MeiliSearch/meilisearch/tests/vector/rest.rs
2024-07-01 12:05:02 +02:00

339 lines
10 KiB
Rust

use crate::vector::GetAllDocumentsOptions;
use meili_snap::{json_string, snapshot};
use std::sync::atomic::{AtomicUsize, Ordering};
use wiremock::matchers::{method, path};
use wiremock::{Mock, MockServer, Request, ResponseTemplate};
use crate::common::{Server, Value};
use crate::json;
static COUNTER: AtomicUsize = AtomicUsize::new(0);
async fn create_mock() -> (MockServer, Value) {
let mock_server = MockServer::start().await;
Mock::given(method("POST"))
.and(path("/"))
.respond_with(|_req: &Request| {
let cpt = COUNTER.fetch_add(1, Ordering::Relaxed);
ResponseTemplate::new(200).set_body_json(json!({ "data": vec![cpt; 3] }))
})
.mount(&mock_server)
.await;
let url = mock_server.uri();
let embedder_settings = json!({
"source": "rest",
"url": url,
"dimensions": 3,
"query": {},
});
(mock_server, embedder_settings)
}
#[actix_rt::test]
async fn dummy_testing_the_mock() {
let (mock, _setting) = create_mock().await;
let body = reqwest::get(&mock.uri()).await.unwrap().text().await.unwrap();
snapshot!(body, @"[0,0,0]");
let body = reqwest::get(&mock.uri()).await.unwrap().text().await.unwrap();
snapshot!(body, @"[1,1,1]");
let body = reqwest::get(&mock.uri()).await.unwrap().text().await.unwrap();
snapshot!(body, @"[2,2,2]");
let body = reqwest::get(&mock.uri()).await.unwrap().text().await.unwrap();
snapshot!(body, @"[3,3,3]");
let body = reqwest::get(&mock.uri()).await.unwrap().text().await.unwrap();
snapshot!(body, @"[4,4,4]");
}
async fn get_server_vector() -> Server {
let server = Server::new().await;
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
server
}
#[actix_rt::test]
async fn bad_settings() {
let (mock, _setting) = create_mock().await;
let server = get_server_vector().await;
let index = server.index("doggo");
let (response, code) = index
.update_settings(json!({
"embedders": {
"rest": json!({ "source": "rest" }),
},
}))
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "`.embedders.rest`: Missing field `url` (note: this field is mandatory for source rest)",
"code": "invalid_settings_embedders",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_settings_embedders"
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"rest": json!({ "source": "rest", "url": "kefir" }),
},
}))
.await;
snapshot!(code, @"400 Bad Request");
snapshot!(response, @r###"
{
"message": "`.embedders.rest.url`: could not parse `kefir`: relative URL without a base",
"code": "invalid_settings_embedders",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_settings_embedders"
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"rest": json!({ "source": "rest", "url": mock.uri() }),
},
}))
.await;
snapshot!(code, @"202 Accepted");
let task = server.wait_task(response.uid()).await;
snapshot!(task, @r###"
{
"uid": 0,
"indexUid": "doggo",
"status": "failed",
"type": "settingsUpdate",
"canceledBy": null,
"details": {
"embedders": {
"rest": {
"source": "rest",
"url": "[url]"
}
}
},
"error": {
"message": "internal: Error while generating embeddings: runtime error: could not determine model dimensions: test embedding failed with user error: was expected 'input' to be an object in query 'null'.",
"code": "internal",
"type": "internal",
"link": "https://docs.meilisearch.com/errors#internal"
},
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"rest": json!({ "source": "rest", "url": mock.uri(), "query": {} }),
},
}))
.await;
snapshot!(code, @"202 Accepted");
let task = server.wait_task(response.uid()).await;
snapshot!(task, @r###"
{
"uid": 1,
"indexUid": "doggo",
"status": "failed",
"type": "settingsUpdate",
"canceledBy": null,
"details": {
"embedders": {
"rest": {
"source": "rest",
"url": "[url]",
"query": {}
}
}
},
"error": {
"message": "internal: Error while generating embeddings: runtime error: could not determine model dimensions: test embedding failed with error: component `embedding` not found in path `embedding` in response: `{\n \"data\": [\n 0,\n 0,\n 0\n ]\n}`.",
"code": "internal",
"type": "internal",
"link": "https://docs.meilisearch.com/errors#internal"
},
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"rest": json!({ "source": "rest", "url": mock.uri(), "query": {}, "pathToEmbeddings": ["data"] }),
},
}))
.await;
snapshot!(code, @"202 Accepted");
let task = server.wait_task(response.uid()).await;
snapshot!(task, @r###"
{
"uid": 2,
"indexUid": "doggo",
"status": "failed",
"type": "settingsUpdate",
"canceledBy": null,
"details": {
"embedders": {
"rest": {
"source": "rest",
"url": "[url]",
"query": {},
"pathToEmbeddings": [
"data"
]
}
}
},
"error": {
"message": "internal: Error while generating embeddings: runtime error: could not determine model dimensions: test embedding failed with error: component `embedding` not found in path `embedding` in response: `{\n \"data\": [\n 1,\n 1,\n 1\n ]\n}`.",
"code": "internal",
"type": "internal",
"link": "https://docs.meilisearch.com/errors#internal"
},
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"rest": json!({ "source": "rest", "url": mock.uri(), "query": {}, "embeddingObject": ["data"] }),
},
}))
.await;
snapshot!(code, @"202 Accepted");
let task = server.wait_task(response.uid()).await;
snapshot!(task, @r###"
{
"uid": 3,
"indexUid": "doggo",
"status": "failed",
"type": "settingsUpdate",
"canceledBy": null,
"details": {
"embedders": {
"rest": {
"source": "rest",
"url": "[url]",
"query": {},
"embeddingObject": [
"data"
]
}
}
},
"error": {
"message": "internal: Error while generating embeddings: runtime error: could not determine model dimensions: test embedding failed with error: component `data` not found in path `data` in response: `{\n \"data\": [\n 2,\n 2,\n 2\n ]\n}`.",
"code": "internal",
"type": "internal",
"link": "https://docs.meilisearch.com/errors#internal"
},
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
// Validate an embedder with a bad dimension of 2 instead of 3
let (response, code) = index
.update_settings(json!({
"embedders": {
"rest": json!({ "source": "rest", "url": mock.uri(), "query": {}, "pathToEmbeddings": [], "embeddingObject": ["data"], "dimensions": 2 }),
},
}))
.await;
snapshot!(code, @"202 Accepted");
let task = server.wait_task(response.uid()).await;
snapshot!(task["status"], @r###""succeeded""###);
let (response, code) = index.add_documents(json!( { "id": 1, "name": "kefir" }), None).await;
snapshot!(code, @"202 Accepted");
let task = server.wait_task(response.uid()).await;
snapshot!(task, @r###"
{
"uid": 5,
"indexUid": "doggo",
"status": "failed",
"type": "documentAdditionOrUpdate",
"canceledBy": null,
"details": {
"receivedDocuments": 1,
"indexedDocuments": 0
},
"error": {
"message": "An unexpected crash occurred when processing the task.",
"code": "internal",
"type": "internal",
"link": "https://docs.meilisearch.com/errors#internal"
},
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
}
#[actix_rt::test]
async fn add_vector_and_user_provided() {
let (_mock, setting) = create_mock().await;
let server = get_server_vector().await;
let index = server.index("doggo");
let (response, code) = index
.update_settings(json!({
"embedders": {
"rest": setting,
},
}))
.await;
snapshot!(code, @"202 Accepted");
let task = server.wait_task(response.uid()).await;
snapshot!(task["status"], @r###""succeeded""###);
let documents = json!([
{"id": 0, "name": "kefir"},
{"id": 1, "name": "echo", "_vectors": { "rest": [1, 1, 1] }},
{"id": 2, "name": "intel"},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
let task = index.wait_task(value.uid()).await;
snapshot!(task, @"");
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [],
"offset": 0,
"limit": 20,
"total": 0
}
"###);
}