mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-01-07 12:04:30 +01:00
Add recommendation route
This commit is contained in:
parent
b4deb9b8db
commit
f505fa4ae8
@ -27,6 +27,7 @@ use crate::Opt;
|
||||
|
||||
pub mod documents;
|
||||
pub mod facet_search;
|
||||
pub mod recommend;
|
||||
pub mod search;
|
||||
pub mod settings;
|
||||
|
||||
@ -48,6 +49,7 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
|
||||
.service(web::scope("/documents").configure(documents::configure))
|
||||
.service(web::scope("/search").configure(search::configure))
|
||||
.service(web::scope("/facet-search").configure(facet_search::configure))
|
||||
.service(web::scope("/recommend").configure(recommend::configure))
|
||||
.service(web::scope("/settings").configure(settings::configure)),
|
||||
);
|
||||
}
|
||||
|
53
meilisearch/src/routes/indexes/recommend.rs
Normal file
53
meilisearch/src/routes/indexes/recommend.rs
Normal file
@ -0,0 +1,53 @@
|
||||
use actix_web::web::{self, Data};
|
||||
use actix_web::{HttpRequest, HttpResponse};
|
||||
use deserr::actix_web::AwebJson;
|
||||
use index_scheduler::IndexScheduler;
|
||||
use meilisearch_types::deserr::DeserrJsonError;
|
||||
use meilisearch_types::error::ResponseError;
|
||||
use meilisearch_types::index_uid::IndexUid;
|
||||
use meilisearch_types::keys::actions;
|
||||
use tracing::debug;
|
||||
|
||||
use super::ActionPolicy;
|
||||
use crate::analytics::Analytics;
|
||||
use crate::extractors::authentication::GuardedData;
|
||||
use crate::extractors::sequential_extractor::SeqHandler;
|
||||
use crate::search::{perform_recommend, RecommendQuery, SearchKind};
|
||||
|
||||
pub fn configure(cfg: &mut web::ServiceConfig) {
|
||||
cfg.service(web::resource("").route(web::post().to(SeqHandler(recommend))));
|
||||
}
|
||||
|
||||
pub async fn recommend(
|
||||
index_scheduler: GuardedData<ActionPolicy<{ actions::SEARCH }>, Data<IndexScheduler>>,
|
||||
index_uid: web::Path<String>,
|
||||
params: AwebJson<RecommendQuery, DeserrJsonError>,
|
||||
_req: HttpRequest,
|
||||
_analytics: web::Data<dyn Analytics>,
|
||||
) -> Result<HttpResponse, ResponseError> {
|
||||
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
|
||||
|
||||
// TODO analytics
|
||||
|
||||
let query = params.into_inner();
|
||||
debug!(parameters = ?query, "Recommend post");
|
||||
|
||||
let index = index_scheduler.index(&index_uid)?;
|
||||
|
||||
let features = index_scheduler.features();
|
||||
|
||||
features.check_vector("Using the recommend API.")?;
|
||||
|
||||
let (embedder_name, embedder) =
|
||||
SearchKind::embedder(&index_scheduler, &index, query.embedder.as_deref(), None)?;
|
||||
|
||||
let recommendations = tokio::task::spawn_blocking(move || {
|
||||
perform_recommend(&index, query, embedder_name, embedder)
|
||||
})
|
||||
.await?;
|
||||
|
||||
let recommendations = recommendations?;
|
||||
|
||||
debug!(returns = ?recommendations, "Recommend post");
|
||||
Ok(HttpResponse::Ok().json(recommendations))
|
||||
}
|
@ -312,6 +312,27 @@ impl SearchQueryWithIndex {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
|
||||
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
|
||||
pub struct RecommendQuery {
|
||||
#[deserr(default, error = DeserrJsonError<InvalidRecommendId>)]
|
||||
pub id: String,
|
||||
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
|
||||
pub offset: usize,
|
||||
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSearchLimit>)]
|
||||
pub limit: usize,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
|
||||
pub filter: Option<Value>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
|
||||
pub embedder: Option<String>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToRetrieve>)]
|
||||
pub attributes_to_retrieve: Option<BTreeSet<String>>,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScore>, default)]
|
||||
pub show_ranking_score: bool,
|
||||
#[deserr(default, error = DeserrJsonError<InvalidSearchShowRankingScoreDetails>, default)]
|
||||
pub show_ranking_score_details: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr)]
|
||||
#[deserr(rename_all = camelCase)]
|
||||
pub enum MatchingStrategy {
|
||||
@ -393,6 +414,16 @@ pub struct SearchResult {
|
||||
pub used_negative_operator: bool,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Debug, Clone, PartialEq)]
|
||||
#[serde(rename_all = "camelCase")]
|
||||
pub struct RecommendResult {
|
||||
pub hits: Vec<SearchHit>,
|
||||
pub id: String,
|
||||
pub processing_time_ms: u128,
|
||||
#[serde(flatten)]
|
||||
pub hits_info: HitsInfo,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Debug, Clone, PartialEq)]
|
||||
#[serde(rename_all = "camelCase")]
|
||||
pub struct SearchResultWithIndex {
|
||||
@ -796,6 +827,131 @@ pub fn perform_facet_search(
|
||||
})
|
||||
}
|
||||
|
||||
pub fn perform_recommend(
|
||||
index: &Index,
|
||||
query: RecommendQuery,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
) -> Result<RecommendResult, MeilisearchHttpError> {
|
||||
let before_search = Instant::now();
|
||||
let rtxn = index.read_txn()?;
|
||||
|
||||
let internal_id = index
|
||||
.external_documents_ids()
|
||||
.get(&rtxn, &query.id)?
|
||||
.ok_or_else(|| MeilisearchHttpError::DocumentNotFound(query.id.clone()))?;
|
||||
|
||||
let mut recommend = milli::Recommend::new(
|
||||
internal_id,
|
||||
query.offset,
|
||||
query.limit,
|
||||
index,
|
||||
&rtxn,
|
||||
embedder_name,
|
||||
embedder,
|
||||
);
|
||||
|
||||
if let Some(ref filter) = query.filter {
|
||||
if let Some(facets) = parse_filter(filter)? {
|
||||
recommend.filter(facets);
|
||||
}
|
||||
}
|
||||
|
||||
let milli::SearchResult {
|
||||
documents_ids,
|
||||
matching_words: _,
|
||||
candidates,
|
||||
document_scores,
|
||||
degraded: _,
|
||||
used_negative_operator: _,
|
||||
} = recommend.execute()?;
|
||||
|
||||
let fields_ids_map = index.fields_ids_map(&rtxn).unwrap();
|
||||
|
||||
let displayed_ids = index
|
||||
.displayed_fields_ids(&rtxn)?
|
||||
.map(|fields| fields.into_iter().collect::<BTreeSet<_>>())
|
||||
.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect());
|
||||
|
||||
let fids = |attrs: &BTreeSet<String>| {
|
||||
let mut ids = BTreeSet::new();
|
||||
for attr in attrs {
|
||||
if attr == "*" {
|
||||
ids = displayed_ids.clone();
|
||||
break;
|
||||
}
|
||||
|
||||
if let Some(id) = fields_ids_map.id(attr) {
|
||||
ids.insert(id);
|
||||
}
|
||||
}
|
||||
ids
|
||||
};
|
||||
|
||||
// The attributes to retrieve are the ones explicitly marked as to retrieve (all by default),
|
||||
// but these attributes must be also be present
|
||||
// - in the fields_ids_map
|
||||
// - in the displayed attributes
|
||||
let to_retrieve_ids: BTreeSet<_> = query
|
||||
.attributes_to_retrieve
|
||||
.as_ref()
|
||||
.map(fids)
|
||||
.unwrap_or_else(|| displayed_ids.clone())
|
||||
.intersection(&displayed_ids)
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
let mut documents = Vec::new();
|
||||
let documents_iter = index.documents(&rtxn, documents_ids)?;
|
||||
|
||||
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
|
||||
// First generate a document with all the displayed fields
|
||||
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
|
||||
|
||||
// select the attributes to retrieve
|
||||
let attributes_to_retrieve = to_retrieve_ids
|
||||
.iter()
|
||||
.map(|&fid| fields_ids_map.name(fid).expect("Missing field name"));
|
||||
let document =
|
||||
permissive_json_pointer::select_values(&displayed_document, attributes_to_retrieve);
|
||||
|
||||
let ranking_score =
|
||||
query.show_ranking_score.then(|| ScoreDetails::global_score(score.iter()));
|
||||
let ranking_score_details =
|
||||
query.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter()));
|
||||
|
||||
let hit = SearchHit {
|
||||
document,
|
||||
formatted: Default::default(),
|
||||
matches_position: None,
|
||||
ranking_score_details,
|
||||
ranking_score,
|
||||
};
|
||||
documents.push(hit);
|
||||
}
|
||||
|
||||
let max_total_hits = index
|
||||
.pagination_max_total_hits(&rtxn)
|
||||
.map_err(milli::Error::from)?
|
||||
.map(|x| x as usize)
|
||||
.unwrap_or(DEFAULT_PAGINATION_MAX_TOTAL_HITS);
|
||||
|
||||
let number_of_hits = min(candidates.len() as usize, max_total_hits);
|
||||
let hits_info = HitsInfo::OffsetLimit {
|
||||
limit: query.limit,
|
||||
offset: query.offset,
|
||||
estimated_total_hits: number_of_hits,
|
||||
};
|
||||
|
||||
let result = RecommendResult {
|
||||
hits: documents,
|
||||
hits_info,
|
||||
id: query.id,
|
||||
processing_time_ms: before_search.elapsed().as_millis(),
|
||||
};
|
||||
Ok(result)
|
||||
}
|
||||
|
||||
fn insert_geo_distance(sorts: &[String], document: &mut Document) {
|
||||
lazy_static::lazy_static! {
|
||||
static ref GEO_REGEX: Regex =
|
||||
|
@ -59,6 +59,7 @@ pub use self::heed_codec::{
|
||||
};
|
||||
pub use self::index::Index;
|
||||
pub use self::search::facet::{FacetValueHit, SearchForFacetValues};
|
||||
pub use self::search::recommend::Recommend;
|
||||
pub use self::search::{
|
||||
FacetDistribution, Filter, FormatOptions, MatchBounds, MatcherBuilder, MatchingWords, OrderBy,
|
||||
Search, SearchResult, SemanticSearch, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET,
|
||||
|
@ -24,6 +24,7 @@ pub mod facet;
|
||||
mod fst_utils;
|
||||
pub mod hybrid;
|
||||
pub mod new;
|
||||
pub mod recommend;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SemanticSearch {
|
||||
|
108
milli/src/search/recommend.rs
Normal file
108
milli/src/search/recommend.rs
Normal file
@ -0,0 +1,108 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use ordered_float::OrderedFloat;
|
||||
|
||||
use crate::score_details::{self, ScoreDetails};
|
||||
use crate::vector::Embedder;
|
||||
use crate::{filtered_universe, DocumentId, Filter, Index, Result, SearchResult};
|
||||
|
||||
pub struct Recommend<'a> {
|
||||
id: DocumentId,
|
||||
// this should be linked to the String in the query
|
||||
filter: Option<Filter<'a>>,
|
||||
offset: usize,
|
||||
limit: usize,
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
index: &'a Index,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
}
|
||||
|
||||
impl<'a> Recommend<'a> {
|
||||
pub fn new(
|
||||
id: DocumentId,
|
||||
offset: usize,
|
||||
limit: usize,
|
||||
index: &'a Index,
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
) -> Self {
|
||||
Self { id, filter: None, offset, limit, rtxn, index, embedder_name, embedder }
|
||||
}
|
||||
|
||||
pub fn filter(&mut self, filter: Filter<'a>) -> &mut Self {
|
||||
self.filter = Some(filter);
|
||||
self
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> Result<SearchResult> {
|
||||
let universe = filtered_universe(self.index, self.rtxn, &self.filter)?;
|
||||
|
||||
let embedder_index =
|
||||
self.index
|
||||
.embedder_category_id
|
||||
.get(self.rtxn, &self.embedder_name)?
|
||||
.ok_or_else(|| crate::UserError::InvalidEmbedder(self.embedder_name.to_owned()))?;
|
||||
|
||||
let writer_index = (embedder_index as u16) << 8;
|
||||
let readers: std::result::Result<Vec<_>, _> = (0..=u8::MAX)
|
||||
.map_while(|k| {
|
||||
arroy::Reader::open(self.rtxn, writer_index | (k as u16), self.index.vector_arroy)
|
||||
.map(Some)
|
||||
.or_else(|e| match e {
|
||||
arroy::Error::MissingMetadata => Ok(None),
|
||||
e => Err(e),
|
||||
})
|
||||
.transpose()
|
||||
})
|
||||
.collect();
|
||||
|
||||
let readers = readers?;
|
||||
|
||||
let mut results = Vec::new();
|
||||
|
||||
for reader in readers.iter() {
|
||||
let nns_by_item = reader.nns_by_item(
|
||||
self.rtxn,
|
||||
self.id,
|
||||
self.limit + self.offset + 1,
|
||||
None,
|
||||
Some(&universe),
|
||||
)?;
|
||||
if let Some(mut nns_by_item) = nns_by_item {
|
||||
results.append(&mut nns_by_item);
|
||||
}
|
||||
}
|
||||
|
||||
results.sort_unstable_by_key(|(_, distance)| OrderedFloat(*distance));
|
||||
|
||||
let mut documents_ids = Vec::with_capacity(self.limit);
|
||||
let mut document_scores = Vec::with_capacity(self.limit);
|
||||
|
||||
// skip offset +1 to skip the target document that is normally returned
|
||||
for (docid, distance) in results.into_iter().skip(self.offset + 1) {
|
||||
documents_ids.push(docid);
|
||||
|
||||
let score = 1.0 - distance;
|
||||
let score = self
|
||||
.embedder
|
||||
.distribution()
|
||||
.map(|distribution| distribution.shift(score))
|
||||
.unwrap_or(score);
|
||||
|
||||
let score = ScoreDetails::Vector(score_details::Vector { similarity: Some(score) });
|
||||
|
||||
document_scores.push(vec![score]);
|
||||
}
|
||||
|
||||
Ok(SearchResult {
|
||||
matching_words: Default::default(),
|
||||
candidates: universe,
|
||||
documents_ids,
|
||||
document_scores,
|
||||
degraded: false,
|
||||
used_negative_operator: false,
|
||||
})
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user