Commit Graph

271 Commits

Author SHA1 Message Date
ManyTheFish
5391e3842c replace optional_words by term_matching_strategy 2022-08-22 17:47:19 +02:00
ManyTheFish
9640976c79 Rename TermMatchingPolicies 2022-08-18 17:36:08 +02:00
Irevoire
e96b852107
bump heed 2022-08-17 17:05:50 +02:00
bors[bot]
087da5621a
Merge #587
587: Word prefix pair proximity docids indexation refactor r=Kerollmops a=loiclec

# Pull Request

## What does this PR do?
Refactor the code of `WordPrefixPairProximityDocIds` to make it much faster, fix a bug, and add a unit test.

## Why is it faster?
Because we avoid using a sorter to insert the (`word1`, `prefix`, `proximity`) keys and their associated bitmaps, and thus we don't have to sort a potentially very big set of data. I have also added a couple of other optimisations: 

1. reusing allocations
2. using a prefix trie instead of an array of prefixes to get all the prefixes of a word
3. inserting directly into the database instead of putting the data in an intermediary grenad when possible. Also avoid checking for pre-existing values in the database when we know for certain that they do not exist. 

## What bug was fixed?
When reindexing, the `new_prefix_fst_words` prefixes may look like:
```
["ant",  "axo", "bor"]
```
which we group by first letter:
```
[["ant", "axo"], ["bor"]]
```

Later in the code, if we have the word2 "axolotl", we try to find which subarray of prefixes contains its prefixes. This check is done with `word2.starts_with(subarray_prefixes[0])`, but `"axolotl".starts_with("ant")` is false, and thus we wrongly think that there are no prefixes in `new_prefix_fst_words` that are prefixes of `axolotl`.

## StrStrU8Codec
I had to change the encoding of `StrStrU8Codec` to make the second string null-terminated as well. I don't think this should be a problem, but I may have missed some nuances about the impacts of this change.

## Requests when reviewing this PR
I have explained what the code does in the module documentation of `word_pair_proximity_prefix_docids`. It would be nice if someone could read it and give their opinion on whether it is a clear explanation or not. 

I also have a couple questions regarding the code itself:
- Should we clean up and factor out the `PrefixTrieNode` code to try and make broader use of it outside this module? For now, the prefixes undergo a few transformations: from FST, to array, to prefix trie. It seems like it could be simplified.
- I wrote a function called `write_into_lmdb_database_without_merging`. (1) Are we okay with such a function existing? (2) Should it be in `grenad_helpers` instead?

## Benchmark Results

We reduce the time it takes to index about 8% in most cases, but it varies between -3% and -20%. 

```
group                                                                     indexing_main_ce90fc62                  indexing_word-prefix-pair-proximity-docids-refactor_cbad2023
-----                                                                     ----------------------                  ------------------------------------------------------------
indexing/-geo-delete-facetedNumber-facetedGeo-searchable-                 1.00  1893.0±233.03µs        ? ?/sec    1.01  1921.2±260.79µs        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-           1.05      9.4±3.51ms        ? ?/sec     1.00      9.0±2.14ms        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-nested-    1.22    18.3±11.42ms        ? ?/sec     1.00     15.0±5.79ms        ? ?/sec
indexing/-songs-delete-facetedString-facetedNumber-searchable-            1.00     41.4±4.20ms        ? ?/sec     1.28    53.0±13.97ms        ? ?/sec
indexing/-wiki-delete-searchable-                                         1.00   285.6±18.12ms        ? ?/sec     1.03   293.1±16.09ms        ? ?/sec
indexing/Indexing geo_point                                               1.03      60.8±0.45s        ? ?/sec     1.00      58.8±0.68s        ? ?/sec
indexing/Indexing movies in three batches                                 1.14      16.5±0.30s        ? ?/sec     1.00      14.5±0.24s        ? ?/sec
indexing/Indexing movies with default settings                            1.11      13.7±0.07s        ? ?/sec     1.00      12.3±0.28s        ? ?/sec
indexing/Indexing nested movies with default settings                     1.10      10.6±0.11s        ? ?/sec     1.00       9.6±0.15s        ? ?/sec
indexing/Indexing nested movies without any facets                        1.11       9.4±0.15s        ? ?/sec     1.00       8.5±0.10s        ? ?/sec
indexing/Indexing songs in three batches with default settings            1.18      66.2±0.39s        ? ?/sec     1.00      56.0±0.67s        ? ?/sec
indexing/Indexing songs with default settings                             1.07      58.7±1.26s        ? ?/sec     1.00      54.7±1.71s        ? ?/sec
indexing/Indexing songs without any facets                                1.08      53.1±0.88s        ? ?/sec     1.00      49.3±1.43s        ? ?/sec
indexing/Indexing songs without faceted numbers                           1.08      57.7±1.33s        ? ?/sec     1.00      53.3±0.98s        ? ?/sec
indexing/Indexing wiki                                                    1.06   1051.1±21.46s        ? ?/sec     1.00    989.6±24.55s        ? ?/sec
indexing/Indexing wiki in three batches                                   1.20    1184.8±8.93s        ? ?/sec     1.00     989.7±7.06s        ? ?/sec
indexing/Reindexing geo_point                                             1.04      67.5±0.75s        ? ?/sec     1.00      64.9±0.32s        ? ?/sec
indexing/Reindexing movies with default settings                          1.12      13.9±0.17s        ? ?/sec     1.00      12.4±0.13s        ? ?/sec
indexing/Reindexing songs with default settings                           1.05      60.6±0.84s        ? ?/sec     1.00      57.5±0.99s        ? ?/sec
indexing/Reindexing wiki                                                  1.07   1725.0±17.92s        ? ?/sec     1.00    1611.4±9.90s        ? ?/sec
```

Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
2022-08-17 14:06:12 +00:00
ManyTheFish
e9e2349ce6 Fix typo in comment 2022-08-17 15:09:48 +02:00
ManyTheFish
2668f841d1 Fix update indexing 2022-08-17 15:03:37 +02:00
ManyTheFish
7384650d85 Update test to showcase the bug 2022-08-17 15:03:08 +02:00
Loïc Lecrenier
306593144d Refactor word prefix pair proximity indexation 2022-08-17 11:59:00 +02:00
Loïc Lecrenier
58cb1c1bda Simplify unit tests in facet/filter.rs 2022-08-04 12:03:44 +02:00
Loïc Lecrenier
acff17fb88 Simplify indexing tests 2022-08-04 12:03:13 +02:00
bors[bot]
21284cf235
Merge #556
556: Add EXISTS filter r=loiclec a=loiclec

## What does this PR do?

Fixes issue [#2484](https://github.com/meilisearch/meilisearch/issues/2484) in the meilisearch repo.

It creates a `field EXISTS` filter which selects all documents containing the `field` key. 
For example, with the following documents:
```json
[{
	"id": 0,
	"colour": []
},
{
	"id": 1,
	"colour": ["blue", "green"]
},
{
	"id": 2,
	"colour": 145238
},
{
	"id": 3,
	"colour": null
},
{
	"id": 4,
	"colour": {
		"green": []
	}
},
{
	"id": 5,
	"colour": {}
},
{
	"id": 6
}]
```
Then the filter `colour EXISTS` selects the ids `[0, 1, 2, 3, 4, 5]`. The filter `colour NOT EXISTS` selects `[6]`.

## Details
There is a new database named `facet-id-exists-docids`. Its keys are field ids and its values are bitmaps of all the document ids where the corresponding field exists.

To create this database, the indexing part of milli had to be adapted. The implementation there is basically copy/pasted from the code handling the `facet-id-f64-docids` database, with appropriate modifications in place.

There was an issue involving the flattening of documents during (re)indexing. Previously, the following JSON:
```json
{
    "id": 0,
    "colour": [],
    "size": {}
}
```
would be flattened to:
```json
{
    "id": 0
}
```
prior to being given to the extraction pipeline.

This transformation would lose the information that is needed to populate the `facet-id-exists-docids` database. Therefore, I have also changed the implementation of the `flatten-serde-json` crate. Now, as it traverses the Json, it keeps track of which key was encountered. Then, at the end, if a previously encountered key is not present in the flattened object, it adds that key to the object with an empty array as value. For example:
```json
{
    "id": 0,
    "colour": {
        "green": [],
        "blue": 1
    },
    "size": {}
} 
```
becomes
```json
{
    "id": 0,
    "colour": [],
    "colour.green": [],
    "colour.blue": 1,
    "size": []
} 
```


Co-authored-by: Kerollmops <clement@meilisearch.com>
2022-08-04 09:46:06 +00:00
bors[bot]
50f6524ff2
Merge #579
579: Stop reindexing already indexed documents r=ManyTheFish a=irevoire

```
 % ./compare.sh indexing_stop-reindexing-unchanged-documents_cb5a1669.json indexing_main_eeba1960.json
group                                                                     indexing_main_eeba1960                 indexing_stop-reindexing-unchanged-documents_cb5a1669
-----                                                                     ----------------------                 -----------------------------------------------------
indexing/-geo-delete-facetedNumber-facetedGeo-searchable-                 1.03      2.0±0.22ms        ? ?/sec    1.00  1955.4±336.24µs        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-           1.08     11.0±2.93ms        ? ?/sec    1.00     10.2±4.04ms        ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-nested-    1.00     15.1±3.89ms        ? ?/sec    1.14     17.1±5.18ms        ? ?/sec
indexing/-songs-delete-facetedString-facetedNumber-searchable-            1.26    59.2±12.01ms        ? ?/sec    1.00     47.1±8.52ms        ? ?/sec
indexing/-wiki-delete-searchable-                                         1.08   316.6±31.53ms        ? ?/sec    1.00   293.6±17.00ms        ? ?/sec
indexing/Indexing geo_point                                               1.01      60.9±0.31s        ? ?/sec    1.00      60.6±0.36s        ? ?/sec
indexing/Indexing movies in three batches                                 1.04      20.0±0.30s        ? ?/sec    1.00      19.2±0.25s        ? ?/sec
indexing/Indexing movies with default settings                            1.02      19.1±0.18s        ? ?/sec    1.00      18.7±0.24s        ? ?/sec
indexing/Indexing nested movies with default settings                     1.02      26.2±0.29s        ? ?/sec    1.00      25.9±0.22s        ? ?/sec
indexing/Indexing nested movies without any facets                        1.02      25.3±0.32s        ? ?/sec    1.00      24.7±0.26s        ? ?/sec
indexing/Indexing songs in three batches with default settings            1.00      66.7±0.41s        ? ?/sec    1.01      67.1±0.86s        ? ?/sec
indexing/Indexing songs with default settings                             1.00      58.3±0.90s        ? ?/sec    1.01      58.8±1.32s        ? ?/sec
indexing/Indexing songs without any facets                                1.00      54.5±1.43s        ? ?/sec    1.01      55.2±1.29s        ? ?/sec
indexing/Indexing songs without faceted numbers                           1.00      57.9±1.20s        ? ?/sec    1.01      58.4±0.93s        ? ?/sec
indexing/Indexing wiki                                                    1.00   1052.0±10.95s        ? ?/sec    1.02   1069.4±20.38s        ? ?/sec
indexing/Indexing wiki in three batches                                   1.00    1193.1±8.83s        ? ?/sec    1.00    1189.5±9.40s        ? ?/sec
indexing/Reindexing geo_point                                             3.22      67.5±0.73s        ? ?/sec    1.00      21.0±0.16s        ? ?/sec
indexing/Reindexing movies with default settings                          3.75      19.4±0.28s        ? ?/sec    1.00       5.2±0.05s        ? ?/sec
indexing/Reindexing songs with default settings                           8.90      61.4±0.91s        ? ?/sec    1.00       6.9±0.07s        ? ?/sec
indexing/Reindexing wiki                                                  1.00   1748.2±35.68s        ? ?/sec    1.00   1750.5±18.53s        ? ?/sec
```

tldr: We do not lose any performance on the normal indexing benchmark, but we get between 3 and 8 times faster on the reindexing benchmarks 👍 

Co-authored-by: Tamo <tamo@meilisearch.com>
2022-08-04 08:10:37 +00:00
ManyTheFish
d6f9a60a32 fix: Remove whitespace trimming during document id validation
fix #592
2022-08-03 11:38:40 +02:00
Tamo
7fc35c5586
remove the useless prints 2022-08-02 10:31:22 +02:00
Tamo
f156d7dd3b
Stop reindexing already indexed documents 2022-08-02 10:31:20 +02:00
Loïc Lecrenier
07003704a8 Merge branch 'filter/field-exist' 2022-07-21 14:51:41 +02:00
Loïc Lecrenier
1506683705 Avoid using too much memory when indexing facet-exists-docids 2022-07-19 14:42:35 +02:00
Loïc Lecrenier
aed8c69bcb Refactor indexation of the "facet-id-exists-docids" database
The idea is to directly create a sorted and merged list of bitmaps
in the form of a BTreeMap<FieldId, RoaringBitmap> instead of creating
a grenad::Reader where the keys are field_id and the values are docids.

Then we send that BTreeMap to the thing that handles TypedChunks, which
inserts its content into the database.
2022-07-19 10:07:33 +02:00
Loïc Lecrenier
1eb1e73bb3 Add integration tests for the EXISTS filter 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
80b962b4f4 Run cargo fmt 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
c17d616250 Refactor index_documents_check_exists_database tests 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
30bd4db0fc Simplify indexing task for facet_exists_docids database 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
392472f4bb Apply suggestions from code review
Co-authored-by: Tamo <tamo@meilisearch.com>
2022-07-19 10:07:33 +02:00
Loïc Lecrenier
453d593ce8 Add a database containing the docids where each field exists 2022-07-19 10:07:33 +02:00
Loïc Lecrenier
fc9f3f31e7 Change DocumentsBatchReader to access cursor and index at same time
Otherwise it is not possible to iterate over all documents while
using the fields index at the same time.
2022-07-18 16:08:14 +02:00
Loïc Lecrenier
ab1571cdec Simplify Transform::read_documents, enabled by enriched documents reader 2022-07-18 12:45:47 +02:00
Kerollmops
448114cc1c
Fix the benchmarks with the new indexation API 2022-07-12 15:22:09 +02:00
Kerollmops
25e768f31c
Fix another issue with the nested primary key selector 2022-07-12 15:14:07 +02:00
Kerollmops
192793ee38
Add some tests to check for the nested documents ids 2022-07-12 15:14:07 +02:00
Kerollmops
dc61105554
Fix the nested document id fetching function 2022-07-12 15:14:06 +02:00
Kerollmops
2eec290424
Check the validity of the latitute and longitude numbers 2022-07-12 15:14:06 +02:00
Kerollmops
5d149d631f
Remove tests for a function that no more exists 2022-07-12 15:14:06 +02:00
Kerollmops
0bbcc7b180
Expose the DocumentId struct to be sure to inject the generated ids 2022-07-12 15:14:06 +02:00
Kerollmops
d1a4da9812
Generate a real UUIDv4 when ids are auto-generated 2022-07-12 15:14:06 +02:00
Kerollmops
c8ebf0de47
Rename the validate function as an enriching function 2022-07-12 15:14:06 +02:00
Kerollmops
905af2a2e9
Use the primary key and external id in the transform 2022-07-12 15:14:05 +02:00
Kerollmops
742543091e
Constify the default primary key name 2022-07-12 14:55:52 +02:00
Kerollmops
5f1bfb73ee
Extract the primary key name and make it accessible 2022-07-12 14:55:52 +02:00
Kerollmops
6a0a0ae94f
Make the Transform read from an EnrichedDocumentsBatchReader 2022-07-12 14:55:52 +02:00
Kerollmops
8ebf5eed0d
Make the nested primary key work 2022-07-12 14:55:52 +02:00
Kerollmops
19eb3b4708
Make sur that we do not accept floats as documents ids 2022-07-12 14:55:52 +02:00
Kerollmops
2ceeb51c37
Support the auto-generated ids when validating documents 2022-07-12 14:55:51 +02:00
Kerollmops
399eec5c01
Fix the indexation tests 2022-07-12 14:55:51 +02:00
Kerollmops
fcfc4caf8c
Move the Object type in the lib.rs file and use it everywhere 2022-07-12 14:55:51 +02:00
Kerollmops
0146175fe6
Introduce the validate_documents_batch function 2022-07-12 14:55:51 +02:00
Kerollmops
bdc4263883
Introduce the validate_documents_batch function 2022-07-12 14:55:51 +02:00
Kerollmops
e8297ad27e
Fix the tests for the new DocumentsBatchBuilder/Reader 2022-07-12 14:52:56 +02:00
bors[bot]
ebddfdb9a3
Merge #578
578: Bump uuid to 1.1.2 r=ManyTheFish a=Kerollmops

Just to [align the version with Meilisearch](https://github.com/meilisearch/meilisearch/pull/2584).

Co-authored-by: Kerollmops <clement@meilisearch.com>
2022-07-05 14:56:08 +00:00
Kerollmops
1bfdcfc84f
Bump uuid to 1.1.2 2022-07-05 16:23:36 +02:00
Tamo
eaf28b0628
Apply review suggestions
Co-authored-by: Clément Renault <clement@meilisearch.com>
2022-07-05 15:30:33 +02:00
Tamo
3b309f654a
Fasten the document deletion
When a document deletion occurs, instead of deleting the document we mark it as deleted
in the new “soft deleted” bitmap. It is then removed from the search, and all the other
endpoints.
2022-07-05 15:30:33 +02:00
Tamo
d0aaa7ff00
Fix wrong internal ids assignments 2022-06-07 15:49:33 +02:00
ad hoc
31776fdc3f
add failing test 2022-06-07 15:49:33 +02:00
ManyTheFish
86ac8568e6 Use Charabia in milli 2022-06-02 16:59:11 +02:00
bors[bot]
08c6d50cd1
Merge #531
531: fix the mixed dataset geosearch indexing bug r=Kerollmops a=irevoire

port #529 to main

Co-authored-by: Tamo <tamo@meilisearch.com>
2022-05-16 16:06:36 +00:00
Tamo
0af399a6d7
fix the mixed dataset geosearch indexing bug 2022-05-16 17:37:45 +02:00
Tamo
f586028f9a
fix the searchable fields bug when a field is nested
Update milli/src/index.rs

Co-authored-by: Clément Renault <clement@meilisearch.com>
2022-05-16 17:24:36 +02:00
bors[bot]
65e6aa0de2
Merge #523
523: Improve geosearch error messages r=irevoire a=irevoire

Improve the geosearch error messages (#488).
And try to parse the string as specified in https://github.com/meilisearch/meilisearch/issues/2354

Co-authored-by: Tamo <tamo@meilisearch.com>
2022-05-04 13:36:11 +00:00
Tamo
c55368ddd4
apply code suggestion
Co-authored-by: Kerollmops <kero@meilisearch.com>
2022-05-04 14:11:03 +02:00
Kerollmops
211c8763b9
Make sure that we do not generate too long keys 2022-05-03 10:03:15 +02:00
Kerollmops
7e47031bdc
Add a test for long keys in LMDB 2022-05-03 10:03:13 +02:00
Tamo
3cb1f6d0a1
improve geosearch error messages 2022-05-02 19:20:47 +02:00
Tamo
f19d2dc548
Only flatten the required fields
apply review comments

Co-authored-by: Kerollmops <kero@meilisearch.com>
2022-04-26 12:33:46 +02:00
Clément Renault
eb5830aa40
Add a test to make sure that long words are handled 2022-04-21 13:45:28 +02:00
Tamo
00f78d6b5a
Apply code suggestions
Co-authored-by: Clément Renault <clement@meilisearch.com>
2022-04-14 11:14:08 +02:00
Tamo
399fba16bb
only flatten an object if it's nested 2022-04-14 11:14:08 +02:00
Tamo
ee64f4a936
Use smartstring to store the external id in our hashmap
We need to store all the external id (primary key) in a hashmap
associated to their internal id during.
The smartstring remove heap allocation / memory usage and should
improve the cache locality.
2022-04-13 21:22:07 +02:00
Irevoire
4f3ce6d9cd
nested fields 2022-04-07 16:58:46 +02:00
ad hoc
b799f3326b
rename merge_nothing to merge_ignore_values 2022-04-05 18:44:35 +02:00
ad hoc
201fea0fda
limit extract_word_docids memory usage 2022-04-05 14:14:15 +02:00
ad hoc
b85cd4983e
remove field_id_from_position 2022-04-05 09:50:34 +02:00
ad hoc
b7694c34f5
remove println 2022-04-04 21:00:07 +02:00
ad hoc
6cabd47c32
fix typo in comment 2022-04-04 20:59:20 +02:00
ad hoc
6b2c2509b2
fix bug in exact search 2022-04-04 20:54:03 +02:00
ad hoc
e8f06f6c06
extract exact_word_prefix_docids 2022-04-04 20:54:03 +02:00
ad hoc
ba0bb29cd8
refactor WordPrefixDocids to take dbs instead of indexes 2022-04-04 20:54:02 +02:00
ad hoc
c4c6e35352
query exact_word_docids in resolve_query_tree 2022-04-04 20:54:02 +02:00
ad hoc
8d46a5b0b5
extract exact word docids 2022-04-04 20:54:02 +02:00
ad hoc
0a77be4ec0
introduce exact_word_docids db 2022-04-04 20:54:02 +02:00
ad hoc
5f9f82757d
refactor spawn_extraction_task 2022-04-04 20:54:02 +02:00
Kerollmops
d5b8b5a2f8
Replace the ugly unwraps by clean if let Somes 2022-02-28 16:31:33 +01:00
Kerollmops
8d26f3040c
Remove a useless grenad file merging 2022-02-28 16:31:33 +01:00
Clément Renault
04b1bbf932
Reintroduce appending sorted entries when possible 2022-02-24 14:50:45 +01:00
bors[bot]
25123af3b8
Merge #436
436: Speed up the word prefix databases computation time r=Kerollmops a=Kerollmops

This PR depends on the fixes done in #431 and must be merged after it.

In this PR we will bring the `WordPrefixPairProximityDocids`, `WordPrefixDocids` and, `WordPrefixPositionDocids` update structures to a new era, a better era, where computing the word prefix pair proximities costs much fewer CPU cycles, an era where this update structure can use the, previously computed, set of new word docids from the newly indexed batch of documents.

---

The `WordPrefixPairProximityDocids` is an update structure, which means that it is an object that we feed with some parameters and which modifies the LMDB database of an index when asked for. This structure specifically computes the list of word prefix pair proximities, which correspond to a list of pairs of words associated with a proximity (the distance between both words) where the second word is not a word but a prefix e.g. `s`, `se`, `a`. This word prefix pair proximity is associated with the list of documents ids which contains the pair of words and prefix at the given proximity.

The origin of the performances issue that this struct brings is related to the fact that it starts its job from the beginning, it clears the LMDB database before rewriting everything from scratch, using the other LMDB databases to achieve that. I hope you understand that this is absolutely not an optimized way of doing things.

Co-authored-by: Clément Renault <clement@meilisearch.com>
Co-authored-by: Kerollmops <clement@meilisearch.com>
2022-02-16 15:41:14 +00:00
Clément Renault
ff8d7a810d
Change the behavior of the as_cloneable_grenad by taking a ref 2022-02-16 15:40:08 +01:00
Clément Renault
f367cc2e75
Finally bump grenad to v0.4.1 2022-02-16 15:28:48 +01:00
Many
d59bcea749 Revert "Revert "Change chunk size to 4MiB to fit more the end user usage"" 2022-02-02 17:01:13 +01:00
Kerollmops
fb79c32430
Compute the new, common and, deleted prefix words fst once 2022-01-27 11:00:18 +01:00
Clément Renault
51d1e64b23
Remove, now useless, the WriteMethod enum 2022-01-27 10:08:35 +01:00
Clément Renault
e9c02173cf
Rework the WordsPrefixPositionDocids update to compute a subset of the database 2022-01-27 10:08:35 +01:00
Clément Renault
d59e559317
Fix the computation of the newly added and common prefix words 2022-01-27 10:08:34 +01:00
Clément Renault
28692f65be
Rework the WordPrefixDocids update to compute a subset of the database 2022-01-27 10:08:34 +01:00
Clément Renault
5404bc02dd
Move the fst_stream_into_hashset method in the helper methods 2022-01-27 10:06:00 +01:00
Clément Renault
822f67e9ad
Bring the newly created word pair proximity docids 2022-01-27 10:06:00 +01:00
Clément Renault
d28f18658e
Retrieve the previous version of the words prefixes FST 2022-01-27 10:05:59 +01:00
bors[bot]
fd177b63f8
Merge #423
423: Remove an unused file r=irevoire a=irevoire

This empty file is not included anywhere

Co-authored-by: Tamo <tamo@meilisearch.com>
2022-01-19 14:18:05 +00:00
Marin Postma
0c84a40298 document batch support
reusable transform

rework update api

add indexer config

fix tests

review changes

Co-authored-by: Clément Renault <clement@meilisearch.com>

fmt
2022-01-19 12:40:20 +01:00
Tamo
98a365aaae
store the geopoint in three dimensions 2021-12-14 12:21:24 +01:00
Tamo
d671d6f0f1
remove an unused file 2021-12-13 19:27:34 +01:00
many
8970246bc4
Sort positions before iterating over them during word pair proximity extraction 2021-11-22 18:16:54 +01:00