhs: &RawDocument<'r, 'tag>,
) -> Ordering;
#[inline]
fn eq<'p, 'tag, 'txn, 'q, 'r>(
&self,
ctx: &Context<'p, 'tag, 'txn, 'q>,
lhs: &RawDocument<'r, 'tag>,
rhs: &RawDocument<'r, 'tag>,
) -> bool
{
self.evaluate(ctx, lhs, rhs) == Ordering::Equal
}
}
pub struct ContextMut<'h, 'p, 'tag, 'txn, 'q> {
pub reader: &'h heed::RoTxn<MainT>,
pub postings_lists: &'p mut SmallArena<'tag, PostingsListView<'txn>>,
pub query_mapping: &'q HashMap<QueryId, Range<usize>>,
pub documents_fields_counts_store: store::DocumentsFieldsCounts,
}
pub struct Context<'p, 'tag, 'txn, 'q> {
pub postings_lists: &'p SmallArena<'tag, PostingsListView<'txn>>,
pub query_mapping: &'q HashMap<QueryId, Range<usize>>,
}
#[derive(Default)]
pub struct CriteriaBuilder<'a> {
inner: Vec<Box<dyn Criterion + 'a>>,
}
impl<'a> CriteriaBuilder<'a> {
pub fn new() -> CriteriaBuilder<'a> {
CriteriaBuilder { inner: Vec::new() }
}
pub fn with_capacity(capacity: usize) -> CriteriaBuilder<'a> {
CriteriaBuilder {
inner: Vec::with_capacity(capacity),
}
}
pub fn reserve(&mut self, additional: usize) {
self.inner.reserve(additional)
}
#[allow(clippy::should_implement_trait)]
pub fn add<C: 'a>(mut self, criterion: C) -> CriteriaBuilder<'a>
where
C: Criterion,
{
self.push(criterion);
self
}
pub fn push<C: 'a>(&mut self, criterion: C)
where
C: Criterion,
{
self.inner.push(Box::new(criterion));
}
pub fn build(self) -> Criteria<'a> {
Criteria { inner: self.inner }
}
}
pub struct Criteria<'a> {
inner: Vec<Box<dyn Criterion + 'a>>,
}
impl<'a> Default for Criteria<'a> {
fn default() -> Self {
CriteriaBuilder::with_capacity(7)
.add(Typo)
.add(Words)
.add(Proximity)
.add(Attribute)
.add(WordsPosition)
.add(Exactness)
.add(DocumentId)
.build()
}
}
impl<'a> AsRef<[Box<dyn Criterion + 'a>]> for Criteria<'a> {
fn as_ref(&self) -> &[Box<dyn Criterion + 'a>] {
&self.inner
}
}
fn prepare_query_distances<'a, 'tag, 'txn>(
documents: &mut [RawDocument<'a, 'tag>],
query_mapping: &HashMap<QueryId, Range<usize>>,
postings_lists: &SmallArena<'tag, PostingsListView<'txn>>,
) {
for document in documents {
if !document.processed_distances.is_empty() { continue }
let mut processed = Vec::new();
for m in document.bare_matches.iter() {
if postings_lists[m.postings_list].is_empty() { continue }
let range = query_mapping[&(m.query_index as usize)].clone();
let new_len = cmp::max(range.end as usize, processed.len());
processed.resize(new_len, None);
for index in range {
let index = index as usize;
processed[index] = match processed[index] {
Some(distance) if distance > m.distance => Some(m.distance),
Some(distance) => Some(distance),
None => Some(m.distance),
};
}
}
document.processed_distances = processed;
}
}
fn prepare_bare_matches<'a, 'tag, 'txn>(
documents: &mut [RawDocument<'a, 'tag>],
postings_lists: &mut SmallArena<'tag, PostingsListView<'txn>>,
query_mapping: &HashMap<QueryId, Range<usize>>,
) {
for document in documents {
if !document.processed_matches.is_empty() { continue }
let mut processed = Vec::new();
for m in document.bare_matches.iter() {
let postings_list = &postings_lists[m.postings_list];
processed.reserve(postings_list.len());
for di in postings_list.as_ref() {
let simple_match = SimpleMatch {
query_index: m.query_index,
distance: m.distance,
attribute: di.attribute,
word_index: di.word_index,
is_exact: m.is_exact,
};
processed.push(simple_match);
}
}
let processed = multiword_rewrite_matches(&mut processed, query_mapping);
document.processed_matches = processed.into_vec();
}
}
fn multiword_rewrite_matches(
matches: &mut [SimpleMatch],
query_mapping: &HashMap<QueryId, Range<usize>>,
) -> SetBuf<SimpleMatch>
{
matches.sort_unstable_by_key(|m| (m.attribute, m.word_index));
let mut padded_matches = Vec::with_capacity(matches.len());
// let before_padding = Instant::now();
// for each attribute of each document
for same_document_attribute in matches.linear_group_by_key(|m| m.attribute) {
// padding will only be applied
// to word indices in the same attribute
let mut padding = 0;
let mut iter = same_document_attribute.linear_group_by_key(|m| m.word_index);
// for each match at the same position
// in this document attribute
while let Some(same_word_index) = iter.next() {
// find the biggest padding
let mut biggest = 0;
for match_ in same_word_index {
let mut replacement = query_mapping[&(match_.query_index as usize)].clone();
let replacement_len = replacement.len();
let nexts = iter.remainder().linear_group_by_key(|m| m.word_index);
if let Some(query_index) = replacement.next() {
let word_index = match_.word_index + padding as u16;
let match_ = SimpleMatch { query_index, word_index, ..*match_ };
padded_matches.push(match_);
}
let mut found = false;
// look ahead and if there already is a match
// corresponding to this padding word, abort the padding
'padding: for (x, next_group) in nexts.enumerate() {
for (i, query_index) in replacement.clone().enumerate().skip(x) {
let word_index = match_.word_index + padding as u16 + (i + 1) as u16;
let padmatch = SimpleMatch { query_index, word_index, ..*match_ };
for nmatch_ in next_group {
let mut rep = query_mapping[&(nmatch_.query_index as usize)].clone();
let query_index = rep.next().unwrap();
if query_index == padmatch.query_index {
if !found {
// if we find a corresponding padding for the
// first time we must push preceding paddings
for (i, query_index) in replacement.clone().enumerate().take(i) {
let word_index = match_.word_index + padding as u16 + (i + 1) as u16;
let match_ = SimpleMatch { query_index, word_index, ..*match_ };
padded_matches.push(match_);
biggest = biggest.max(i + 1);
}
}
padded_matches.push(padmatch);
found = true;
continue 'padding;
}
}
}
// if we do not find a corresponding padding in the
// next groups so stop here and pad what was found
break;
}
if !found {
// if no padding was found in the following matches
// we must insert the entire padding
for (i, query_index) in replacement.enumerate() {
let word_index = match_.word_index + padding as u16 + (i + 1) as u16;
let match_ = SimpleMatch { query_index, word_index, ..*match_ };
padded_matches.push(match_);
}
biggest = biggest.max(replacement_len - 1);
}
}
padding += biggest;
}
}
// debug!("padding matches took {:.02?}", before_padding.elapsed());
// With this check we can see that the loop above takes something
// like 43% of the search time even when no rewrite is needed.
// assert_eq!(before_matches, padded_matches);
SetBuf::from_dirty(padded_matches)
}