662: Enhance word splitting strategy r=ManyTheFish a=akki1306

# Pull Request

## Related issue
Fixes #648 

## What does this PR do?
- [split_best_frequency](55d889522b/milli/src/search/query_tree.rs (L282-L301)) to use frequency of word pairs near together with proximity value of 1 instead of considering the frequency of individual words. Word pairs having max frequency are considered.

## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?

Thank you so much for contributing to Meilisearch!

Co-authored-by: Akshay Kulkarni <akshayk.gj@gmail.com>
This commit is contained in:
bors[bot] 2022-10-13 08:14:22 +00:00 committed by GitHub
commit f30979d021
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

65
milli/src/search/query_tree.rs Normal file → Executable file
View File

@ -1,6 +1,6 @@
use std::borrow::Cow; use std::borrow::Cow;
use std::cmp::max; use std::cmp::max;
use std::{cmp, fmt, mem}; use std::{fmt, mem};
use charabia::classifier::ClassifiedTokenIter; use charabia::classifier::ClassifiedTokenIter;
use charabia::{SeparatorKind, TokenKind}; use charabia::{SeparatorKind, TokenKind};
@ -10,7 +10,7 @@ use slice_group_by::GroupBy;
use crate::search::matches::matching_words::{MatchingWord, PrimitiveWordId}; use crate::search::matches::matching_words::{MatchingWord, PrimitiveWordId};
use crate::search::TermsMatchingStrategy; use crate::search::TermsMatchingStrategy;
use crate::{Index, MatchingWords, Result}; use crate::{CboRoaringBitmapLenCodec, Index, MatchingWords, Result};
type IsOptionalWord = bool; type IsOptionalWord = bool;
type IsPrefix = bool; type IsPrefix = bool;
@ -156,6 +156,12 @@ trait Context {
/// Returns the minimum word len for 1 and 2 typos. /// Returns the minimum word len for 1 and 2 typos.
fn min_word_len_for_typo(&self) -> heed::Result<(u8, u8)>; fn min_word_len_for_typo(&self) -> heed::Result<(u8, u8)>;
fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>>; fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>>;
fn word_pair_frequency(
&self,
left_word: &str,
right_word: &str,
proximity: u8,
) -> heed::Result<Option<u64>>;
} }
/// The query tree builder is the interface to build a query tree. /// The query tree builder is the interface to build a query tree.
@ -190,6 +196,19 @@ impl<'a> Context for QueryTreeBuilder<'a> {
fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>> { fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>> {
self.exact_words.as_ref() self.exact_words.as_ref()
} }
fn word_pair_frequency(
&self,
left_word: &str,
right_word: &str,
proximity: u8,
) -> heed::Result<Option<u64>> {
let key = (left_word, right_word, proximity);
self.index
.word_pair_proximity_docids
.remap_data_type::<CboRoaringBitmapLenCodec>()
.get(&self.rtxn, &key)
}
} }
impl<'a> QueryTreeBuilder<'a> { impl<'a> QueryTreeBuilder<'a> {
@ -263,7 +282,7 @@ impl<'a> QueryTreeBuilder<'a> {
} }
} }
/// Split the word depending on the frequency of subwords in the database documents. /// Split the word depending on the frequency of pairs near together in the database documents.
fn split_best_frequency<'a>( fn split_best_frequency<'a>(
ctx: &impl Context, ctx: &impl Context,
word: &'a str, word: &'a str,
@ -274,12 +293,10 @@ fn split_best_frequency<'a>(
for (i, _) in chars { for (i, _) in chars {
let (left, right) = word.split_at(i); let (left, right) = word.split_at(i);
let left_freq = ctx.word_documents_count(left)?.unwrap_or(0); let pair_freq = ctx.word_pair_frequency(left, right, 1)?.unwrap_or(0);
let right_freq = ctx.word_documents_count(right)?.unwrap_or(0);
let min_freq = cmp::min(left_freq, right_freq); if pair_freq != 0 && best.map_or(true, |(old, _, _)| pair_freq > old) {
if min_freq != 0 && best.map_or(true, |(old, _, _)| min_freq > old) { best = Some((pair_freq, left, right));
best = Some((min_freq, left, right));
} }
} }
@ -836,6 +853,18 @@ mod test {
fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>> { fn exact_words(&self) -> Option<&fst::Set<Cow<[u8]>>> {
self.exact_words.as_ref() self.exact_words.as_ref()
} }
fn word_pair_frequency(
&self,
left_word: &str,
right_word: &str,
_proximity: u8,
) -> heed::Result<Option<u64>> {
match self.word_docids(&format!("{} {}", left_word, right_word))? {
Some(rb) => Ok(Some(rb.len())),
None => Ok(None),
}
}
} }
impl Default for TestContext { impl Default for TestContext {
@ -894,6 +923,9 @@ mod test {
String::from("this") => random_postings(rng, 50_000), String::from("this") => random_postings(rng, 50_000),
String::from("good") => random_postings(rng, 1250), String::from("good") => random_postings(rng, 1250),
String::from("morning") => random_postings(rng, 125), String::from("morning") => random_postings(rng, 125),
String::from("word split") => random_postings(rng, 5000),
String::from("quick brownfox") => random_postings(rng, 7000),
String::from("quickbrown fox") => random_postings(rng, 8000),
}, },
exact_words, exact_words,
} }
@ -1041,6 +1073,23 @@ mod test {
"###); "###);
} }
#[test]
fn word_split_choose_pair_with_max_freq() {
let query = "quickbrownfox";
let tokens = query.tokenize();
let (query_tree, _) = TestContext::default()
.build(TermsMatchingStrategy::All, true, None, tokens)
.unwrap()
.unwrap();
insta::assert_debug_snapshot!(query_tree, @r###"
OR
PHRASE ["quickbrown", "fox"]
PrefixTolerant { word: "quickbrownfox", max typo: 2 }
"###);
}
#[test] #[test]
fn phrase() { fn phrase() {
let query = "\"hey friends\" \" \" \"wooop"; let query = "\"hey friends\" \" \" \"wooop";