Loïc Lecrenier
86c34a996b
Deduplicate matching words
2022-11-28 10:20:13 +01:00
unvalley
70465aa5ce
Execute cargo fmt
2022-11-04 08:59:58 +09:00
unvalley
3009981d31
Fix clippy errors
...
Add clippy job
Add clippy job to CI
2022-11-04 08:58:14 +09:00
Samyak S Sarnayak
77f1ff019b
Simplify stop word checking in create_primitive_query
2022-10-26 19:09:44 +05:30
Samyak S Sarnayak
d187b32a28
Fix snapshots to use new phrase type
2022-10-26 19:09:03 +05:30
Samyak S Sarnayak
62816dddde
[WIP] Fix phrase search containing stop words
...
Fixes #661 and meilisearch/meilisearch#2905
2022-10-26 19:08:06 +05:30
Ewan Higgs
17f7922bfc
Remove unneeded lifetimes.
2022-10-25 20:49:04 +02:00
Ewan Higgs
6b2fe94192
Fixes for clippy bringing us down to 18 remaining issues.
...
This brings us a step closer to enforcing clippy on each build.
2022-10-25 20:49:02 +02:00
Loïc Lecrenier
176ffd23f5
Fix compile error after rebasing wppd-refactor
2022-10-18 10:40:26 +02:00
Akshay Kulkarni
85f3028317
remove underscore and introduce back word_documents_count
2022-10-13 13:21:59 +05:30
Akshay Kulkarni
8195fc6141
revert removal of word_documents_count method
2022-10-13 13:14:27 +05:30
Akshay Kulkarni
32f825d442
move default implementation of word_pair_frequency to TestContext
2022-10-13 12:57:50 +05:30
Akshay Kulkarni
ff8b2d4422
formatting
2022-10-13 12:44:08 +05:30
Akshay Kulkarni
6cb8b46900
use word_pair_frequency and remove word_documents_count
2022-10-13 12:43:11 +05:30
Akshay Kulkarni
8c9245149e
format file
2022-10-12 15:27:56 +05:30
Akshay Kulkarni
63e79a9039
update comment
2022-10-12 13:36:48 +05:30
Akshay Kulkarni
7f9680f0a0
Enhance word splitting strategy
2022-10-12 13:18:23 +05:30
ManyTheFish
bf750e45a1
Fix word removal issue
2022-09-01 12:10:47 +02:00
ManyTheFish
a38608fe59
Add test mixing phrased and no-phrased words
2022-09-01 12:02:10 +02:00
ManyTheFish
5391e3842c
replace optional_words by term_matching_strategy
2022-08-22 17:47:19 +02:00
ManyTheFish
993aa1321c
Fix query tree building
2022-08-18 17:56:06 +02:00
ManyTheFish
bff9653050
Fix remove count
2022-08-18 17:36:30 +02:00
ManyTheFish
9640976c79
Rename TermMatchingPolicies
2022-08-18 17:36:08 +02:00
Loïc Lecrenier
d2e01528a6
Switch to snapshot tests for search/criteria/typo.rs
2022-08-10 15:53:46 +02:00
Loïc Lecrenier
4bba2f41d7
Switch to snapshot tests for query_tree.rs
2022-08-10 15:53:46 +02:00
ManyTheFish
86ac8568e6
Use Charabia in milli
2022-06-02 16:59:11 +02:00
ad hoc
25fc576696
review changes
2022-05-24 14:15:33 +02:00
ad hoc
69dc4de80f
change &Option<Set> to Option<&Set>
2022-05-24 12:14:55 +02:00
ad hoc
ac975cc747
cache context's exact words
2022-05-24 09:43:17 +02:00
ad hoc
8993fec8a3
return optional exact words
2022-05-24 09:15:49 +02:00
ad hoc
5c29258e8e
fix cargo warnings
2022-04-26 17:33:11 +02:00
bors[bot]
ea4bb9402f
Merge #483
...
483: Enhance matching words r=Kerollmops a=ManyTheFish
# Summary
Enhance milli word-matcher making it handle match computing and cropping.
# Implementation
## Computing best matches for cropping
Before we were considering that the first match of the attribute was the best one, this was accurate when only one word was searched but was missing the target when more than one word was searched.
Now we are searching for the best matches interval to crop around, the chosen interval is the one:
1) that have the highest count of unique matches
> for example, if we have a query `split the world`, then the interval `the split the split the` has 5 matches but only 2 unique matches (1 for `split` and 1 for `the`) where the interval `split of the world` has 3 matches and 3 unique matches. So the interval `split of the world` is considered better.
2) that have the minimum distance between matches
> for example, if we have a query `split the world`, then the interval `split of the world` has a distance of 3 (2 between `split` and `the`, and 1 between `the` and `world`) where the interval `split the world` has a distance of 2. So the interval `split the world` is considered better.
3) that have the highest count of ordered matches
> for example, if we have a query `split the world`, then the interval `the world split` has 2 ordered words where the interval `split the world` has 3. So the interval `split the world` is considered better.
## Cropping around the best matches interval
Before we were cropping around the interval without checking the context.
Now we are cropping around words in the same context as matching words.
This means that we will keep words that are farther from the matching words but are in the same phrase, than words that are nearer but separated by a dot.
> For instance, for the matching word `Split` the text:
`Natalie risk her future. Split The World is a book written by Emily Henry. I never read it.`
will be cropped like:
`…. Split The World is a book written by Emily Henry. …`
and not like:
`Natalie risk her future. Split The World is a book …`
Co-authored-by: ManyTheFish <many@meilisearch.com>
2022-04-19 11:42:32 +00:00
ManyTheFish
b1905dfa24
Make split_best_frequency returns references instead of owned data
2022-04-07 17:05:44 +02:00
ManyTheFish
3bb1e35ada
Fix match count
2022-04-05 17:48:45 +02:00
ad hoc
c882d8daf0
add test for exact words
2022-04-04 20:54:01 +02:00
ad hoc
7e9d56a9e7
disable typos on exact words
2022-04-04 20:54:01 +02:00
ad hoc
0fd55db21c
fmt
2022-04-04 20:10:55 +02:00
ad hoc
559e46be5e
fix bad rebase bug
2022-04-04 20:10:55 +02:00
ad hoc
8b1e5d9c6d
add test for exact words
2022-04-04 20:10:55 +02:00
ad hoc
774fa8f065
disable typos on exact words
2022-04-04 20:10:55 +02:00
ad hoc
853b4a520f
fmt
2022-04-04 10:41:46 +02:00
ad hoc
fdaf45aab2
replace hardcoded value with constant in TestContext
2022-04-04 10:41:46 +02:00
ad hoc
950a740bd4
refactor typos for readability
2022-04-04 10:41:46 +02:00
ad hoc
66020cd923
rename min_word_len* to use plain letter numbers
2022-04-04 10:41:46 +02:00
ad hoc
286dd7b2e4
rename min_word_len_2_typo
2022-04-01 11:17:03 +02:00
ad hoc
55af85db3c
add tests for min_word_len_for_typo
2022-04-01 11:17:02 +02:00
ad hoc
a1a3a49bc9
dynamic minimum word len for typos in query tree builder
2022-04-01 11:17:02 +02:00
ad hoc
c4653347fd
add authorize typo setting
2022-03-31 10:05:44 +02:00
bors[bot]
ad4c982c68
Merge #439
...
439: Optimize typo criterion r=Kerollmops a=MarinPostma
This pr implements a couple of optimization for the typo criterion:
- clamp max typo on concatenated query words to 1: By considering that a concatenated query word is a typo, we clamp the max number of typos allowed o it to 1. This is useful because we noticed that concatenated query words often introduced words with 2 typos in queries that otherwise didn't allow for 2 typo words.
- Make typos on the first letter count for 2. This change is a big performance gain: by considering the typos on the first letter to count as 2 typos, we drastically restrict the search space for 1 typo, and if we reach 2 typos, the search space is reduced as well, as we only consider: (2 typos ∩ correct first letter) ∪ (wrong first letter ∩ 1 typo) instead of 2 typos anywhere in the word.
## benches
```
group main typo
----- ---- ----
smol-songs.csv: asc + default/Notstandskomitee 2.51 5.8±0.01ms ? ?/sec 1.00 2.3±0.01ms ? ?/sec
smol-songs.csv: asc + default/charles 2.48 3.0±0.01ms ? ?/sec 1.00 1190.9±1.29µs ? ?/sec
smol-songs.csv: asc + default/charles mingus 5.56 10.8±0.01ms ? ?/sec 1.00 1935.3±1.00µs ? ?/sec
smol-songs.csv: asc + default/david 1.65 3.9±0.00ms ? ?/sec 1.00 2.4±0.01ms ? ?/sec
smol-songs.csv: asc + default/david bowie 3.34 12.5±0.02ms ? ?/sec 1.00 3.7±0.00ms ? ?/sec
smol-songs.csv: asc + default/john 1.00 1849.7±3.74µs ? ?/sec 1.01 1875.1±4.65µs ? ?/sec
smol-songs.csv: asc + default/marcus miller 4.32 15.7±0.01ms ? ?/sec 1.00 3.6±0.01ms ? ?/sec
smol-songs.csv: asc + default/michael jackson 3.31 12.5±0.01ms ? ?/sec 1.00 3.8±0.00ms ? ?/sec
smol-songs.csv: asc + default/tamo 1.05 565.4±0.86µs ? ?/sec 1.00 539.3±1.22µs ? ?/sec
smol-songs.csv: asc + default/thelonious monk 3.49 11.5±0.01ms ? ?/sec 1.00 3.3±0.00ms ? ?/sec
smol-songs.csv: asc/Notstandskomitee 2.59 5.6±0.02ms ? ?/sec 1.00 2.2±0.01ms ? ?/sec
smol-songs.csv: asc/charles 6.05 2.1±0.00ms ? ?/sec 1.00 347.8±0.60µs ? ?/sec
smol-songs.csv: asc/charles mingus 14.46 9.4±0.01ms ? ?/sec 1.00 649.2±0.97µs ? ?/sec
smol-songs.csv: asc/david 3.87 2.4±0.00ms ? ?/sec 1.00 618.2±0.69µs ? ?/sec
smol-songs.csv: asc/david bowie 10.14 9.8±0.01ms ? ?/sec 1.00 970.8±1.55µs ? ?/sec
smol-songs.csv: asc/john 1.00 546.5±1.10µs ? ?/sec 1.00 547.1±2.11µs ? ?/sec
smol-songs.csv: asc/marcus miller 11.45 10.4±0.06ms ? ?/sec 1.00 907.9±1.37µs ? ?/sec
smol-songs.csv: asc/michael jackson 10.56 9.7±0.01ms ? ?/sec 1.00 919.6±1.03µs ? ?/sec
smol-songs.csv: asc/tamo 1.03 43.3±0.18µs ? ?/sec 1.00 42.2±0.23µs ? ?/sec
smol-songs.csv: asc/thelonious monk 4.16 10.7±0.02ms ? ?/sec 1.00 2.6±0.00ms ? ?/sec
smol-songs.csv: basic filter: <=/Notstandskomitee 1.00 95.7±0.20µs ? ?/sec 1.15 109.6±10.40µs ? ?/sec
smol-songs.csv: basic filter: <=/charles 1.00 27.8±0.15µs ? ?/sec 1.01 27.9±0.18µs ? ?/sec
smol-songs.csv: basic filter: <=/charles mingus 1.72 119.2±0.67µs ? ?/sec 1.00 69.1±0.13µs ? ?/sec
smol-songs.csv: basic filter: <=/david 1.00 22.3±0.33µs ? ?/sec 1.05 23.4±0.19µs ? ?/sec
smol-songs.csv: basic filter: <=/david bowie 1.59 86.9±0.79µs ? ?/sec 1.00 54.5±0.31µs ? ?/sec
smol-songs.csv: basic filter: <=/john 1.00 17.9±0.06µs ? ?/sec 1.06 18.9±0.15µs ? ?/sec
smol-songs.csv: basic filter: <=/marcus miller 1.65 102.7±1.63µs ? ?/sec 1.00 62.3±0.18µs ? ?/sec
smol-songs.csv: basic filter: <=/michael jackson 1.76 128.2±1.85µs ? ?/sec 1.00 72.9±0.19µs ? ?/sec
smol-songs.csv: basic filter: <=/tamo 1.00 17.9±0.13µs ? ?/sec 1.05 18.7±0.20µs ? ?/sec
smol-songs.csv: basic filter: <=/thelonious monk 1.53 157.5±2.38µs ? ?/sec 1.00 102.8±0.88µs ? ?/sec
smol-songs.csv: basic filter: TO/Notstandskomitee 1.00 100.9±4.36µs ? ?/sec 1.04 105.0±8.25µs ? ?/sec
smol-songs.csv: basic filter: TO/charles 1.00 28.4±0.36µs ? ?/sec 1.03 29.4±0.33µs ? ?/sec
smol-songs.csv: basic filter: TO/charles mingus 1.71 118.1±1.08µs ? ?/sec 1.00 68.9±0.26µs ? ?/sec
smol-songs.csv: basic filter: TO/david 1.00 24.0±0.26µs ? ?/sec 1.03 24.6±0.43µs ? ?/sec
smol-songs.csv: basic filter: TO/david bowie 1.72 95.2±0.30µs ? ?/sec 1.00 55.2±0.14µs ? ?/sec
smol-songs.csv: basic filter: TO/john 1.00 18.8±0.09µs ? ?/sec 1.06 19.8±0.17µs ? ?/sec
smol-songs.csv: basic filter: TO/marcus miller 1.61 102.4±1.65µs ? ?/sec 1.00 63.4±0.24µs ? ?/sec
smol-songs.csv: basic filter: TO/michael jackson 1.77 132.1±1.41µs ? ?/sec 1.00 74.5±0.59µs ? ?/sec
smol-songs.csv: basic filter: TO/tamo 1.00 18.2±0.14µs ? ?/sec 1.05 19.2±0.46µs ? ?/sec
smol-songs.csv: basic filter: TO/thelonious monk 1.49 150.8±1.92µs ? ?/sec 1.00 101.3±0.44µs ? ?/sec
smol-songs.csv: basic placeholder/ 1.00 27.3±0.07µs ? ?/sec 1.03 28.0±0.05µs ? ?/sec
smol-songs.csv: basic with quote/"Notstandskomitee" 1.00 122.4±0.17µs ? ?/sec 1.03 125.6±0.16µs ? ?/sec
smol-songs.csv: basic with quote/"charles" 1.00 88.8±0.30µs ? ?/sec 1.00 88.4±0.15µs ? ?/sec
smol-songs.csv: basic with quote/"charles" "mingus" 1.00 685.2±0.74µs ? ?/sec 1.01 689.4±6.07µs ? ?/sec
smol-songs.csv: basic with quote/"david" 1.00 161.6±0.42µs ? ?/sec 1.01 162.6±0.17µs ? ?/sec
smol-songs.csv: basic with quote/"david" "bowie" 1.00 731.7±0.73µs ? ?/sec 1.02 743.1±0.77µs ? ?/sec
smol-songs.csv: basic with quote/"john" 1.00 267.1±0.33µs ? ?/sec 1.01 270.9±0.33µs ? ?/sec
smol-songs.csv: basic with quote/"marcus" "miller" 1.00 138.7±0.31µs ? ?/sec 1.02 140.9±0.13µs ? ?/sec
smol-songs.csv: basic with quote/"michael" "jackson" 1.01 841.4±0.72µs ? ?/sec 1.00 833.8±0.92µs ? ?/sec
smol-songs.csv: basic with quote/"tamo" 1.01 189.2±0.26µs ? ?/sec 1.00 188.2±0.71µs ? ?/sec
smol-songs.csv: basic with quote/"thelonious" "monk" 1.00 1100.5±1.36µs ? ?/sec 1.01 1111.7±2.17µs ? ?/sec
smol-songs.csv: basic without quote/Notstandskomitee 3.40 7.9±0.02ms ? ?/sec 1.00 2.3±0.02ms ? ?/sec
smol-songs.csv: basic without quote/charles 2.57 494.4±0.89µs ? ?/sec 1.00 192.5±0.18µs ? ?/sec
smol-songs.csv: basic without quote/charles mingus 1.29 2.8±0.02ms ? ?/sec 1.00 2.1±0.01ms ? ?/sec
smol-songs.csv: basic without quote/david 1.95 623.8±0.90µs ? ?/sec 1.00 319.2±1.22µs ? ?/sec
smol-songs.csv: basic without quote/david bowie 1.12 5.9±0.00ms ? ?/sec 1.00 5.2±0.00ms ? ?/sec
smol-songs.csv: basic without quote/john 1.24 1340.9±2.25µs ? ?/sec 1.00 1084.7±7.76µs ? ?/sec
smol-songs.csv: basic without quote/marcus miller 7.97 14.6±0.01ms ? ?/sec 1.00 1826.0±6.84µs ? ?/sec
smol-songs.csv: basic without quote/michael jackson 1.19 3.9±0.00ms ? ?/sec 1.00 3.3±0.00ms ? ?/sec
smol-songs.csv: basic without quote/tamo 1.65 737.7±3.58µs ? ?/sec 1.00 446.7±0.51µs ? ?/sec
smol-songs.csv: basic without quote/thelonious monk 1.16 4.5±0.02ms ? ?/sec 1.00 3.9±0.04ms ? ?/sec
smol-songs.csv: big filter/Notstandskomitee 3.27 7.6±0.02ms ? ?/sec 1.00 2.3±0.01ms ? ?/sec
smol-songs.csv: big filter/charles 8.26 1957.5±1.37µs ? ?/sec 1.00 236.8±0.34µs ? ?/sec
smol-songs.csv: big filter/charles mingus 18.49 11.2±0.06ms ? ?/sec 1.00 607.7±3.03µs ? ?/sec
smol-songs.csv: big filter/david 3.78 2.4±0.00ms ? ?/sec 1.00 622.8±0.80µs ? ?/sec
smol-songs.csv: big filter/david bowie 9.00 12.0±0.01ms ? ?/sec 1.00 1336.0±3.17µs ? ?/sec
smol-songs.csv: big filter/john 1.00 554.2±0.95µs ? ?/sec 1.01 560.4±0.79µs ? ?/sec
smol-songs.csv: big filter/marcus miller 18.09 12.0±0.01ms ? ?/sec 1.00 664.7±0.60µs ? ?/sec
smol-songs.csv: big filter/michael jackson 8.43 12.0±0.01ms ? ?/sec 1.00 1421.6±1.37µs ? ?/sec
smol-songs.csv: big filter/tamo 1.00 86.3±0.14µs ? ?/sec 1.01 87.3±0.21µs ? ?/sec
smol-songs.csv: big filter/thelonious monk 5.55 14.3±0.02ms ? ?/sec 1.00 2.6±0.01ms ? ?/sec
smol-songs.csv: desc + default/Notstandskomitee 2.52 5.8±0.01ms ? ?/sec 1.00 2.3±0.01ms ? ?/sec
smol-songs.csv: desc + default/charles 3.04 2.7±0.01ms ? ?/sec 1.00 893.4±1.08µs ? ?/sec
smol-songs.csv: desc + default/charles mingus 6.77 10.3±0.01ms ? ?/sec 1.00 1520.8±1.90µs ? ?/sec
smol-songs.csv: desc + default/david 1.39 5.7±0.00ms ? ?/sec 1.00 4.1±0.00ms ? ?/sec
smol-songs.csv: desc + default/david bowie 2.34 15.8±0.02ms ? ?/sec 1.00 6.7±0.01ms ? ?/sec
smol-songs.csv: desc + default/john 1.00 2.5±0.00ms ? ?/sec 1.02 2.6±0.01ms ? ?/sec
smol-songs.csv: desc + default/marcus miller 5.06 14.5±0.02ms ? ?/sec 1.00 2.9±0.01ms ? ?/sec
smol-songs.csv: desc + default/michael jackson 2.64 14.1±0.05ms ? ?/sec 1.00 5.4±0.00ms ? ?/sec
smol-songs.csv: desc + default/tamo 1.00 567.0±0.65µs ? ?/sec 1.00 565.7±0.97µs ? ?/sec
smol-songs.csv: desc + default/thelonious monk 3.55 11.6±0.02ms ? ?/sec 1.00 3.3±0.00ms ? ?/sec
smol-songs.csv: desc/Notstandskomitee 2.58 5.6±0.02ms ? ?/sec 1.00 2.2±0.02ms ? ?/sec
smol-songs.csv: desc/charles 6.04 2.1±0.00ms ? ?/sec 1.00 348.1±0.57µs ? ?/sec
smol-songs.csv: desc/charles mingus 14.51 9.4±0.01ms ? ?/sec 1.00 646.7±0.99µs ? ?/sec
smol-songs.csv: desc/david 3.86 2.4±0.00ms ? ?/sec 1.00 620.7±2.46µs ? ?/sec
smol-songs.csv: desc/david bowie 10.10 9.8±0.01ms ? ?/sec 1.00 973.9±3.31µs ? ?/sec
smol-songs.csv: desc/john 1.00 545.5±0.78µs ? ?/sec 1.00 547.2±0.48µs ? ?/sec
smol-songs.csv: desc/marcus miller 11.39 10.3±0.01ms ? ?/sec 1.00 903.7±0.95µs ? ?/sec
smol-songs.csv: desc/michael jackson 10.51 9.7±0.01ms ? ?/sec 1.00 924.7±2.02µs ? ?/sec
smol-songs.csv: desc/tamo 1.01 43.2±0.33µs ? ?/sec 1.00 42.6±0.35µs ? ?/sec
smol-songs.csv: desc/thelonious monk 4.19 10.8±0.03ms ? ?/sec 1.00 2.6±0.00ms ? ?/sec
smol-songs.csv: prefix search/a 1.00 1008.7±1.00µs ? ?/sec 1.00 1005.5±0.91µs ? ?/sec
smol-songs.csv: prefix search/b 1.00 885.0±0.70µs ? ?/sec 1.01 890.6±1.11µs ? ?/sec
smol-songs.csv: prefix search/i 1.00 1051.8±1.25µs ? ?/sec 1.00 1056.6±4.12µs ? ?/sec
smol-songs.csv: prefix search/s 1.00 724.7±1.77µs ? ?/sec 1.00 721.6±0.59µs ? ?/sec
smol-songs.csv: prefix search/x 1.01 212.4±0.21µs ? ?/sec 1.00 210.9±0.38µs ? ?/sec
smol-songs.csv: proximity/7000 Danses Un Jour Dans Notre Vie 18.55 48.5±0.09ms ? ?/sec 1.00 2.6±0.03ms ? ?/sec
smol-songs.csv: proximity/The Disneyland Sing-Along Chorus 8.41 56.7±0.45ms ? ?/sec 1.00 6.7±0.05ms ? ?/sec
smol-songs.csv: proximity/Under Great Northern Lights 15.74 38.9±0.14ms ? ?/sec 1.00 2.5±0.00ms ? ?/sec
smol-songs.csv: proximity/black saint sinner lady 11.82 40.1±0.13ms ? ?/sec 1.00 3.4±0.02ms ? ?/sec
smol-songs.csv: proximity/les dangeureuses 1960 6.90 26.1±0.13ms ? ?/sec 1.00 3.8±0.04ms ? ?/sec
smol-songs.csv: typo/Arethla Franklin 14.93 5.8±0.01ms ? ?/sec 1.00 390.1±1.89µs ? ?/sec
smol-songs.csv: typo/Disnaylande 3.18 7.3±0.01ms ? ?/sec 1.00 2.3±0.00ms ? ?/sec
smol-songs.csv: typo/dire straights 5.55 15.2±0.02ms ? ?/sec 1.00 2.7±0.00ms ? ?/sec
smol-songs.csv: typo/fear of the duck 28.03 20.0±0.03ms ? ?/sec 1.00 713.3±1.54µs ? ?/sec
smol-songs.csv: typo/indochie 19.25 1851.4±2.38µs ? ?/sec 1.00 96.2±0.13µs ? ?/sec
smol-songs.csv: typo/indochien 14.66 1887.7±3.18µs ? ?/sec 1.00 128.8±0.18µs ? ?/sec
smol-songs.csv: typo/klub des loopers 37.73 18.0±0.02ms ? ?/sec 1.00 476.7±0.73µs ? ?/sec
smol-songs.csv: typo/michel depech 10.17 5.8±0.01ms ? ?/sec 1.00 565.8±1.16µs ? ?/sec
smol-songs.csv: typo/mongus 15.33 1897.4±3.44µs ? ?/sec 1.00 123.8±0.13µs ? ?/sec
smol-songs.csv: typo/stromal 14.63 1859.3±2.40µs ? ?/sec 1.00 127.1±0.29µs ? ?/sec
smol-songs.csv: typo/the white striper 10.83 9.4±0.01ms ? ?/sec 1.00 866.0±0.98µs ? ?/sec
smol-songs.csv: typo/thelonius monk 14.40 3.8±0.00ms ? ?/sec 1.00 261.5±1.30µs ? ?/sec
smol-songs.csv: words/7000 Danses / Le Baiser / je me trompe de mots 5.54 70.8±0.09ms ? ?/sec 1.00 12.8±0.03ms ? ?/sec
smol-songs.csv: words/Bring Your Daughter To The Slaughter but now this is not part of the title 3.48 119.8±0.14ms ? ?/sec 1.00 34.4±0.04ms ? ?/sec
smol-songs.csv: words/The Disneyland Children's Sing-Alone song 8.98 71.9±0.12ms ? ?/sec 1.00 8.0±0.01ms ? ?/sec
smol-songs.csv: words/les liaisons dangeureuses 1793 11.88 37.4±0.07ms ? ?/sec 1.00 3.1±0.01ms ? ?/sec
smol-songs.csv: words/seven nation mummy 22.86 23.4±0.04ms ? ?/sec 1.00 1024.8±1.57µs ? ?/sec
smol-songs.csv: words/the black saint and the sinner lady and the good doggo 2.76 124.4±0.15ms ? ?/sec 1.00 45.1±0.09ms ? ?/sec
smol-songs.csv: words/whathavenotnsuchforth and a good amount of words to pop to match the first one 2.52 107.0±0.23ms ? ?/sec 1.00 42.4±0.66ms ? ?/sec
group main-wiki typo-wiki
----- --------- ---------
smol-wiki-articles.csv: basic placeholder/ 1.02 13.7±0.02µs ? ?/sec 1.00 13.4±0.03µs ? ?/sec
smol-wiki-articles.csv: basic with quote/"film" 1.02 409.8±0.67µs ? ?/sec 1.00 402.6±0.48µs ? ?/sec
smol-wiki-articles.csv: basic with quote/"france" 1.00 325.9±0.91µs ? ?/sec 1.00 326.4±0.49µs ? ?/sec
smol-wiki-articles.csv: basic with quote/"japan" 1.00 218.4±0.26µs ? ?/sec 1.01 220.5±0.20µs ? ?/sec
smol-wiki-articles.csv: basic with quote/"machine" 1.00 143.0±0.12µs ? ?/sec 1.04 148.8±0.21µs ? ?/sec
smol-wiki-articles.csv: basic with quote/"miles" "davis" 1.00 11.7±0.06ms ? ?/sec 1.00 11.8±0.01ms ? ?/sec
smol-wiki-articles.csv: basic with quote/"mingus" 1.00 4.4±0.03ms ? ?/sec 1.00 4.4±0.00ms ? ?/sec
smol-wiki-articles.csv: basic with quote/"rock" "and" "roll" 1.00 43.5±0.08ms ? ?/sec 1.01 43.8±0.06ms ? ?/sec
smol-wiki-articles.csv: basic with quote/"spain" 1.00 137.3±0.35µs ? ?/sec 1.05 144.4±0.23µs ? ?/sec
smol-wiki-articles.csv: basic without quote/film 1.00 125.3±0.30µs ? ?/sec 1.06 133.1±0.37µs ? ?/sec
smol-wiki-articles.csv: basic without quote/france 1.21 1782.6±1.65µs ? ?/sec 1.00 1477.0±1.39µs ? ?/sec
smol-wiki-articles.csv: basic without quote/japan 1.28 1363.9±0.80µs ? ?/sec 1.00 1064.3±1.79µs ? ?/sec
smol-wiki-articles.csv: basic without quote/machine 1.73 760.3±0.81µs ? ?/sec 1.00 439.6±0.75µs ? ?/sec
smol-wiki-articles.csv: basic without quote/miles davis 1.03 17.0±0.03ms ? ?/sec 1.00 16.5±0.02ms ? ?/sec
smol-wiki-articles.csv: basic without quote/mingus 1.07 5.3±0.01ms ? ?/sec 1.00 5.0±0.00ms ? ?/sec
smol-wiki-articles.csv: basic without quote/rock and roll 1.01 63.9±0.18ms ? ?/sec 1.00 63.0±0.07ms ? ?/sec
smol-wiki-articles.csv: basic without quote/spain 2.07 667.4±0.93µs ? ?/sec 1.00 322.8±0.29µs ? ?/sec
smol-wiki-articles.csv: prefix search/c 1.00 343.1±0.47µs ? ?/sec 1.00 344.0±0.34µs ? ?/sec
smol-wiki-articles.csv: prefix search/g 1.00 374.4±3.42µs ? ?/sec 1.00 374.1±0.44µs ? ?/sec
smol-wiki-articles.csv: prefix search/j 1.00 359.9±0.31µs ? ?/sec 1.00 361.2±0.79µs ? ?/sec
smol-wiki-articles.csv: prefix search/q 1.01 102.0±0.12µs ? ?/sec 1.00 101.4±0.32µs ? ?/sec
smol-wiki-articles.csv: prefix search/t 1.00 536.7±1.39µs ? ?/sec 1.00 534.3±0.84µs ? ?/sec
smol-wiki-articles.csv: prefix search/x 1.00 400.9±1.00µs ? ?/sec 1.00 399.5±0.45µs ? ?/sec
smol-wiki-articles.csv: proximity/april paris 3.86 14.4±0.01ms ? ?/sec 1.00 3.7±0.01ms ? ?/sec
smol-wiki-articles.csv: proximity/diesel engine 12.98 10.4±0.01ms ? ?/sec 1.00 803.5±1.13µs ? ?/sec
smol-wiki-articles.csv: proximity/herald sings 1.00 12.7±0.06ms ? ?/sec 5.29 67.1±0.09ms ? ?/sec
smol-wiki-articles.csv: proximity/tea two 6.48 1452.1±2.78µs ? ?/sec 1.00 224.1±0.38µs ? ?/sec
smol-wiki-articles.csv: typo/Disnaylande 3.89 8.5±0.01ms ? ?/sec 1.00 2.2±0.01ms ? ?/sec
smol-wiki-articles.csv: typo/aritmetric 3.78 10.3±0.01ms ? ?/sec 1.00 2.7±0.00ms ? ?/sec
smol-wiki-articles.csv: typo/linax 8.91 1426.7±0.97µs ? ?/sec 1.00 160.1±0.18µs ? ?/sec
smol-wiki-articles.csv: typo/migrosoft 7.48 1417.3±5.84µs ? ?/sec 1.00 189.5±0.88µs ? ?/sec
smol-wiki-articles.csv: typo/nympalidea 3.96 7.2±0.01ms ? ?/sec 1.00 1810.1±2.03µs ? ?/sec
smol-wiki-articles.csv: typo/phytogropher 3.71 7.2±0.01ms ? ?/sec 1.00 1934.3±6.51µs ? ?/sec
smol-wiki-articles.csv: typo/sisan 6.44 1497.2±1.38µs ? ?/sec 1.00 232.7±0.94µs ? ?/sec
smol-wiki-articles.csv: typo/the fronce 6.92 2.9±0.00ms ? ?/sec 1.00 418.0±1.76µs ? ?/sec
smol-wiki-articles.csv: words/Abraham machin 16.63 10.8±0.01ms ? ?/sec 1.00 649.7±1.08µs ? ?/sec
smol-wiki-articles.csv: words/Idaho Bellevue pizza 27.15 25.6±0.03ms ? ?/sec 1.00 944.2±5.07µs ? ?/sec
smol-wiki-articles.csv: words/Kameya Tokujirō mingus monk 26.87 40.7±0.05ms ? ?/sec 1.00 1515.3±2.73µs ? ?/sec
smol-wiki-articles.csv: words/Ulrich Hensel meilisearch milli 11.99 48.8±0.10ms ? ?/sec 1.00 4.1±0.02ms ? ?/sec
smol-wiki-articles.csv: words/the black saint and the sinner lady and the good doggo 4.90 110.0±0.15ms ? ?/sec 1.00 22.4±0.03ms ? ?/sec
```
Co-authored-by: mpostma <postma.marin@protonmail.com>
Co-authored-by: ad hoc <postma.marin@protonmail.com>
2022-03-15 16:43:36 +00:00
ad hoc
628c835a22
fix tests
2022-03-15 17:38:34 +01:00