4316: Autobatch the task deletions r=curquiza a=irevoire
# Pull Request
## Related issue
Fix part of https://github.com/meilisearch/meilisearch-support/issues/69Fix#4315
## What does this PR do?
- Autobatch the task deletions
Co-authored-by: Tamo <tamo@meilisearch.com>
4090: Diff indexing r=ManyTheFish a=ManyTheFish
This pull request aims to reduce the indexing time by computing a difference between the data added to the index and the data removed from the index before writing in LMDB.
## Why focus on reducing the writings in LMDB?
The indexing in Meilisearch is split into 3 main phases:
1) The computing or the extraction of the data (Multi-threaded)
2) The writing of the data in LMDB (Mono-threaded)
3) The processing of the prefix databases (Mono-threaded)
see below:
![Capture d’écran 2023-09-28 à 20 01 45](https://github.com/meilisearch/meilisearch/assets/6482087/51513162-7c39-4244-978b-2c6b60c43a56)
Because the writing is mono-threaded, it represents a bottleneck in the indexing, reducing the number of writes in LMDB will reduce the pressure on the main thread and should reduce the global time spent on the indexing.
## Give Feedback
We created [a dedicated discussion](https://github.com/meilisearch/meilisearch/discussions/4196) for users to try this new feature and to give feedback on bugs or performance issues.
## Technical approach
### Part 1: merge the addition and the deletion process
This part:
a) Aims to reduce the time spent on indexing only the filterable/sortable fields of documents, for example:
- Updating the number of "likes" or "stars" of a song or a movie
- Updating the "stock count" or the "price" of a product
b) Aims to reduce the time spent on writing in LMDB which should reduce the global indexing time for the highly multi-threaded machines by reducing the writing bottleneck.
c) Aims to reduce the average time spent to delete documents without having to keep the soft-deleted documents implementation
- [x] Create a preprocessing function that creates the diff-based documents chuck (`OBKV<fid, OBKV<AddDel, value>>`)
- [x] and clearly separate the faceted fields and the searchable fields in two different chunks
- Change the parameters of the input extractor by taking an `OBKV<fid, OBKV<AddDel, value>>` instead of `OBKV<fid, value>`.
- [x] extract_docid_word_positions
- [x] extract_geo_points
- [x] extract_vector_points
- [x] extract_fid_docid_facet_values
- Adapt the searchable extractors to the new diff-chucks
- [x] extract_fid_word_count_docids
- [x] extract_word_pair_proximity_docids
- [x] extract_word_position_docids
- [x] extract_word_docids
- Adapt the facet extractors to the new diff-chucks
- [x] extract_facet_number_docids
- [x] extract_facet_string_docids
- [x] extract_fid_docid_facet_values
- [x] FacetsUpdate
- [x] Adapt the prefix database extractors ⚠️⚠️
- [x] Make the LMDB writer remove the document_ids to delete at the same time the new document_ids are added
- [x] Remove document deletion pipeline
- [x] remove `new_documents_ids` entirely and `replaced_documents_ids`
- [x] reuse extracted external id from transform instead of re-extracting in `TypedChunks::Documents`
- [x] Remove deletion pipeline after autobatcher
- [x] remove autobatcher deletion pipeline
- [x] everything uses `IndexOperation::DocumentOperation`
- [x] repair deletion by internal id for filter by delete
- [x] Improve the deletion via internal ids by avoiding iterating over the whole set of external document ids.
- [x] Remove soft-deleted documents
#### FIXME
- [x] field distribution is not correctly updated after deletion
- [x] missing documents in the tests of tokenizer_customization
### Part 2: Only compute the documents field by field
This part aims to reduce the global indexing time for any kind of partial document modification on any size of machine from the mono-threaded one to the highly multi-threaded one.
- [ ] Make the preprocessing function only send the fields that changed to the extractors
- [ ] remove the `word_docids` and `exact_word_docids` database and adapt the search (⚠️ could impact the search performances)
- [ ] replace the `word_pair_proximity_docids` database with a `word_pair_proximity_fid_docids` database and adapt the search (⚠️ could impact the search performances)
- [ ] Adapt the prefix database extractors ⚠️⚠️
## Technical Concerns
- The part 1 implementation could increase the indexing time for the smallest machines (with few threads) by increasing the extracting time (multi-threaded) more than the writing time (mono-threaded)
- The part 2 implementation needs to change the databases which could have a significant impact on the search performances
- The prefix databases are a bit special to process and may be a pain to adapt to the difference-based indexing
Co-authored-by: ManyTheFish <many@meilisearch.com>
Co-authored-by: Clément Renault <clement@meilisearch.com>
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
The issue was that the operation « DocumentDeletionByFilter » was not
declared as an index operation. That means the indexes stats were not
reprocessed after the application of the operation.
3319: Transparently resize indexes on MaxDatabaseSizeReached errors r=Kerollmops a=dureuill
# Pull Request
## Related issue
Related to https://github.com/meilisearch/meilisearch/discussions/3280, depends on https://github.com/meilisearch/milli/pull/760
## What does this PR do?
### User standpoint
- Meilisearch no longer fails tasks that encounter the `milli::UserError(MaxDatabaseSizeReached)` error.
- Instead, these tasks are retried after increasing the maximum size allocated to the index where the failure occurred.
### Implementation standpoint
- Add `Batch::index_uid` to get the `index_uid` of a batch of task if there is one
- `IndexMapper::create_or_open_index` now takes an additional `size` argument that allows to (re)open indexes with a size different from the base `IndexScheduler::index_size` field
- `IndexScheduler::tick` now returns a `Result<TickOutcome>` instead of a `Result<usize>`. This offers more explicit control over what the behavior should be wrt the next tick.
- Add `IndexStatus::BeingResized` that contains a handle that a thread can use to await for the resize operation to complete and the index to be available again.
- Add `IndexMapper::resize_index` to increase the size of an index.
- In `IndexScheduler::tick`, intercept task batches that failed due to `MaxDatabaseSizeReached` and resize the index that caused the error, then request a new tick that will eventually handle the still enqueued task.
## Testing the PR
The following diff can be applied to this branch to make testing the PR easier:
<details>
```diff
diff --git a/index-scheduler/src/index_mapper.rs b/index-scheduler/src/index_mapper.rs
index 553ab45a..022b2f00 100644
--- a/index-scheduler/src/index_mapper.rs
+++ b/index-scheduler/src/index_mapper.rs
`@@` -228,13 +228,15 `@@` impl IndexMapper {
drop(lock);
+ std:🧵:sleep_ms(2000);
+
let current_size = index.map_size()?;
let closing_event = index.prepare_for_closing();
- log::info!("Resizing index {} from {} to {} bytes", name, current_size, current_size * 2);
+ log::error!("Resizing index {} from {} to {} bytes", name, current_size, current_size * 2);
closing_event.wait();
- log::info!("Resized index {} from {} to {} bytes", name, current_size, current_size * 2);
+ log::error!("Resized index {} from {} to {} bytes", name, current_size, current_size * 2);
let index_path = self.base_path.join(uuid.to_string());
let index = self.create_or_open_index(&index_path, None, 2 * current_size)?;
`@@` -268,8 +270,10 `@@` impl IndexMapper {
match index {
Some(Available(index)) => break index,
Some(BeingResized(ref resize_operation)) => {
+ log::error!("waiting for resize end");
// Deadlock: no lock taken while doing this operation.
resize_operation.wait();
+ log::error!("trying our luck again!");
continue;
}
Some(BeingDeleted) => return Err(Error::IndexNotFound(name.to_string())),
diff --git a/index-scheduler/src/lib.rs b/index-scheduler/src/lib.rs
index 11b17d05..242dc095 100644
--- a/index-scheduler/src/lib.rs
+++ b/index-scheduler/src/lib.rs
`@@` -908,6 +908,7 `@@` impl IndexScheduler {
///
/// Returns the number of processed tasks.
fn tick(&self) -> Result<TickOutcome> {
+ log::error!("ticking!");
#[cfg(test)]
{
*self.run_loop_iteration.write().unwrap() += 1;
diff --git a/meilisearch/src/main.rs b/meilisearch/src/main.rs
index 050c825a..63f312f6 100644
--- a/meilisearch/src/main.rs
+++ b/meilisearch/src/main.rs
`@@` -25,7 +25,7 `@@` fn setup(opt: &Opt) -> anyhow::Result<()> {
#[actix_web::main]
async fn main() -> anyhow::Result<()> {
- let (opt, config_read_from) = Opt::try_build()?;
+ let (mut opt, config_read_from) = Opt::try_build()?;
setup(&opt)?;
`@@` -56,6 +56,8 `@@` We generated a secure master key for you (you can safely copy this token):
_ => (),
}
+ opt.max_index_size = byte_unit::Byte::from_str("1MB").unwrap();
+
let (index_scheduler, auth_controller) = setup_meilisearch(&opt)?;
#[cfg(all(not(debug_assertions), feature = "analytics"))]
```
</details>
Mainly, these debug changes do the following:
- Set the default index size to 1MiB so that index resizes are initially frequent
- Turn some logs from info to error so that they can be displayed with `--log-level ERROR` (hiding the other infos)
- Add a long sleep between the beginning and the end of the resize so that we can observe the `BeingResized` index status (otherwise it would never come up in my tests)
## Open questions
- Is the growth factor of x2 the correct solution? For a `Vec` in memory it makes sense, but here we're manipulating quantities that are potentially in the order of 500GiBs. For bigger indexes it may make more sense to add at most e.g. 100GiB on each resize operation, avoiding big steps like 500GiB -> 1TiB.
## PR checklist
Please check if your PR fulfills the following requirements:
- [ ] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [ ] Have you read the contributing guidelines?
- [ ] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
3470: Autobatch addition and deletion r=irevoire a=irevoire
This PR adds the capability to meilisearch to batch document addition and deletion together.
Fix https://github.com/meilisearch/meilisearch/issues/3440
--------------
Things to check before merging;
- [x] What happens if we delete multiple time the same documents -> add a test
- [x] If a documentDeletion gets batched with a documentAddition but the index doesn't exist yet? It should not work
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
Co-authored-by: Tamo <tamo@meilisearch.com>