mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-11-22 12:54:26 +01:00
Remove unwraps
This commit is contained in:
parent
b6b4b6bab7
commit
f87747f4d3
@ -242,11 +242,9 @@ fn send_original_documents_data(
|
||||
let request_threads = rayon::ThreadPoolBuilder::new()
|
||||
.num_threads(crate::vector::REQUEST_PARALLELISM)
|
||||
.thread_name(|index| format!("embedding-request-{index}"))
|
||||
.build()
|
||||
.unwrap();
|
||||
.build()?;
|
||||
|
||||
rayon::spawn(move || {
|
||||
/// FIXME: unwrap
|
||||
for (name, (embedder, prompt)) in embedders {
|
||||
let result = extract_vector_points(
|
||||
documents_chunk_cloned.clone(),
|
||||
|
@ -52,8 +52,6 @@ pub enum EmbedErrorKind {
|
||||
ModelForward(candle_core::Error),
|
||||
#[error("attempt to embed the following text in a configuration where embeddings must be user provided: {0:?}")]
|
||||
ManualEmbed(String),
|
||||
#[error("could not initialize asynchronous runtime: {0}")]
|
||||
OpenAiRuntimeInit(std::io::Error),
|
||||
#[error("model not found. Meilisearch will not automatically download models from the Ollama library, please pull the model manually: {0:?}")]
|
||||
OllamaModelNotFoundError(Option<String>),
|
||||
#[error("error deserialization the response body as JSON: {0}")]
|
||||
@ -76,6 +74,10 @@ pub enum EmbedErrorKind {
|
||||
RestOtherStatusCode(u16, Option<String>),
|
||||
#[error("could not reach embedding server: {0}")]
|
||||
RestNetwork(ureq::Transport),
|
||||
#[error("was expected '{}' to be an object in query '{0}'", .1.join("."))]
|
||||
RestNotAnObject(serde_json::Value, Vec<String>),
|
||||
#[error("while embedding tokenized, was expecting embeddings of dimension `{0}`, got embeddings of dimensions `{1}`")]
|
||||
OpenAiUnexpectedDimension(usize, usize),
|
||||
}
|
||||
|
||||
impl EmbedError {
|
||||
@ -174,6 +176,20 @@ impl EmbedError {
|
||||
pub(crate) fn rest_network(transport: ureq::Transport) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::RestNetwork(transport), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn rest_not_an_object(
|
||||
query: serde_json::Value,
|
||||
input_path: Vec<String>,
|
||||
) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::RestNotAnObject(query, input_path), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_unexpected_dimension(expected: usize, got: usize) -> EmbedError {
|
||||
Self {
|
||||
kind: EmbedErrorKind::OpenAiUnexpectedDimension(expected, got),
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
|
@ -210,16 +210,19 @@ impl Embedder {
|
||||
while tokens.len() > max_token_count {
|
||||
let window = &tokens[..max_token_count];
|
||||
let embedding = self.rest_embedder.embed_tokens(window)?;
|
||||
/// FIXME: unwrap
|
||||
embeddings_for_prompt.append(embedding.into_inner()).unwrap();
|
||||
embeddings_for_prompt.append(embedding.into_inner()).map_err(|got| {
|
||||
EmbedError::openai_unexpected_dimension(self.dimensions(), got.len())
|
||||
})?;
|
||||
|
||||
tokens = &tokens[max_token_count - OVERLAP_SIZE..];
|
||||
}
|
||||
|
||||
// end of text
|
||||
let embedding = self.rest_embedder.embed_tokens(tokens)?;
|
||||
/// FIXME: unwrap
|
||||
embeddings_for_prompt.append(embedding.into_inner()).unwrap();
|
||||
|
||||
embeddings_for_prompt.append(embedding.into_inner()).map_err(|got| {
|
||||
EmbedError::openai_unexpected_dimension(self.dimensions(), got.len())
|
||||
})?;
|
||||
|
||||
all_embeddings.push(embeddings_for_prompt);
|
||||
}
|
||||
|
@ -189,19 +189,29 @@ where
|
||||
[input] => {
|
||||
let mut body = options.query.clone();
|
||||
|
||||
/// FIXME unwrap
|
||||
body.as_object_mut().unwrap().insert(input.clone(), input_value);
|
||||
body.as_object_mut()
|
||||
.ok_or_else(|| {
|
||||
EmbedError::rest_not_an_object(
|
||||
options.query.clone(),
|
||||
options.input_field.clone(),
|
||||
)
|
||||
})?
|
||||
.insert(input.clone(), input_value);
|
||||
body
|
||||
}
|
||||
[path @ .., input] => {
|
||||
let mut body = options.query.clone();
|
||||
|
||||
/// FIXME unwrap
|
||||
let mut current_value = &mut body;
|
||||
for component in path {
|
||||
current_value = current_value
|
||||
.as_object_mut()
|
||||
.unwrap()
|
||||
.ok_or_else(|| {
|
||||
EmbedError::rest_not_an_object(
|
||||
options.query.clone(),
|
||||
options.input_field.clone(),
|
||||
)
|
||||
})?
|
||||
.entry(component.clone())
|
||||
.or_insert(serde_json::json!({}));
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user