Merge pull request #5614 from meilisearch/fix-hybrid-distinct

Fix distinct for hybrid search
This commit is contained in:
Many the fish 2025-06-03 07:20:55 +00:00 committed by GitHub
commit ea6bb4df1d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 166 additions and 25 deletions

View File

@ -76,6 +76,48 @@ static SINGLE_DOCUMENT_VEC: Lazy<Value> = Lazy::new(|| {
}]) }])
}); });
static TEST_DISTINCT_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
// for query "Captain Marvel" and vector [1.0, 1.0]
json!([
{
"id": 0,
"search": "Captain Planet",
"desc": "#2 for keyword search, #3 for hybrid search",
"_vectors": {
"default": [-1.0, 0.0],
},
"distinct": 0
},
{
"id": 1,
"search": "Captain Marvel",
"desc": "#1 for keyword search, #4 for hybrid search",
"_vectors": {
"default": [-1.0, -1.0],
},
"distinct": 1
},
{
"id": 2,
"search": "Some Captain at least",
"desc": "#3 for keyword search, #1 for hybrid search",
"_vectors": {
"default": [1.0, 1.0],
},
"distinct": 0
},
{
"id": 3,
"search": "Irrelevant Capitaine",
"desc": "#4 for keyword search, #2 for hybrid search",
"_vectors": {
"default": [1.0, 0.0],
},
"distinct": 1
},
])
});
static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| { static SIMPLE_SEARCH_DOCUMENTS: Lazy<Value> = Lazy::new(|| {
json!([ json!([
{ {
@ -493,6 +535,50 @@ async fn query_combination() {
snapshot!(response["semanticHitCount"], @"0"); snapshot!(response["semanticHitCount"], @"0");
} }
// see <https://github.com/meilisearch/meilisearch/issues/5526>
#[actix_rt::test]
async fn distinct_is_applied() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &TEST_DISTINCT_DOCUMENTS).await;
let (response, code) = index.update_settings(json!({ "distinctAttribute": "distinct" } )).await;
assert_eq!(202, code, "{:?}", response);
index.wait_task(response.uid()).await.succeeded();
// pure keyword
let (response, code) = index
.search_post(
json!({"q": "Captain Marvel", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.0, "embedder": "default"}}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":1,"search":"Captain Marvel","desc":"#1 for keyword search, #4 for hybrid search","distinct":1},{"id":0,"search":"Captain Planet","desc":"#2 for keyword search, #3 for hybrid search","distinct":0}]"###);
snapshot!(response["semanticHitCount"], @"null");
snapshot!(response["estimatedTotalHits"], @"2");
// pure semantic
let (response, code) = index
.search_post(
json!({"q": "Captain Marvel", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 1.0, "embedder": "default"}}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":2,"search":"Some Captain at least","desc":"#3 for keyword search, #1 for hybrid search","distinct":0},{"id":3,"search":"Irrelevant Capitaine","desc":"#4 for keyword search, #2 for hybrid search","distinct":1}]"###);
snapshot!(response["semanticHitCount"], @"2");
snapshot!(response["estimatedTotalHits"], @"2");
// hybrid
let (response, code) = index
.search_post(
json!({"q": "Captain Marvel", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.5, "embedder": "default"}}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"id":2,"search":"Some Captain at least","desc":"#3 for keyword search, #1 for hybrid search","distinct":0},{"id":1,"search":"Captain Marvel","desc":"#1 for keyword search, #4 for hybrid search","distinct":1}]"###);
snapshot!(response["semanticHitCount"], @"1");
snapshot!(response["estimatedTotalHits"], @"2");
}
#[actix_rt::test] #[actix_rt::test]
async fn retrieve_vectors() { async fn retrieve_vectors() {
let server = Server::new().await; let server = Server::new().await;

View File

@ -1,11 +1,13 @@
use std::cmp::Ordering; use std::cmp::Ordering;
use heed::RoTxn;
use itertools::Itertools; use itertools::Itertools;
use roaring::RoaringBitmap; use roaring::RoaringBitmap;
use crate::score_details::{ScoreDetails, ScoreValue, ScoringStrategy}; use crate::score_details::{ScoreDetails, ScoreValue, ScoringStrategy};
use crate::search::new::{distinct_fid, distinct_single_docid};
use crate::search::SemanticSearch; use crate::search::SemanticSearch;
use crate::{MatchingWords, Result, Search, SearchResult}; use crate::{Index, MatchingWords, Result, Search, SearchResult};
struct ScoreWithRatioResult { struct ScoreWithRatioResult {
matching_words: MatchingWords, matching_words: MatchingWords,
@ -91,7 +93,10 @@ impl ScoreWithRatioResult {
keyword_results: Self, keyword_results: Self,
from: usize, from: usize,
length: usize, length: usize,
) -> (SearchResult, u32) { distinct: Option<&str>,
index: &Index,
rtxn: &RoTxn<'_>,
) -> Result<(SearchResult, u32)> {
#[derive(Clone, Copy)] #[derive(Clone, Copy)]
enum ResultSource { enum ResultSource {
Semantic, Semantic,
@ -106,8 +111,9 @@ impl ScoreWithRatioResult {
vector_results.document_scores.len() + keyword_results.document_scores.len(), vector_results.document_scores.len() + keyword_results.document_scores.len(),
); );
let mut documents_seen = RoaringBitmap::new(); let distinct_fid = distinct_fid(distinct, index, rtxn)?;
for ((docid, (main_score, _sub_score)), source) in vector_results let mut excluded_documents = RoaringBitmap::new();
for res in vector_results
.document_scores .document_scores
.into_iter() .into_iter()
.zip(std::iter::repeat(ResultSource::Semantic)) .zip(std::iter::repeat(ResultSource::Semantic))
@ -121,13 +127,33 @@ impl ScoreWithRatioResult {
compare_scores(left, right).is_ge() compare_scores(left, right).is_ge()
}, },
) )
// remove documents we already saw // remove documents we already saw and apply distinct rule
.filter(|((docid, _), _)| documents_seen.insert(*docid)) .filter_map(|item @ ((docid, _), _)| {
if !excluded_documents.insert(docid) {
// the document was already added, or is indistinct from an already-added document.
return None;
}
if let Some(distinct_fid) = distinct_fid {
if let Err(error) = distinct_single_docid(
index,
rtxn,
distinct_fid,
docid,
&mut excluded_documents,
) {
return Some(Err(error));
}
}
Some(Ok(item))
})
// start skipping **after** the filter // start skipping **after** the filter
.skip(from) .skip(from)
// take **after** skipping // take **after** skipping
.take(length) .take(length)
{ {
let ((docid, (main_score, _sub_score)), source) = res?;
if let ResultSource::Semantic = source { if let ResultSource::Semantic = source {
semantic_hit_count += 1; semantic_hit_count += 1;
} }
@ -136,10 +162,24 @@ impl ScoreWithRatioResult {
document_scores.push(main_score); document_scores.push(main_score);
} }
( // compute the set of candidates from both sets
let candidates = vector_results.candidates | keyword_results.candidates;
let must_remove_redundant_candidates = distinct_fid.is_some();
let candidates = if must_remove_redundant_candidates {
// patch-up the candidates to remove the indistinct documents, then add back the actual hits
let mut candidates = candidates - excluded_documents;
for docid in &documents_ids {
candidates.insert(*docid);
}
candidates
} else {
candidates
};
Ok((
SearchResult { SearchResult {
matching_words: keyword_results.matching_words, matching_words: keyword_results.matching_words,
candidates: vector_results.candidates | keyword_results.candidates, candidates,
documents_ids, documents_ids,
document_scores, document_scores,
degraded: vector_results.degraded | keyword_results.degraded, degraded: vector_results.degraded | keyword_results.degraded,
@ -147,7 +187,7 @@ impl ScoreWithRatioResult {
| keyword_results.used_negative_operator, | keyword_results.used_negative_operator,
}, },
semantic_hit_count, semantic_hit_count,
) ))
} }
} }
@ -226,8 +266,15 @@ impl Search<'_> {
let keyword_results = ScoreWithRatioResult::new(keyword_results, 1.0 - semantic_ratio); let keyword_results = ScoreWithRatioResult::new(keyword_results, 1.0 - semantic_ratio);
let vector_results = ScoreWithRatioResult::new(vector_results, semantic_ratio); let vector_results = ScoreWithRatioResult::new(vector_results, semantic_ratio);
let (merge_results, semantic_hit_count) = let (merge_results, semantic_hit_count) = ScoreWithRatioResult::merge(
ScoreWithRatioResult::merge(vector_results, keyword_results, self.offset, self.limit); vector_results,
keyword_results,
self.offset,
self.limit,
search.distinct.as_deref(),
search.index,
search.rtxn,
)?;
assert!(merge_results.documents_ids.len() <= self.limit); assert!(merge_results.documents_ids.len() <= self.limit);
Ok((merge_results, Some(semantic_hit_count))) Ok((merge_results, Some(semantic_hit_count)))
} }

View File

@ -4,7 +4,9 @@ use super::logger::SearchLogger;
use super::ranking_rules::{BoxRankingRule, RankingRuleQueryTrait}; use super::ranking_rules::{BoxRankingRule, RankingRuleQueryTrait};
use super::SearchContext; use super::SearchContext;
use crate::score_details::{ScoreDetails, ScoringStrategy}; use crate::score_details::{ScoreDetails, ScoringStrategy};
use crate::search::new::distinct::{apply_distinct_rule, distinct_single_docid, DistinctOutput}; use crate::search::new::distinct::{
apply_distinct_rule, distinct_fid, distinct_single_docid, DistinctOutput,
};
use crate::{Result, TimeBudget}; use crate::{Result, TimeBudget};
pub struct BucketSortOutput { pub struct BucketSortOutput {
@ -35,16 +37,7 @@ pub fn bucket_sort<'ctx, Q: RankingRuleQueryTrait>(
logger.ranking_rules(&ranking_rules); logger.ranking_rules(&ranking_rules);
logger.initial_universe(universe); logger.initial_universe(universe);
let distinct_field = match distinct { let distinct_fid = distinct_fid(distinct, ctx.index, ctx.txn)?;
Some(distinct) => Some(distinct),
None => ctx.index.distinct_field(ctx.txn)?,
};
let distinct_fid = if let Some(field) = distinct_field {
ctx.index.fields_ids_map(ctx.txn)?.id(field)
} else {
None
};
if universe.len() < from as u64 { if universe.len() < from as u64 {
return Ok(BucketSortOutput { return Ok(BucketSortOutput {

View File

@ -9,7 +9,7 @@ use crate::heed_codec::facet::{
FacetGroupKey, FacetGroupKeyCodec, FacetGroupValueCodec, FieldDocIdFacetCodec, FacetGroupKey, FacetGroupKeyCodec, FacetGroupValueCodec, FieldDocIdFacetCodec,
}; };
use crate::heed_codec::BytesRefCodec; use crate::heed_codec::BytesRefCodec;
use crate::{Index, Result, SearchContext}; use crate::{FieldId, Index, Result, SearchContext};
pub struct DistinctOutput { pub struct DistinctOutput {
pub remaining: RoaringBitmap, pub remaining: RoaringBitmap,
@ -121,3 +121,18 @@ pub fn facet_string_values<'a>(
fn facet_values_prefix_key(distinct: u16, id: u32) -> [u8; FID_SIZE + DOCID_SIZE] { fn facet_values_prefix_key(distinct: u16, id: u32) -> [u8; FID_SIZE + DOCID_SIZE] {
concat_arrays::concat_arrays!(distinct.to_be_bytes(), id.to_be_bytes()) concat_arrays::concat_arrays!(distinct.to_be_bytes(), id.to_be_bytes())
} }
pub fn distinct_fid(
query_distinct_field: Option<&str>,
index: &Index,
rtxn: &RoTxn<'_>,
) -> Result<Option<FieldId>> {
let distinct_field = match query_distinct_field {
Some(distinct) => Some(distinct),
None => index.distinct_field(rtxn)?,
};
let distinct_fid =
if let Some(field) = distinct_field { index.fields_ids_map(rtxn)?.id(field) } else { None };
Ok(distinct_fid)
}

View File

@ -28,6 +28,7 @@ use std::time::Duration;
use bucket_sort::{bucket_sort, BucketSortOutput}; use bucket_sort::{bucket_sort, BucketSortOutput};
use charabia::{Language, TokenizerBuilder}; use charabia::{Language, TokenizerBuilder};
use db_cache::DatabaseCache; use db_cache::DatabaseCache;
pub use distinct::{distinct_fid, distinct_single_docid};
use exact_attribute::ExactAttribute; use exact_attribute::ExactAttribute;
use graph_based_ranking_rule::{Exactness, Fid, Position, Proximity, Typo}; use graph_based_ranking_rule::{Exactness, Fid, Position, Proximity, Typo};
use heed::RoTxn; use heed::RoTxn;
@ -47,8 +48,7 @@ use sort::Sort;
use self::distinct::facet_string_values; use self::distinct::facet_string_values;
use self::geo_sort::GeoSort; use self::geo_sort::GeoSort;
pub use self::geo_sort::Parameter as GeoSortParameter; pub use self::geo_sort::{Parameter as GeoSortParameter, Strategy as GeoSortStrategy};
pub use self::geo_sort::Strategy as GeoSortStrategy;
use self::graph_based_ranking_rule::Words; use self::graph_based_ranking_rule::Words;
use self::interner::Interned; use self::interner::Interned;
use self::vector_sort::VectorSort; use self::vector_sort::VectorSort;