mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-12-02 17:45:46 +01:00
Add recommendation route
This commit is contained in:
parent
b4deb9b8db
commit
f505fa4ae8
@ -27,6 +27,7 @@ use crate::Opt;
|
|||||||
|
|
||||||
pub mod documents;
|
pub mod documents;
|
||||||
pub mod facet_search;
|
pub mod facet_search;
|
||||||
|
pub mod recommend;
|
||||||
pub mod search;
|
pub mod search;
|
||||||
pub mod settings;
|
pub mod settings;
|
||||||
|
|
||||||
@ -48,6 +49,7 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
|
|||||||
.service(web::scope("/documents").configure(documents::configure))
|
.service(web::scope("/documents").configure(documents::configure))
|
||||||
.service(web::scope("/search").configure(search::configure))
|
.service(web::scope("/search").configure(search::configure))
|
||||||
.service(web::scope("/facet-search").configure(facet_search::configure))
|
.service(web::scope("/facet-search").configure(facet_search::configure))
|
||||||
|
.service(web::scope("/recommend").configure(recommend::configure))
|
||||||
.service(web::scope("/settings").configure(settings::configure)),
|
.service(web::scope("/settings").configure(settings::configure)),
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
53
meilisearch/src/routes/indexes/recommend.rs
Normal file
53
meilisearch/src/routes/indexes/recommend.rs
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
use actix_web::web::{self, Data};
|
||||||
|
use actix_web::{HttpRequest, HttpResponse};
|
||||||
|
use deserr::actix_web::AwebJson;
|
||||||
|
use index_scheduler::IndexScheduler;
|
||||||
|
use meilisearch_types::deserr::DeserrJsonError;
|
||||||
|
use meilisearch_types::error::ResponseError;
|
||||||
|
use meilisearch_types::index_uid::IndexUid;
|
||||||
|
use meilisearch_types::keys::actions;
|
||||||
|
use tracing::debug;
|
||||||
|
|
||||||
|
use super::ActionPolicy;
|
||||||
|
use crate::analytics::Analytics;
|
||||||
|
use crate::extractors::authentication::GuardedData;
|
||||||
|
use crate::extractors::sequential_extractor::SeqHandler;
|
||||||
|
use crate::search::{perform_recommend, RecommendQuery, SearchKind};
|
||||||
|
|
||||||
|
pub fn configure(cfg: &mut web::ServiceConfig) {
|
||||||
|
cfg.service(web::resource("").route(web::post().to(SeqHandler(recommend))));
|
||||||
|
}
|
||||||
|
|
||||||
|
pub async fn recommend(
|
||||||
|
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
|
||||||
|
index_uid: web::Path<String>,
|
||||||
|
params: AwebJson<RecommendQuery, DeserrJsonError>,
|
||||||
|
_req: HttpRequest,
|
||||||
|
_analytics: web::Data<dyn Analytics>,
|
||||||
|
) -> Result<HttpResponse, ResponseError> {
|
||||||
|
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
|
||||||
|
|
||||||
|
// TODO analytics
|
||||||
|
|
||||||
|
let query = params.into_inner();
|
||||||
|
debug!(parameters = ?query, "Recommend post");
|
||||||
|
|
||||||
|
let index = index_scheduler.index(&index_uid)?;
|
||||||
|
|
||||||
|
let features = index_scheduler.features();
|
||||||
|
|
||||||
|
features.check_vector("Using the recommend API.")?;
|
||||||
|
|
||||||
|
let (embedder_name, embedder) =
|
||||||
|
SearchKind::embedder(&index_scheduler, &index, query.embedder.as_deref(), None)?;
|
||||||
|
|
||||||
|
let recommendations = tokio::task::spawn_blocking(move || {
|
||||||
|
perform_recommend(&index, query, embedder_name, embedder)
|
||||||
|
})
|
||||||
|
.await?;
|
||||||
|
|
||||||
|
let recommendations = recommendations?;
|
||||||
|
|
||||||
|
debug!(returns = ?recommendations, "Recommend post");
|
||||||
|
Ok(HttpResponse::Ok().json(recommendations))
|
||||||
|
}
|
@ -312,6 +312,27 @@ impl SearchQueryWithIndex {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
|
||||||
|
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
|
||||||
|
pub struct RecommendQuery {
|
||||||
|
#[deserr(default, error = DeserrJsonError<InvalidRecommendId>)]
|
||||||
|
pub id: String,
|
||||||
|
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
|
||||||
|
pub offset: usize,
|
||||||
|
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSearchLimit>)]
|
||||||
|
pub limit: usize,
|
||||||
|
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
|
||||||
|
pub filter: Option<Value>,
|
||||||
|
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
|
||||||
|
pub embedder: Option<String>,
|
||||||
|
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToRetrieve>)]
|
||||||
|
pub attributes_to_retrieve: Option<BTreeSet<String>>,
|
||||||
|
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
|
||||||
|
pub show_ranking_score: bool,
|
||||||
|
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
|
||||||
|
pub show_ranking_score_details: bool,
|
||||||
|
}
|
||||||
|
|
||||||
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr)]
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr)]
|
||||||
#[deserr(rename_all = camelCase)]
|
#[deserr(rename_all = camelCase)]
|
||||||
pub enum MatchingStrategy {
|
pub enum MatchingStrategy {
|
||||||
@ -393,6 +414,16 @@ pub struct SearchResult {
|
|||||||
pub used_negative_operator: bool,
|
pub used_negative_operator: bool,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[derive(Serialize, Debug, Clone, PartialEq)]
|
||||||
|
#[serde(rename_all = "camelCase")]
|
||||||
|
pub struct RecommendResult {
|
||||||
|
pub hits: Vec<SearchHit>,
|
||||||
|
pub id: String,
|
||||||
|
pub processing_time_ms: u128,
|
||||||
|
#[serde(flatten)]
|
||||||
|
pub hits_info: HitsInfo,
|
||||||
|
}
|
||||||
|
|
||||||
#[derive(Serialize, Debug, Clone, PartialEq)]
|
#[derive(Serialize, Debug, Clone, PartialEq)]
|
||||||
#[serde(rename_all = "camelCase")]
|
#[serde(rename_all = "camelCase")]
|
||||||
pub struct SearchResultWithIndex {
|
pub struct SearchResultWithIndex {
|
||||||
@ -796,6 +827,131 @@ pub fn perform_facet_search(
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn perform_recommend(
|
||||||
|
index: &Index,
|
||||||
|
query: RecommendQuery,
|
||||||
|
embedder_name: String,
|
||||||
|
embedder: Arc<Embedder>,
|
||||||
|
) -> Result<RecommendResult, MeilisearchHttpError> {
|
||||||
|
let before_search = Instant::now();
|
||||||
|
let rtxn = index.read_txn()?;
|
||||||
|
|
||||||
|
let internal_id = index
|
||||||
|
.external_documents_ids()
|
||||||
|
.get(&rtxn, &query.id)?
|
||||||
|
.ok_or_else(|| MeilisearchHttpError::DocumentNotFound(query.id.clone()))?;
|
||||||
|
|
||||||
|
let mut recommend = milli::Recommend::new(
|
||||||
|
internal_id,
|
||||||
|
query.offset,
|
||||||
|
query.limit,
|
||||||
|
index,
|
||||||
|
&rtxn,
|
||||||
|
embedder_name,
|
||||||
|
embedder,
|
||||||
|
);
|
||||||
|
|
||||||
|
if let Some(ref filter) = query.filter {
|
||||||
|
if let Some(facets) = parse_filter(filter)? {
|
||||||
|
recommend.filter(facets);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let milli::SearchResult {
|
||||||
|
documents_ids,
|
||||||
|
matching_words: _,
|
||||||
|
candidates,
|
||||||
|
document_scores,
|
||||||
|
degraded: _,
|
||||||
|
used_negative_operator: _,
|
||||||
|
} = recommend.execute()?;
|
||||||
|
|
||||||
|
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
|
||||||
|
|
||||||
|
let displayed_ids = index
|
||||||
|
.displayed_fields_ids(&rtxn)?
|
||||||
|
.map(|fields| fields.into_iter().collect::<BTreeSet<_>>())
|
||||||
|
.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect());
|
||||||
|
|
||||||
|
let fids = |attrs: &BTreeSet<String>| {
|
||||||
|
let mut ids = BTreeSet::new();
|
||||||
|
for attr in attrs {
|
||||||
|
if attr == "*" {
|
||||||
|
ids = displayed_ids.clone();
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
if let Some(id) = fields_ids_map.id(attr) {
|
||||||
|
ids.insert(id);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ids
|
||||||
|
};
|
||||||
|
|
||||||
|
// The attributes to retrieve are the ones explicitly marked as to retrieve (all by default),
|
||||||
|
// but these attributes must be also be present
|
||||||
|
// - in the fields_ids_map
|
||||||
|
// - in the displayed attributes
|
||||||
|
let to_retrieve_ids: BTreeSet<_> = query
|
||||||
|
.attributes_to_retrieve
|
||||||
|
.as_ref()
|
||||||
|
.map(fids)
|
||||||
|
.unwrap_or_else(|| displayed_ids.clone())
|
||||||
|
.intersection(&displayed_ids)
|
||||||
|
.cloned()
|
||||||
|
.collect();
|
||||||
|
|
||||||
|
let mut documents = Vec::new();
|
||||||
|
let documents_iter = index.documents(&rtxn, documents_ids)?;
|
||||||
|
|
||||||
|
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
|
||||||
|
// First generate a document with all the displayed fields
|
||||||
|
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
|
||||||
|
|
||||||
|
// select the attributes to retrieve
|
||||||
|
let attributes_to_retrieve = to_retrieve_ids
|
||||||
|
.iter()
|
||||||
|
.map(|&fid| fields_ids_map.name(fid).expect("Missing field name"));
|
||||||
|
let document =
|
||||||
|
permissive_json_pointer::select_values(&displayed_document, attributes_to_retrieve);
|
||||||
|
|
||||||
|
let ranking_score =
|
||||||
|
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
|
||||||
|
let ranking_score_details =
|
||||||
|
query.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
|
||||||
|
|
||||||
|
let hit = SearchHit {
|
||||||
|
document,
|
||||||
|
formatted: Default::default(),
|
||||||
|
matches_position: None,
|
||||||
|
ranking_score_details,
|
||||||
|
ranking_score,
|
||||||
|
};
|
||||||
|
documents.push(hit);
|
||||||
|
}
|
||||||
|
|
||||||
|
let max_total_hits = index
|
||||||
|
.pagination_max_total_hits(&rtxn)
|
||||||
|
.map_err(milli::Error::from)?
|
||||||
|
.map(|x| x as usize)
|
||||||
|
.unwrap_or(DEFAULT_PAGINATION_MAX_TOTAL_HITS);
|
||||||
|
|
||||||
|
let number_of_hits = min(candidates.len() as usize, max_total_hits);
|
||||||
|
let hits_info = HitsInfo::OffsetLimit {
|
||||||
|
limit: query.limit,
|
||||||
|
offset: query.offset,
|
||||||
|
estimated_total_hits: number_of_hits,
|
||||||
|
};
|
||||||
|
|
||||||
|
let result = RecommendResult {
|
||||||
|
hits: documents,
|
||||||
|
hits_info,
|
||||||
|
id: query.id,
|
||||||
|
processing_time_ms: before_search.elapsed().as_millis(),
|
||||||
|
};
|
||||||
|
Ok(result)
|
||||||
|
}
|
||||||
|
|
||||||
fn insert_geo_distance(sorts: &[String], document: &mut Document) {
|
fn insert_geo_distance(sorts: &[String], document: &mut Document) {
|
||||||
lazy_static::lazy_static! {
|
lazy_static::lazy_static! {
|
||||||
static ref GEO_REGEX: Regex =
|
static ref GEO_REGEX: Regex =
|
||||||
|
@ -59,6 +59,7 @@ pub use self::heed_codec::{
|
|||||||
};
|
};
|
||||||
pub use self::index::Index;
|
pub use self::index::Index;
|
||||||
pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
|
pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
|
||||||
|
pub use self::search::recommend::Recommend;
|
||||||
pub use self::search::{
|
pub use self::search::{
|
||||||
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
|
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
|
||||||
Search, SearchResult, SemanticSearch, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
|
Search, SearchResult, SemanticSearch, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
|
||||||
|
@ -24,6 +24,7 @@ pub mod facet;
|
|||||||
mod fst_utils;
|
mod fst_utils;
|
||||||
pub mod hybrid;
|
pub mod hybrid;
|
||||||
pub mod new;
|
pub mod new;
|
||||||
|
pub mod recommend;
|
||||||
|
|
||||||
#[derive(Debug, Clone)]
|
#[derive(Debug, Clone)]
|
||||||
pub struct SemanticSearch {
|
pub struct SemanticSearch {
|
||||||
|
108
milli/src/search/recommend.rs
Normal file
108
milli/src/search/recommend.rs
Normal file
@ -0,0 +1,108 @@
|
|||||||
|
use std::sync::Arc;
|
||||||
|
|
||||||
|
use ordered_float::OrderedFloat;
|
||||||
|
|
||||||
|
use crate::score_details::{self, ScoreDetails};
|
||||||
|
use crate::vector::Embedder;
|
||||||
|
use crate::{filtered_universe, DocumentId, Filter, Index, Result, SearchResult};
|
||||||
|
|
||||||
|
pub struct Recommend<'a> {
|
||||||
|
id: DocumentId,
|
||||||
|
// this should be linked to the String in the query
|
||||||
|
filter: Option<Filter<'a>>,
|
||||||
|
offset: usize,
|
||||||
|
limit: usize,
|
||||||
|
rtxn: &'a heed::RoTxn<'a>,
|
||||||
|
index: &'a Index,
|
||||||
|
embedder_name: String,
|
||||||
|
embedder: Arc<Embedder>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a> Recommend<'a> {
|
||||||
|
pub fn new(
|
||||||
|
id: DocumentId,
|
||||||
|
offset: usize,
|
||||||
|
limit: usize,
|
||||||
|
index: &'a Index,
|
||||||
|
rtxn: &'a heed::RoTxn<'a>,
|
||||||
|
embedder_name: String,
|
||||||
|
embedder: Arc<Embedder>,
|
||||||
|
) -> Self {
|
||||||
|
Self { id, filter: None, offset, limit, rtxn, index, embedder_name, embedder }
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn filter(&mut self, filter: Filter<'a>) -> &mut Self {
|
||||||
|
self.filter = Some(filter);
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn execute(&self) -> Result<SearchResult> {
|
||||||
|
let universe = filtered_universe(self.index, self.rtxn, &self.filter)?;
|
||||||
|
|
||||||
|
let embedder_index =
|
||||||
|
self.index
|
||||||
|
.embedder_category_id
|
||||||
|
.get(self.rtxn, &self.embedder_name)?
|
||||||
|
.ok_or_else(|| crate::UserError::InvalidEmbedder(self.embedder_name.to_owned()))?;
|
||||||
|
|
||||||
|
let writer_index = (embedder_index as u16) << 8;
|
||||||
|
let readers: std::result::Result<Vec<_>, _> = (0..=u8::MAX)
|
||||||
|
.map_while(|k| {
|
||||||
|
arroy::Reader::open(self.rtxn, writer_index | (k as u16), self.index.vector_arroy)
|
||||||
|
.map(Some)
|
||||||
|
.or_else(|e| match e {
|
||||||
|
arroy::Error::MissingMetadata => Ok(None),
|
||||||
|
e => Err(e),
|
||||||
|
})
|
||||||
|
.transpose()
|
||||||
|
})
|
||||||
|
.collect();
|
||||||
|
|
||||||
|
let readers = readers?;
|
||||||
|
|
||||||
|
let mut results = Vec::new();
|
||||||
|
|
||||||
|
for reader in readers.iter() {
|
||||||
|
let nns_by_item = reader.nns_by_item(
|
||||||
|
self.rtxn,
|
||||||
|
self.id,
|
||||||
|
self.limit + self.offset + 1,
|
||||||
|
None,
|
||||||
|
Some(&universe),
|
||||||
|
)?;
|
||||||
|
if let Some(mut nns_by_item) = nns_by_item {
|
||||||
|
results.append(&mut nns_by_item);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
|
||||||
|
|
||||||
|
let mut documents_ids = Vec::with_capacity(self.limit);
|
||||||
|
let mut document_scores = Vec::with_capacity(self.limit);
|
||||||
|
|
||||||
|
// skip offset +1 to skip the target document that is normally returned
|
||||||
|
for (docid, distance) in results.into_iter().skip(self.offset + 1) {
|
||||||
|
documents_ids.push(docid);
|
||||||
|
|
||||||
|
let score = 1.0 - distance;
|
||||||
|
let score = self
|
||||||
|
.embedder
|
||||||
|
.distribution()
|
||||||
|
.map(|distribution| distribution.shift(score))
|
||||||
|
.unwrap_or(score);
|
||||||
|
|
||||||
|
let score = ScoreDetails::Vector(score_details::Vector { similarity: Some(score) });
|
||||||
|
|
||||||
|
document_scores.push(vec![score]);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(SearchResult {
|
||||||
|
matching_words: Default::default(),
|
||||||
|
candidates: universe,
|
||||||
|
documents_ids,
|
||||||
|
document_scores,
|
||||||
|
degraded: false,
|
||||||
|
used_negative_operator: false,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user