Add recommendation route

This commit is contained in:
Louis Dureuil 2024-04-09 12:03:40 +02:00
parent b4deb9b8db
commit f505fa4ae8
No known key found for this signature in database
6 changed files with 321 additions and 0 deletions

View File

@ -27,6 +27,7 @@ use crate::Opt;
pub mod documents;
pub mod facet_search;
pub mod recommend;
pub mod search;
pub mod settings;
@ -48,6 +49,7 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
.service(web::scope("/documents").configure(documents::configure))
.service(web::scope("/search").configure(search::configure))
.service(web::scope("/facet-search").configure(facet_search::configure))
.service(web::scope("/recommend").configure(recommend::configure))
.service(web::scope("/settings").configure(settings::configure)),
);
}

View File

@ -0,0 +1,53 @@
use actix_web::web::{self, Data};
use actix_web::{HttpRequest, HttpResponse};
use deserr::actix_web::AwebJson;
use index_scheduler::IndexScheduler;
use meilisearch_types::deserr::DeserrJsonError;
use meilisearch_types::error::ResponseError;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::keys::actions;
use tracing::debug;
use super::ActionPolicy;
use crate::analytics::Analytics;
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::search::{perform_recommend, RecommendQuery, SearchKind};
pub fn configure(cfg: &mut web::ServiceConfig) {
cfg.service(web::resource("").route(web::post().to(SeqHandler(recommend))));
}
pub async fn recommend(
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
index_uid: web::Path<String>,
params: AwebJson<RecommendQuery, DeserrJsonError>,
_req: HttpRequest,
_analytics: web::Data<dyn Analytics>,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
// TODO analytics
let query = params.into_inner();
debug!(parameters = ?query, "Recommend post");
let index = index_scheduler.index(&index_uid)?;
let features = index_scheduler.features();
features.check_vector("Using the recommend API.")?;
let (embedder_name, embedder) =
SearchKind::embedder(&index_scheduler, &index, query.embedder.as_deref(), None)?;
let recommendations = tokio::task::spawn_blocking(move || {
perform_recommend(&index, query, embedder_name, embedder)
})
.await?;
let recommendations = recommendations?;
debug!(returns = ?recommendations, "Recommend post");
Ok(HttpResponse::Ok().json(recommendations))
}

View File

@ -312,6 +312,27 @@ impl SearchQueryWithIndex {
}
}
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
pub struct RecommendQuery {
#[deserr(default, error = DeserrJsonError<InvalidRecommendId>)]
pub id: String,
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
pub offset: usize,
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSearchLimit>)]
pub limit: usize,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
pub embedder: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToRetrieve>)]
pub attributes_to_retrieve: Option<BTreeSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
pub show_ranking_score_details: bool,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr)]
#[deserr(rename_all = camelCase)]
pub enum MatchingStrategy {
@ -393,6 +414,16 @@ pub struct SearchResult {
pub used_negative_operator: bool,
}
#[derive(Serialize, Debug, Clone, PartialEq)]
#[serde(rename_all = "camelCase")]
pub struct RecommendResult {
pub hits: Vec<SearchHit>,
pub id: String,
pub processing_time_ms: u128,
#[serde(flatten)]
pub hits_info: HitsInfo,
}
#[derive(Serialize, Debug, Clone, PartialEq)]
#[serde(rename_all = "camelCase")]
pub struct SearchResultWithIndex {
@ -796,6 +827,131 @@ pub fn perform_facet_search(
})
}
pub fn perform_recommend(
index: &Index,
query: RecommendQuery,
embedder_name: String,
embedder: Arc<Embedder>,
) -> Result<RecommendResult, MeilisearchHttpError> {
let before_search = Instant::now();
let rtxn = index.read_txn()?;
let internal_id = index
.external_documents_ids()
.get(&rtxn, &query.id)?
.ok_or_else(|| MeilisearchHttpError::DocumentNotFound(query.id.clone()))?;
let mut recommend = milli::Recommend::new(
internal_id,
query.offset,
query.limit,
index,
&rtxn,
embedder_name,
embedder,
);
if let Some(ref filter) = query.filter {
if let Some(facets) = parse_filter(filter)? {
recommend.filter(facets);
}
}
let milli::SearchResult {
documents_ids,
matching_words: _,
candidates,
document_scores,
degraded: _,
used_negative_operator: _,
} = recommend.execute()?;
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
let displayed_ids = index
.displayed_fields_ids(&rtxn)?
.map(|fields| fields.into_iter().collect::<BTreeSet<_>>())
.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect());
let fids = |attrs: &BTreeSet<String>| {
let mut ids = BTreeSet::new();
for attr in attrs {
if attr == "*" {
ids = displayed_ids.clone();
break;
}
if let Some(id) = fields_ids_map.id(attr) {
ids.insert(id);
}
}
ids
};
// The attributes to retrieve are the ones explicitly marked as to retrieve (all by default),
// but these attributes must be also be present
// - in the fields_ids_map
// - in the displayed attributes
let to_retrieve_ids: BTreeSet<_> = query
.attributes_to_retrieve
.as_ref()
.map(fids)
.unwrap_or_else(|| displayed_ids.clone())
.intersection(&displayed_ids)
.cloned()
.collect();
let mut documents = Vec::new();
let documents_iter = index.documents(&rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
// First generate a document with all the displayed fields
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
// select the attributes to retrieve
let attributes_to_retrieve = to_retrieve_ids
.iter()
.map(|&fid| fields_ids_map.name(fid).expect("Missing field name"));
let document =
permissive_json_pointer::select_values(&displayed_document, attributes_to_retrieve);
let ranking_score =
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
let ranking_score_details =
query.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
let hit = SearchHit {
document,
formatted: Default::default(),
matches_position: None,
ranking_score_details,
ranking_score,
};
documents.push(hit);
}
let max_total_hits = index
.pagination_max_total_hits(&rtxn)
.map_err(milli::Error::from)?
.map(|x| x as usize)
.unwrap_or(DEFAULT_PAGINATION_MAX_TOTAL_HITS);
let number_of_hits = min(candidates.len() as usize, max_total_hits);
let hits_info = HitsInfo::OffsetLimit {
limit: query.limit,
offset: query.offset,
estimated_total_hits: number_of_hits,
};
let result = RecommendResult {
hits: documents,
hits_info,
id: query.id,
processing_time_ms: before_search.elapsed().as_millis(),
};
Ok(result)
}
fn insert_geo_distance(sorts: &[String], document: &mut Document) {
lazy_static::lazy_static! {
static ref GEO_REGEX: Regex =

View File

@ -59,6 +59,7 @@ pub use self::heed_codec::{
};
pub use self::index::Index;
pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
pub use self::search::recommend::Recommend;
pub use self::search::{
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
Search, SearchResult, SemanticSearch, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,

View File

@ -24,6 +24,7 @@ pub mod facet;
mod fst_utils;
pub mod hybrid;
pub mod new;
pub mod recommend;
#[derive(Debug, Clone)]
pub struct SemanticSearch {

View File

@ -0,0 +1,108 @@
use std::sync::Arc;
use ordered_float::OrderedFloat;
use crate::score_details::{self, ScoreDetails};
use crate::vector::Embedder;
use crate::{filtered_universe, DocumentId, Filter, Index, Result, SearchResult};
pub struct Recommend<'a> {
id: DocumentId,
// this should be linked to the String in the query
filter: Option<Filter<'a>>,
offset: usize,
limit: usize,
rtxn: &'a heed::RoTxn<'a>,
index: &'a Index,
embedder_name: String,
embedder: Arc<Embedder>,
}
impl<'a> Recommend<'a> {
pub fn new(
id: DocumentId,
offset: usize,
limit: usize,
index: &'a Index,
rtxn: &'a heed::RoTxn<'a>,
embedder_name: String,
embedder: Arc<Embedder>,
) -> Self {
Self { id, filter: None, offset, limit, rtxn, index, embedder_name, embedder }
}
pub fn filter(&mut self, filter: Filter<'a>) -> &mut Self {
self.filter = Some(filter);
self
}
pub fn execute(&self) -> Result<SearchResult> {
let universe = filtered_universe(self.index, self.rtxn, &self.filter)?;
let embedder_index =
self.index
.embedder_category_id
.get(self.rtxn, &self.embedder_name)?
.ok_or_else(|| crate::UserError::InvalidEmbedder(self.embedder_name.to_owned()))?;
let writer_index = (embedder_index as u16) << 8;
let readers: std::result::Result<Vec<_>, _> = (0..=u8::MAX)
.map_while(|k| {
arroy::Reader::open(self.rtxn, writer_index | (k as u16), self.index.vector_arroy)
.map(Some)
.or_else(|e| match e {
arroy::Error::MissingMetadata => Ok(None),
e => Err(e),
})
.transpose()
})
.collect();
let readers = readers?;
let mut results = Vec::new();
for reader in readers.iter() {
let nns_by_item = reader.nns_by_item(
self.rtxn,
self.id,
self.limit + self.offset + 1,
None,
Some(&universe),
)?;
if let Some(mut nns_by_item) = nns_by_item {
results.append(&mut nns_by_item);
}
}
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
let mut documents_ids = Vec::with_capacity(self.limit);
let mut document_scores = Vec::with_capacity(self.limit);
// skip offset +1 to skip the target document that is normally returned
for (docid, distance) in results.into_iter().skip(self.offset + 1) {
documents_ids.push(docid);
let score = 1.0 - distance;
let score = self
.embedder
.distribution()
.map(|distribution| distribution.shift(score))
.unwrap_or(score);
let score = ScoreDetails::Vector(score_details::Vector { similarity: Some(score) });
document_scores.push(vec![score]);
}
Ok(SearchResult {
matching_words: Default::default(),
candidates: universe,
documents_ids,
document_scores,
degraded: false,
used_negative_operator: false,
})
}
}