4316: Autobatch the task deletions r=curquiza a=irevoire
# Pull Request
## Related issue
Fix part of https://github.com/meilisearch/meilisearch-support/issues/69Fix#4315
## What does this PR do?
- Autobatch the task deletions
Co-authored-by: Tamo <tamo@meilisearch.com>
4279: Check experimental feature on setting update query rather than in the task. r=ManyTheFish a=dureuill
Improve the UX by checking for the vector store feature and returning an error synchronously when sending a setting update, rather than in the indexing task.
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
- DistributionShift in Search object (to be set from model in embed?)
- Fix issue where embedder index wasn't computed at search time
- Accept as default embedder either the "default" one, or the only embedder when there is only one
4090: Diff indexing r=ManyTheFish a=ManyTheFish
This pull request aims to reduce the indexing time by computing a difference between the data added to the index and the data removed from the index before writing in LMDB.
## Why focus on reducing the writings in LMDB?
The indexing in Meilisearch is split into 3 main phases:
1) The computing or the extraction of the data (Multi-threaded)
2) The writing of the data in LMDB (Mono-threaded)
3) The processing of the prefix databases (Mono-threaded)
see below:
![Capture d’écran 2023-09-28 à 20 01 45](https://github.com/meilisearch/meilisearch/assets/6482087/51513162-7c39-4244-978b-2c6b60c43a56)
Because the writing is mono-threaded, it represents a bottleneck in the indexing, reducing the number of writes in LMDB will reduce the pressure on the main thread and should reduce the global time spent on the indexing.
## Give Feedback
We created [a dedicated discussion](https://github.com/meilisearch/meilisearch/discussions/4196) for users to try this new feature and to give feedback on bugs or performance issues.
## Technical approach
### Part 1: merge the addition and the deletion process
This part:
a) Aims to reduce the time spent on indexing only the filterable/sortable fields of documents, for example:
- Updating the number of "likes" or "stars" of a song or a movie
- Updating the "stock count" or the "price" of a product
b) Aims to reduce the time spent on writing in LMDB which should reduce the global indexing time for the highly multi-threaded machines by reducing the writing bottleneck.
c) Aims to reduce the average time spent to delete documents without having to keep the soft-deleted documents implementation
- [x] Create a preprocessing function that creates the diff-based documents chuck (`OBKV<fid, OBKV<AddDel, value>>`)
- [x] and clearly separate the faceted fields and the searchable fields in two different chunks
- Change the parameters of the input extractor by taking an `OBKV<fid, OBKV<AddDel, value>>` instead of `OBKV<fid, value>`.
- [x] extract_docid_word_positions
- [x] extract_geo_points
- [x] extract_vector_points
- [x] extract_fid_docid_facet_values
- Adapt the searchable extractors to the new diff-chucks
- [x] extract_fid_word_count_docids
- [x] extract_word_pair_proximity_docids
- [x] extract_word_position_docids
- [x] extract_word_docids
- Adapt the facet extractors to the new diff-chucks
- [x] extract_facet_number_docids
- [x] extract_facet_string_docids
- [x] extract_fid_docid_facet_values
- [x] FacetsUpdate
- [x] Adapt the prefix database extractors ⚠️⚠️
- [x] Make the LMDB writer remove the document_ids to delete at the same time the new document_ids are added
- [x] Remove document deletion pipeline
- [x] remove `new_documents_ids` entirely and `replaced_documents_ids`
- [x] reuse extracted external id from transform instead of re-extracting in `TypedChunks::Documents`
- [x] Remove deletion pipeline after autobatcher
- [x] remove autobatcher deletion pipeline
- [x] everything uses `IndexOperation::DocumentOperation`
- [x] repair deletion by internal id for filter by delete
- [x] Improve the deletion via internal ids by avoiding iterating over the whole set of external document ids.
- [x] Remove soft-deleted documents
#### FIXME
- [x] field distribution is not correctly updated after deletion
- [x] missing documents in the tests of tokenizer_customization
### Part 2: Only compute the documents field by field
This part aims to reduce the global indexing time for any kind of partial document modification on any size of machine from the mono-threaded one to the highly multi-threaded one.
- [ ] Make the preprocessing function only send the fields that changed to the extractors
- [ ] remove the `word_docids` and `exact_word_docids` database and adapt the search (⚠️ could impact the search performances)
- [ ] replace the `word_pair_proximity_docids` database with a `word_pair_proximity_fid_docids` database and adapt the search (⚠️ could impact the search performances)
- [ ] Adapt the prefix database extractors ⚠️⚠️
## Technical Concerns
- The part 1 implementation could increase the indexing time for the smallest machines (with few threads) by increasing the extracting time (multi-threaded) more than the writing time (mono-threaded)
- The part 2 implementation needs to change the databases which could have a significant impact on the search performances
- The prefix databases are a bit special to process and may be a pain to adapt to the difference-based indexing
Co-authored-by: ManyTheFish <many@meilisearch.com>
Co-authored-by: Clément Renault <clement@meilisearch.com>
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
The issue was that the operation « DocumentDeletionByFilter » was not
declared as an index operation. That means the indexes stats were not
reprocessed after the application of the operation.
3851: Expose lastUpdate and isIndexing in /stats endpoint r=dureuill a=gentcys
# Pull Request
## Related issue
Fixes#3843
## What does this PR do?
- expose lastUpdate in `/stats` endpoint
- expose isIndex in `stats` endpoint
- add a method `is_task_processing` in index-scheduler/src/lib.rs.
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Cong Chen <cong.chen@ocrlabs.com>
Co-authored-by: ManyTheFish <many@meilisearch.com>
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
3842: fix some typos r=dureuill a=cuishuang
# Pull Request
## Related issue
Fixes #<issue_number>
## What does this PR do?
- fix some typos
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: cui fliter <imcusg@gmail.com>
3670: Fix addition deletion bug r=irevoire a=irevoire
The first commit of this PR is a revert of https://github.com/meilisearch/meilisearch/pull/3667. It re-enable the auto-batching of addition and deletion of tasks. No new changes have been introduced outside of `milli`. So all the changes you see on the autobatcher have actually already been reviewed.
It fixes https://github.com/meilisearch/meilisearch/issues/3440.
### What was happening?
The issue was that the `external_documents_ids` generated in the `transform` were used in a very strange way that wasn’t compatible with the deletion of documents.
Instead of doing a clear merge between the external document IDs of the DB and the one returned by the transform + writing it on disk, we were doing some weird tricks with the soft-deleted to avoid writing the fst on disk as much as possible.
The new algorithm may be a bit slower but is way more straightforward and doesn’t change depending on if the soft deletion was used or not. Here is a list of the changes introduced:
1. We now do a clear distinction between the `new_external_documents_ids` coming from the transform and only held on RAM and the `external_documents_ids` coming from the DB.
2. The `new_external_documents_ids` (coming out of the transform) are now represented as an `fst`. We don't need to struggle with the hard, soft distinction + the soft_deleted => That's easier to understand
3. When indexing documents, we merge the `external_documents_ids` coming from the DB and the `new_external_documents_ids` coming from the transform.
### Other things introduced in this PR
Since we constantly have to write small, very specialized fuzzers for this kind of bug, we decided to push the one used to reproduce this bug.
It's not perfect, but it's easy to improve in the future.
It'll also run for as long as possible on every merge on the main branch.
Co-authored-by: Tamo <tamo@meilisearch.com>
Co-authored-by: Loïc Lecrenier <loic.lecrenier@icloud.com>