4649: Don't store the vectors in the documents database r=dureuill a=irevoire

# Pull Request

## Related issue
Fixes https://github.com/meilisearch/meilisearch/issues/4607

## What does this PR do?
- Ensure that anything falling under `_vectors` is NOT searchable, filterable or sortable
- [x] per embedder, add a roaring bitmap of documents that provide "userProvided" embeddings
- [x] in the indexing process in extract_vector_points, set the bit corresponding to the document depending on the "userProvided" subfield in the _vectors field.
- [x] in the document DB in typed chunks, when writing the _vectors field, remove all keys corresponding to an embedder

Co-authored-by: Tamo <tamo@meilisearch.com>
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
This commit is contained in:
meili-bors[bot] 2024-06-17 12:32:03 +00:00 committed by GitHub
commit e9bf4c43a4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
60 changed files with 3920 additions and 1126 deletions

View file

@ -74,8 +74,8 @@ pub enum DocumentDeletionKind {
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DocumentFetchKind {
PerDocumentId,
Normal { with_filter: bool, limit: usize, offset: usize },
PerDocumentId { retrieve_vectors: bool },
Normal { with_filter: bool, limit: usize, offset: usize, retrieve_vectors: bool },
}
pub trait Analytics: Sync + Send {

View file

@ -622,6 +622,7 @@ pub struct SearchAggregator {
// Whether a non-default embedder was specified
embedder: bool,
hybrid: bool,
retrieve_vectors: bool,
// every time a search is done, we increment the counter linked to the used settings
matching_strategy: HashMap<String, usize>,
@ -662,6 +663,7 @@ impl SearchAggregator {
page,
hits_per_page,
attributes_to_retrieve: _,
retrieve_vectors,
attributes_to_crop: _,
crop_length,
attributes_to_highlight: _,
@ -728,6 +730,7 @@ impl SearchAggregator {
if let Some(ref vector) = vector {
ret.max_vector_size = vector.len();
}
ret.retrieve_vectors |= retrieve_vectors;
if query.is_finite_pagination() {
let limit = hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT);
@ -803,6 +806,7 @@ impl SearchAggregator {
attributes_to_search_on_total_number_of_uses,
max_terms_number,
max_vector_size,
retrieve_vectors,
matching_strategy,
max_limit,
max_offset,
@ -873,6 +877,7 @@ impl SearchAggregator {
// vector
self.max_vector_size = self.max_vector_size.max(max_vector_size);
self.retrieve_vectors |= retrieve_vectors;
self.semantic_ratio |= semantic_ratio;
self.hybrid |= hybrid;
self.embedder |= embedder;
@ -929,6 +934,7 @@ impl SearchAggregator {
attributes_to_search_on_total_number_of_uses,
max_terms_number,
max_vector_size,
retrieve_vectors,
matching_strategy,
max_limit,
max_offset,
@ -991,6 +997,7 @@ impl SearchAggregator {
},
"vector": {
"max_vector_size": max_vector_size,
"retrieve_vectors": retrieve_vectors,
},
"hybrid": {
"enabled": hybrid,
@ -1079,6 +1086,7 @@ impl MultiSearchAggregator {
page: _,
hits_per_page: _,
attributes_to_retrieve: _,
retrieve_vectors: _,
attributes_to_crop: _,
crop_length: _,
attributes_to_highlight: _,
@ -1534,6 +1542,9 @@ pub struct DocumentsFetchAggregator {
// if a filter was used
per_filter: bool,
#[serde(rename = "vector.retrieve_vectors")]
retrieve_vectors: bool,
// pagination
#[serde(rename = "pagination.max_limit")]
max_limit: usize,
@ -1543,18 +1554,21 @@ pub struct DocumentsFetchAggregator {
impl DocumentsFetchAggregator {
pub fn from_query(query: &DocumentFetchKind, request: &HttpRequest) -> Self {
let (limit, offset) = match query {
DocumentFetchKind::PerDocumentId => (1, 0),
DocumentFetchKind::Normal { limit, offset, .. } => (*limit, *offset),
let (limit, offset, retrieve_vectors) = match query {
DocumentFetchKind::PerDocumentId { retrieve_vectors } => (1, 0, *retrieve_vectors),
DocumentFetchKind::Normal { limit, offset, retrieve_vectors, .. } => {
(*limit, *offset, *retrieve_vectors)
}
};
Self {
timestamp: Some(OffsetDateTime::now_utc()),
user_agents: extract_user_agents(request).into_iter().collect(),
total_received: 1,
per_document_id: matches!(query, DocumentFetchKind::PerDocumentId),
per_document_id: matches!(query, DocumentFetchKind::PerDocumentId { .. }),
per_filter: matches!(query, DocumentFetchKind::Normal { with_filter, .. } if *with_filter),
max_limit: limit,
max_offset: offset,
retrieve_vectors,
}
}
@ -1568,6 +1582,7 @@ impl DocumentsFetchAggregator {
per_filter,
max_limit,
max_offset,
retrieve_vectors,
} = other;
if self.timestamp.is_none() {
@ -1583,6 +1598,8 @@ impl DocumentsFetchAggregator {
self.max_limit = self.max_limit.max(max_limit);
self.max_offset = self.max_offset.max(max_offset);
self.retrieve_vectors |= retrieve_vectors;
}
pub fn into_event(self, user: &User, event_name: &str) -> Option<Track> {
@ -1623,6 +1640,7 @@ pub struct SimilarAggregator {
// Whether a non-default embedder was specified
embedder: bool,
retrieve_vectors: bool,
// pagination
max_limit: usize,
@ -1646,6 +1664,7 @@ impl SimilarAggregator {
offset,
limit,
attributes_to_retrieve: _,
retrieve_vectors,
show_ranking_score,
show_ranking_score_details,
filter,
@ -1690,6 +1709,7 @@ impl SimilarAggregator {
ret.ranking_score_threshold = ranking_score_threshold.is_some();
ret.embedder = embedder.is_some();
ret.retrieve_vectors = *retrieve_vectors;
ret
}
@ -1722,6 +1742,7 @@ impl SimilarAggregator {
show_ranking_score_details,
embedder,
ranking_score_threshold,
retrieve_vectors,
} = other;
if self.timestamp.is_none() {
@ -1751,6 +1772,7 @@ impl SimilarAggregator {
}
self.embedder |= embedder;
self.retrieve_vectors |= retrieve_vectors;
// pagination
self.max_limit = self.max_limit.max(max_limit);
@ -1785,6 +1807,7 @@ impl SimilarAggregator {
show_ranking_score_details,
embedder,
ranking_score_threshold,
retrieve_vectors,
} = self;
if total_received == 0 {
@ -1811,6 +1834,9 @@ impl SimilarAggregator {
"avg_criteria_number": format!("{:.2}", filter_sum_of_criteria_terms as f64 / filter_total_number_of_criteria as f64),
"most_used_syntax": used_syntax.iter().max_by_key(|(_, v)| *v).map(|(k, _)| json!(k)).unwrap_or_else(|| json!(null)),
},
"vector": {
"retrieve_vectors": retrieve_vectors,
},
"hybrid": {
"embedder": embedder,
},

View file

@ -16,6 +16,7 @@ use meilisearch_types::error::{Code, ResponseError};
use meilisearch_types::heed::RoTxn;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::update::IndexDocumentsMethod;
use meilisearch_types::milli::vector::parsed_vectors::ExplicitVectors;
use meilisearch_types::milli::DocumentId;
use meilisearch_types::star_or::OptionStarOrList;
use meilisearch_types::tasks::KindWithContent;
@ -39,7 +40,7 @@ use crate::extractors::sequential_extractor::SeqHandler;
use crate::routes::{
get_task_id, is_dry_run, PaginationView, SummarizedTaskView, PAGINATION_DEFAULT_LIMIT,
};
use crate::search::parse_filter;
use crate::search::{parse_filter, RetrieveVectors};
use crate::Opt;
static ACCEPTED_CONTENT_TYPE: Lazy<Vec<String>> = Lazy::new(|| {
@ -94,6 +95,8 @@ pub fn configure(cfg: &mut web::ServiceConfig) {
pub struct GetDocument {
#[deserr(default, error = DeserrQueryParamError<InvalidDocumentFields>)]
fields: OptionStarOrList<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidDocumentRetrieveVectors>)]
retrieve_vectors: Param<bool>,
}
pub async fn get_document(
@ -107,13 +110,20 @@ pub async fn get_document(
debug!(parameters = ?params, "Get document");
let index_uid = IndexUid::try_from(index_uid)?;
analytics.get_fetch_documents(&DocumentFetchKind::PerDocumentId, &req);
let GetDocument { fields } = params.into_inner();
let GetDocument { fields, retrieve_vectors: param_retrieve_vectors } = params.into_inner();
let attributes_to_retrieve = fields.merge_star_and_none();
let features = index_scheduler.features();
let retrieve_vectors = RetrieveVectors::new(param_retrieve_vectors.0, features)?;
analytics.get_fetch_documents(
&DocumentFetchKind::PerDocumentId { retrieve_vectors: param_retrieve_vectors.0 },
&req,
);
let index = index_scheduler.index(&index_uid)?;
let document = retrieve_document(&index, &document_id, attributes_to_retrieve)?;
let document =
retrieve_document(&index, &document_id, attributes_to_retrieve, retrieve_vectors)?;
debug!(returns = ?document, "Get document");
Ok(HttpResponse::Ok().json(document))
}
@ -153,6 +163,8 @@ pub struct BrowseQueryGet {
limit: Param<usize>,
#[deserr(default, error = DeserrQueryParamError<InvalidDocumentFields>)]
fields: OptionStarOrList<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidDocumentRetrieveVectors>)]
retrieve_vectors: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidDocumentFilter>)]
filter: Option<String>,
}
@ -166,6 +178,8 @@ pub struct BrowseQuery {
limit: usize,
#[deserr(default, error = DeserrJsonError<InvalidDocumentFields>)]
fields: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidDocumentRetrieveVectors>)]
retrieve_vectors: bool,
#[deserr(default, error = DeserrJsonError<InvalidDocumentFilter>)]
filter: Option<Value>,
}
@ -185,6 +199,7 @@ pub async fn documents_by_query_post(
with_filter: body.filter.is_some(),
limit: body.limit,
offset: body.offset,
retrieve_vectors: body.retrieve_vectors,
},
&req,
);
@ -201,7 +216,7 @@ pub async fn get_documents(
) -> Result<HttpResponse, ResponseError> {
debug!(parameters = ?params, "Get documents GET");
let BrowseQueryGet { limit, offset, fields, filter } = params.into_inner();
let BrowseQueryGet { limit, offset, fields, retrieve_vectors, filter } = params.into_inner();
let filter = match filter {
Some(f) => match serde_json::from_str(&f) {
@ -215,6 +230,7 @@ pub async fn get_documents(
offset: offset.0,
limit: limit.0,
fields: fields.merge_star_and_none(),
retrieve_vectors: retrieve_vectors.0,
filter,
};
@ -223,6 +239,7 @@ pub async fn get_documents(
with_filter: query.filter.is_some(),
limit: query.limit,
offset: query.offset,
retrieve_vectors: query.retrieve_vectors,
},
&req,
);
@ -236,10 +253,14 @@ fn documents_by_query(
query: BrowseQuery,
) -> Result<HttpResponse, ResponseError> {
let index_uid = IndexUid::try_from(index_uid.into_inner())?;
let BrowseQuery { offset, limit, fields, filter } = query;
let BrowseQuery { offset, limit, fields, retrieve_vectors, filter } = query;
let features = index_scheduler.features();
let retrieve_vectors = RetrieveVectors::new(retrieve_vectors, features)?;
let index = index_scheduler.index(&index_uid)?;
let (total, documents) = retrieve_documents(&index, offset, limit, filter, fields)?;
let (total, documents) =
retrieve_documents(&index, offset, limit, filter, fields, retrieve_vectors)?;
let ret = PaginationView::new(offset, limit, total as usize, documents);
@ -579,13 +600,44 @@ fn some_documents<'a, 't: 'a>(
index: &'a Index,
rtxn: &'t RoTxn,
doc_ids: impl IntoIterator<Item = DocumentId> + 'a,
retrieve_vectors: RetrieveVectors,
) -> Result<impl Iterator<Item = Result<Document, ResponseError>> + 'a, ResponseError> {
let fields_ids_map = index.fields_ids_map(rtxn)?;
let all_fields: Vec<_> = fields_ids_map.iter().map(|(id, _)| id).collect();
let embedding_configs = index.embedding_configs(rtxn)?;
Ok(index.iter_documents(rtxn, doc_ids)?.map(move |ret| {
ret.map_err(ResponseError::from).and_then(|(_key, document)| -> Result<_, ResponseError> {
Ok(milli::obkv_to_json(&all_fields, &fields_ids_map, document)?)
ret.map_err(ResponseError::from).and_then(|(key, document)| -> Result<_, ResponseError> {
let mut document = milli::obkv_to_json(&all_fields, &fields_ids_map, document)?;
match retrieve_vectors {
RetrieveVectors::Ignore => {}
RetrieveVectors::Hide => {
document.remove("_vectors");
}
RetrieveVectors::Retrieve => {
let mut vectors = match document.remove("_vectors") {
Some(Value::Object(map)) => map,
_ => Default::default(),
};
for (name, vector) in index.embeddings(rtxn, key)? {
let user_provided = embedding_configs
.iter()
.find(|conf| conf.name == name)
.is_some_and(|conf| conf.user_provided.contains(key));
let embeddings = ExplicitVectors {
embeddings: Some(vector.into()),
regenerate: !user_provided,
};
vectors.insert(
name,
serde_json::to_value(embeddings).map_err(MeilisearchHttpError::from)?,
);
}
document.insert("_vectors".into(), vectors.into());
}
}
Ok(document)
})
}))
}
@ -596,6 +648,7 @@ fn retrieve_documents<S: AsRef<str>>(
limit: usize,
filter: Option<Value>,
attributes_to_retrieve: Option<Vec<S>>,
retrieve_vectors: RetrieveVectors,
) -> Result<(u64, Vec<Document>), ResponseError> {
let rtxn = index.read_txn()?;
let filter = &filter;
@ -620,53 +673,57 @@ fn retrieve_documents<S: AsRef<str>>(
let (it, number_of_documents) = {
let number_of_documents = candidates.len();
(
some_documents(index, &rtxn, candidates.into_iter().skip(offset).take(limit))?,
some_documents(
index,
&rtxn,
candidates.into_iter().skip(offset).take(limit),
retrieve_vectors,
)?,
number_of_documents,
)
};
let documents: Result<Vec<_>, ResponseError> = it
let documents: Vec<_> = it
.map(|document| {
Ok(match &attributes_to_retrieve {
Some(attributes_to_retrieve) => permissive_json_pointer::select_values(
&document?,
attributes_to_retrieve.iter().map(|s| s.as_ref()),
attributes_to_retrieve.iter().map(|s| s.as_ref()).chain(
(retrieve_vectors == RetrieveVectors::Retrieve).then_some("_vectors"),
),
),
None => document?,
})
})
.collect();
.collect::<Result<_, ResponseError>>()?;
Ok((number_of_documents, documents?))
Ok((number_of_documents, documents))
}
fn retrieve_document<S: AsRef<str>>(
index: &Index,
doc_id: &str,
attributes_to_retrieve: Option<Vec<S>>,
retrieve_vectors: RetrieveVectors,
) -> Result<Document, ResponseError> {
let txn = index.read_txn()?;
let fields_ids_map = index.fields_ids_map(&txn)?;
let all_fields: Vec<_> = fields_ids_map.iter().map(|(id, _)| id).collect();
let internal_id = index
.external_documents_ids()
.get(&txn, doc_id)?
.ok_or_else(|| MeilisearchHttpError::DocumentNotFound(doc_id.to_string()))?;
let document = index
.documents(&txn, std::iter::once(internal_id))?
.into_iter()
let document = some_documents(index, &txn, Some(internal_id), retrieve_vectors)?
.next()
.map(|(_, d)| d)
.ok_or_else(|| MeilisearchHttpError::DocumentNotFound(doc_id.to_string()))?;
.ok_or_else(|| MeilisearchHttpError::DocumentNotFound(doc_id.to_string()))??;
let document = meilisearch_types::milli::obkv_to_json(&all_fields, &fields_ids_map, document)?;
let document = match &attributes_to_retrieve {
Some(attributes_to_retrieve) => permissive_json_pointer::select_values(
&document,
attributes_to_retrieve.iter().map(|s| s.as_ref()),
attributes_to_retrieve
.iter()
.map(|s| s.as_ref())
.chain((retrieve_vectors == RetrieveVectors::Retrieve).then_some("_vectors")),
),
None => document,
};

View file

@ -115,6 +115,7 @@ impl From<FacetSearchQuery> for SearchQuery {
page: None,
hits_per_page: None,
attributes_to_retrieve: None,
retrieve_vectors: false,
attributes_to_crop: None,
crop_length: DEFAULT_CROP_LENGTH(),
attributes_to_highlight: None,

View file

@ -20,9 +20,9 @@ use crate::extractors::sequential_extractor::SeqHandler;
use crate::metrics::MEILISEARCH_DEGRADED_SEARCH_REQUESTS;
use crate::search::{
add_search_rules, perform_search, HybridQuery, MatchingStrategy, RankingScoreThreshold,
SearchKind, SearchQuery, SemanticRatio, DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER,
DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO,
RetrieveVectors, SearchKind, SearchQuery, SemanticRatio, DEFAULT_CROP_LENGTH,
DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG,
DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO,
};
use crate::search_queue::SearchQueue;
@ -51,6 +51,8 @@ pub struct SearchQueryGet {
hits_per_page: Option<Param<usize>>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchAttributesToRetrieve>)]
attributes_to_retrieve: Option<CS<String>>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchRetrieveVectors>)]
retrieve_vectors: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchAttributesToCrop>)]
attributes_to_crop: Option<CS<String>>,
#[deserr(default = Param(DEFAULT_CROP_LENGTH()), error = DeserrQueryParamError<InvalidSearchCropLength>)]
@ -153,6 +155,7 @@ impl From<SearchQueryGet> for SearchQuery {
page: other.page.as_deref().copied(),
hits_per_page: other.hits_per_page.as_deref().copied(),
attributes_to_retrieve: other.attributes_to_retrieve.map(|o| o.into_iter().collect()),
retrieve_vectors: other.retrieve_vectors.0,
attributes_to_crop: other.attributes_to_crop.map(|o| o.into_iter().collect()),
crop_length: other.crop_length.0,
attributes_to_highlight: other.attributes_to_highlight.map(|o| o.into_iter().collect()),
@ -222,10 +225,12 @@ pub async fn search_with_url_query(
let features = index_scheduler.features();
let search_kind = search_kind(&query, index_scheduler.get_ref(), &index, features)?;
let retrieve_vector = RetrieveVectors::new(query.retrieve_vectors, features)?;
let _permit = search_queue.try_get_search_permit().await?;
let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, search_kind)).await?;
let search_result = tokio::task::spawn_blocking(move || {
perform_search(&index, query, search_kind, retrieve_vector)
})
.await?;
if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result);
}
@ -262,10 +267,13 @@ pub async fn search_with_post(
let features = index_scheduler.features();
let search_kind = search_kind(&query, index_scheduler.get_ref(), &index, features)?;
let retrieve_vectors = RetrieveVectors::new(query.retrieve_vectors, features)?;
let _permit = search_queue.try_get_search_permit().await?;
let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, search_kind)).await?;
let search_result = tokio::task::spawn_blocking(move || {
perform_search(&index, query, search_kind, retrieve_vectors)
})
.await?;
if let Ok(ref search_result) = search_result {
aggregate.succeed(search_result);
if search_result.degraded {
@ -287,11 +295,10 @@ pub fn search_kind(
features: RoFeatures,
) -> Result<SearchKind, ResponseError> {
if query.vector.is_some() {
features.check_vector("Passing `vector` as a query parameter")?;
features.check_vector("Passing `vector` as a parameter")?;
}
if query.hybrid.is_some() {
features.check_vector("Passing `hybrid` as a query parameter")?;
features.check_vector("Passing `hybrid` as a parameter")?;
}
// regardless of anything, always do a keyword search when we don't have a vector and the query is whitespace or missing

View file

@ -4,11 +4,7 @@ use deserr::actix_web::{AwebJson, AwebQueryParameter};
use index_scheduler::IndexScheduler;
use meilisearch_types::deserr::query_params::Param;
use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError};
use meilisearch_types::error::deserr_codes::{
InvalidEmbedder, InvalidSimilarAttributesToRetrieve, InvalidSimilarFilter, InvalidSimilarId,
InvalidSimilarLimit, InvalidSimilarOffset, InvalidSimilarRankingScoreThreshold,
InvalidSimilarShowRankingScore, InvalidSimilarShowRankingScoreDetails,
};
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::{ErrorCode as _, ResponseError};
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::keys::actions;
@ -21,8 +17,8 @@ use crate::analytics::{Analytics, SimilarAggregator};
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::search::{
add_search_rules, perform_similar, RankingScoreThresholdSimilar, SearchKind, SimilarQuery,
SimilarResult, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
add_search_rules, perform_similar, RankingScoreThresholdSimilar, RetrieveVectors, SearchKind,
SimilarQuery, SimilarResult, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
};
pub fn configure(cfg: &mut web::ServiceConfig) {
@ -97,6 +93,8 @@ async fn similar(
features.check_vector("Using the similar API")?;
let retrieve_vectors = RetrieveVectors::new(query.retrieve_vectors, features)?;
// Tenant token search_rules.
if let Some(search_rules) = index_scheduler.filters().get_index_search_rules(&index_uid) {
add_search_rules(&mut query.filter, search_rules);
@ -107,8 +105,10 @@ async fn similar(
let (embedder_name, embedder) =
SearchKind::embedder(&index_scheduler, &index, query.embedder.as_deref(), None)?;
tokio::task::spawn_blocking(move || perform_similar(&index, query, embedder_name, embedder))
.await?
tokio::task::spawn_blocking(move || {
perform_similar(&index, query, embedder_name, embedder, retrieve_vectors)
})
.await?
}
#[derive(Debug, deserr::Deserr)]
@ -122,6 +122,8 @@ pub struct SimilarQueryGet {
limit: Param<usize>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarAttributesToRetrieve>)]
attributes_to_retrieve: Option<CS<String>>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarRetrieveVectors>)]
retrieve_vectors: Param<bool>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarFilter>)]
filter: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidSimilarShowRankingScore>)]
@ -156,6 +158,7 @@ impl TryFrom<SimilarQueryGet> for SimilarQuery {
offset,
limit,
attributes_to_retrieve,
retrieve_vectors,
filter,
show_ranking_score,
show_ranking_score_details,
@ -180,6 +183,7 @@ impl TryFrom<SimilarQueryGet> for SimilarQuery {
filter,
embedder,
attributes_to_retrieve: attributes_to_retrieve.map(|o| o.into_iter().collect()),
retrieve_vectors: retrieve_vectors.0,
show_ranking_score: show_ranking_score.0,
show_ranking_score_details: show_ranking_score_details.0,
ranking_score_threshold: ranking_score_threshold.map(|x| x.0),

View file

@ -15,7 +15,7 @@ use crate::extractors::authentication::{AuthenticationError, GuardedData};
use crate::extractors::sequential_extractor::SeqHandler;
use crate::routes::indexes::search::search_kind;
use crate::search::{
add_search_rules, perform_search, SearchQueryWithIndex, SearchResultWithIndex,
add_search_rules, perform_search, RetrieveVectors, SearchQueryWithIndex, SearchResultWithIndex,
};
use crate::search_queue::SearchQueue;
@ -83,11 +83,14 @@ pub async fn multi_search_with_post(
let search_kind = search_kind(&query, index_scheduler.get_ref(), &index, features)
.with_index(query_index)?;
let retrieve_vector =
RetrieveVectors::new(query.retrieve_vectors, features).with_index(query_index)?;
let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, search_kind))
.await
.with_index(query_index)?;
let search_result = tokio::task::spawn_blocking(move || {
perform_search(&index, query, search_kind, retrieve_vector)
})
.await
.with_index(query_index)?;
search_results.push(SearchResultWithIndex {
index_uid: index_uid.into_inner(),

View file

@ -15,6 +15,7 @@ use meilisearch_types::error::{Code, ResponseError};
use meilisearch_types::heed::RoTxn;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::score_details::{ScoreDetails, ScoringStrategy};
use meilisearch_types::milli::vector::parsed_vectors::ExplicitVectors;
use meilisearch_types::milli::vector::Embedder;
use meilisearch_types::milli::{FacetValueHit, OrderBy, SearchForFacetValues, TimeBudget};
use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS;
@ -59,6 +60,8 @@ pub struct SearchQuery {
pub hits_per_page: Option<usize>,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToRetrieve>)]
pub attributes_to_retrieve: Option<BTreeSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchRetrieveVectors>)]
pub retrieve_vectors: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToCrop>)]
pub attributes_to_crop: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchCropLength>, default = DEFAULT_CROP_LENGTH())]
@ -141,6 +144,7 @@ impl fmt::Debug for SearchQuery {
page,
hits_per_page,
attributes_to_retrieve,
retrieve_vectors,
attributes_to_crop,
crop_length,
attributes_to_highlight,
@ -173,6 +177,9 @@ impl fmt::Debug for SearchQuery {
if let Some(q) = q {
debug.field("q", &q);
}
if *retrieve_vectors {
debug.field("retrieve_vectors", &retrieve_vectors);
}
if let Some(v) = vector {
if v.len() < 10 {
debug.field("vector", &v);
@ -370,6 +377,8 @@ pub struct SearchQueryWithIndex {
pub hits_per_page: Option<usize>,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToRetrieve>)]
pub attributes_to_retrieve: Option<BTreeSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchRetrieveVectors>)]
pub retrieve_vectors: bool,
#[deserr(default, error = DeserrJsonError<InvalidSearchAttributesToCrop>)]
pub attributes_to_crop: Option<Vec<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSearchCropLength>, default = DEFAULT_CROP_LENGTH())]
@ -413,6 +422,7 @@ impl SearchQueryWithIndex {
page,
hits_per_page,
attributes_to_retrieve,
retrieve_vectors,
attributes_to_crop,
crop_length,
attributes_to_highlight,
@ -440,6 +450,7 @@ impl SearchQueryWithIndex {
page,
hits_per_page,
attributes_to_retrieve,
retrieve_vectors,
attributes_to_crop,
crop_length,
attributes_to_highlight,
@ -478,6 +489,8 @@ pub struct SimilarQuery {
pub embedder: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSimilarAttributesToRetrieve>)]
pub attributes_to_retrieve: Option<BTreeSet<String>>,
#[deserr(default, error = DeserrJsonError<InvalidSimilarRetrieveVectors>)]
pub retrieve_vectors: bool,
#[deserr(default, error = DeserrJsonError<InvalidSimilarShowRankingScore>, default)]
pub show_ranking_score: bool,
#[deserr(default, error = DeserrJsonError<InvalidSimilarShowRankingScoreDetails>, default)]
@ -810,6 +823,7 @@ pub fn perform_search(
index: &Index,
query: SearchQuery,
search_kind: SearchKind,
retrieve_vectors: RetrieveVectors,
) -> Result<SearchResult, MeilisearchHttpError> {
let before_search = Instant::now();
let rtxn = index.read_txn()?;
@ -847,6 +861,8 @@ pub fn perform_search(
page,
hits_per_page,
attributes_to_retrieve,
// use the enum passed as parameter
retrieve_vectors: _,
attributes_to_crop,
crop_length,
attributes_to_highlight,
@ -870,6 +886,7 @@ pub fn perform_search(
let format = AttributesFormat {
attributes_to_retrieve,
retrieve_vectors,
attributes_to_highlight,
attributes_to_crop,
crop_length,
@ -953,6 +970,7 @@ pub fn perform_search(
struct AttributesFormat {
attributes_to_retrieve: Option<BTreeSet<String>>,
retrieve_vectors: RetrieveVectors,
attributes_to_highlight: Option<HashSet<String>>,
attributes_to_crop: Option<Vec<String>>,
crop_length: usize,
@ -965,6 +983,36 @@ struct AttributesFormat {
show_ranking_score_details: bool,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum RetrieveVectors {
/// Do not touch the `_vectors` field
///
/// this is the behavior when the vectorStore feature is disabled
Ignore,
/// Remove the `_vectors` field
///
/// this is the behavior when the vectorStore feature is enabled, and `retrieveVectors` is `false`
Hide,
/// Retrieve vectors from the DB and merge them into the `_vectors` field
///
/// this is the behavior when the vectorStore feature is enabled, and `retrieveVectors` is `true`
Retrieve,
}
impl RetrieveVectors {
pub fn new(
retrieve_vector: bool,
features: index_scheduler::RoFeatures,
) -> Result<Self, index_scheduler::Error> {
match (retrieve_vector, features.check_vector("Passing `retrieveVectors` as a parameter")) {
(true, Ok(())) => Ok(Self::Retrieve),
(true, Err(error)) => Err(error),
(false, Ok(())) => Ok(Self::Hide),
(false, Err(_)) => Ok(Self::Ignore),
}
}
}
fn make_hits(
index: &Index,
rtxn: &RoTxn<'_>,
@ -974,10 +1022,32 @@ fn make_hits(
document_scores: Vec<Vec<ScoreDetails>>,
) -> Result<Vec<SearchHit>, MeilisearchHttpError> {
let fields_ids_map = index.fields_ids_map(rtxn).unwrap();
let displayed_ids = index
.displayed_fields_ids(rtxn)?
.map(|fields| fields.into_iter().collect::<BTreeSet<_>>())
.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect());
let displayed_ids =
index.displayed_fields_ids(rtxn)?.map(|fields| fields.into_iter().collect::<BTreeSet<_>>());
let vectors_fid = fields_ids_map.id(milli::vector::parsed_vectors::RESERVED_VECTORS_FIELD_NAME);
let vectors_is_hidden = match (&displayed_ids, vectors_fid) {
// displayed_ids is a wildcard, so `_vectors` can be displayed regardless of its fid
(None, _) => false,
// displayed_ids is a finite list, and `_vectors` cannot be part of it because it is not an existing field
(Some(_), None) => true,
// displayed_ids is a finit list, so hide if `_vectors` is not part of it
(Some(map), Some(vectors_fid)) => map.contains(&vectors_fid),
};
let retrieve_vectors = if let RetrieveVectors::Retrieve = format.retrieve_vectors {
if vectors_is_hidden {
RetrieveVectors::Hide
} else {
RetrieveVectors::Retrieve
}
} else {
format.retrieve_vectors
};
let displayed_ids =
displayed_ids.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect());
let fids = |attrs: &BTreeSet<String>| {
let mut ids = BTreeSet::new();
for attr in attrs {
@ -1000,6 +1070,7 @@ fn make_hits(
.intersection(&displayed_ids)
.cloned()
.collect();
let attr_to_highlight = format.attributes_to_highlight.unwrap_or_default();
let attr_to_crop = format.attributes_to_crop.unwrap_or_default();
let formatted_options = compute_formatted_options(
@ -1033,18 +1104,48 @@ fn make_hits(
formatter_builder.highlight_prefix(format.highlight_pre_tag);
formatter_builder.highlight_suffix(format.highlight_post_tag);
let mut documents = Vec::new();
let embedding_configs = index.embedding_configs(rtxn)?;
let documents_iter = index.documents(rtxn, documents_ids)?;
for ((_id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
for ((id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) {
// First generate a document with all the displayed fields
let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?;
let add_vectors_fid =
vectors_fid.filter(|_fid| retrieve_vectors == RetrieveVectors::Retrieve);
// select the attributes to retrieve
let attributes_to_retrieve = to_retrieve_ids
.iter()
// skip the vectors_fid if RetrieveVectors::Hide
.filter(|fid| match vectors_fid {
Some(vectors_fid) => {
!(retrieve_vectors == RetrieveVectors::Hide && **fid == vectors_fid)
}
None => true,
})
// need to retrieve the existing `_vectors` field if the `RetrieveVectors::Retrieve`
.chain(add_vectors_fid.iter())
.map(|&fid| fields_ids_map.name(fid).expect("Missing field name"));
let mut document =
permissive_json_pointer::select_values(&displayed_document, attributes_to_retrieve);
if retrieve_vectors == RetrieveVectors::Retrieve {
let mut vectors = match document.remove("_vectors") {
Some(Value::Object(map)) => map,
_ => Default::default(),
};
for (name, vector) in index.embeddings(rtxn, id)? {
let user_provided = embedding_configs
.iter()
.find(|conf| conf.name == name)
.is_some_and(|conf| conf.user_provided.contains(id));
let embeddings =
ExplicitVectors { embeddings: Some(vector.into()), regenerate: !user_provided };
vectors.insert(name, serde_json::to_value(embeddings)?);
}
document.insert("_vectors".into(), vectors.into());
}
let (matches_position, formatted) = format_fields(
&displayed_document,
&fields_ids_map,
@ -1114,6 +1215,7 @@ pub fn perform_similar(
query: SimilarQuery,
embedder_name: String,
embedder: Arc<Embedder>,
retrieve_vectors: RetrieveVectors,
) -> Result<SimilarResult, ResponseError> {
let before_search = Instant::now();
let rtxn = index.read_txn()?;
@ -1125,6 +1227,7 @@ pub fn perform_similar(
filter: _,
embedder: _,
attributes_to_retrieve,
retrieve_vectors: _,
show_ranking_score,
show_ranking_score_details,
ranking_score_threshold,
@ -1171,6 +1274,7 @@ pub fn perform_similar(
let format = AttributesFormat {
attributes_to_retrieve,
retrieve_vectors,
attributes_to_highlight: None,
attributes_to_crop: None,
crop_length: DEFAULT_CROP_LENGTH(),

View file

@ -182,14 +182,10 @@ impl Index<'_> {
self.service.get(url).await
}
pub async fn get_document(
&self,
id: u64,
options: Option<GetDocumentOptions>,
) -> (Value, StatusCode) {
pub async fn get_document(&self, id: u64, options: Option<Value>) -> (Value, StatusCode) {
let mut url = format!("/indexes/{}/documents/{}", urlencode(self.uid.as_ref()), id);
if let Some(fields) = options.and_then(|o| o.fields) {
let _ = write!(url, "?fields={}", fields.join(","));
if let Some(options) = options {
write!(url, "?{}", yaup::to_string(&options).unwrap()).unwrap();
}
self.service.get(url).await
}
@ -205,18 +201,11 @@ impl Index<'_> {
}
pub async fn get_all_documents(&self, options: GetAllDocumentsOptions) -> (Value, StatusCode) {
let mut url = format!("/indexes/{}/documents?", urlencode(self.uid.as_ref()));
if let Some(limit) = options.limit {
let _ = write!(url, "limit={}&", limit);
}
if let Some(offset) = options.offset {
let _ = write!(url, "offset={}&", offset);
}
if let Some(attributes_to_retrieve) = options.attributes_to_retrieve {
let _ = write!(url, "fields={}&", attributes_to_retrieve.join(","));
}
let url = format!(
"/indexes/{}/documents?{}",
urlencode(self.uid.as_ref()),
yaup::to_string(&options).unwrap()
);
self.service.get(url).await
}
@ -435,13 +424,11 @@ impl Index<'_> {
}
}
pub struct GetDocumentOptions {
pub fields: Option<Vec<&'static str>>,
}
#[derive(Debug, Default)]
#[derive(Debug, Default, serde::Serialize)]
#[serde(rename_all = "camelCase")]
pub struct GetAllDocumentsOptions {
pub limit: Option<usize>,
pub offset: Option<usize>,
pub attributes_to_retrieve: Option<Vec<&'static str>>,
pub retrieve_vectors: bool,
pub fields: Option<Vec<&'static str>>,
}

View file

@ -6,7 +6,7 @@ pub mod service;
use std::fmt::{self, Display};
#[allow(unused)]
pub use index::{GetAllDocumentsOptions, GetDocumentOptions};
pub use index::GetAllDocumentsOptions;
use meili_snap::json_string;
use serde::{Deserialize, Serialize};
#[allow(unused)]

View file

@ -795,3 +795,70 @@ async fn fetch_document_by_filter() {
}
"###);
}
#[actix_rt::test]
async fn retrieve_vectors() {
let server = Server::new().await;
let index = server.index("doggo");
// GETALL DOCUMENTS BY QUERY
let (response, _code) = index.get_all_documents_raw("?retrieveVectors=tamo").await;
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `retrieveVectors`: could not parse `tamo` as a boolean, expected either `true` or `false`",
"code": "invalid_document_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_document_retrieve_vectors"
}
"###);
let (response, _code) = index.get_all_documents_raw("?retrieveVectors=true").await;
snapshot!(json_string!(response), @r###"
{
"message": "Passing `retrieveVectors` as a parameter requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
// FETCHALL DOCUMENTS BY POST
let (response, _code) =
index.get_document_by_filter(json!({ "retrieveVectors": "tamo" })).await;
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.retrieveVectors`: expected a boolean, but found a string: `\"tamo\"`",
"code": "invalid_document_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_document_retrieve_vectors"
}
"###);
let (response, _code) = index.get_document_by_filter(json!({ "retrieveVectors": true })).await;
snapshot!(json_string!(response), @r###"
{
"message": "Passing `retrieveVectors` as a parameter requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
// GET A SINGLEDOCUMENT
let (response, _code) = index.get_document(0, Some(json!({"retrieveVectors": "tamo"}))).await;
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `retrieveVectors`: could not parse `tamo` as a boolean, expected either `true` or `false`",
"code": "invalid_document_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_document_retrieve_vectors"
}
"###);
let (response, _code) = index.get_document(0, Some(json!({"retrieveVectors": true}))).await;
snapshot!(json_string!(response), @r###"
{
"message": "Passing `retrieveVectors` as a parameter requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
}

View file

@ -4,7 +4,7 @@ use meili_snap::*;
use urlencoding::encode as urlencode;
use crate::common::encoder::Encoder;
use crate::common::{GetAllDocumentsOptions, GetDocumentOptions, Server, Value};
use crate::common::{GetAllDocumentsOptions, Server, Value};
use crate::json;
// TODO: partial test since we are testing error, amd error is not yet fully implemented in
@ -59,8 +59,7 @@ async fn get_document() {
})
);
let (response, code) =
index.get_document(0, Some(GetDocumentOptions { fields: Some(vec!["id"]) })).await;
let (response, code) = index.get_document(0, Some(json!({ "fields": ["id"] }))).await;
assert_eq!(code, 200);
assert_eq!(
response,
@ -69,9 +68,8 @@ async fn get_document() {
})
);
let (response, code) = index
.get_document(0, Some(GetDocumentOptions { fields: Some(vec!["nested.content"]) }))
.await;
let (response, code) =
index.get_document(0, Some(json!({ "fields": ["nested.content"] }))).await;
assert_eq!(code, 200);
assert_eq!(
response,
@ -211,7 +209,7 @@ async fn test_get_all_documents_attributes_to_retrieve() {
let (response, code) = index
.get_all_documents(GetAllDocumentsOptions {
attributes_to_retrieve: Some(vec!["name"]),
fields: Some(vec!["name"]),
..Default::default()
})
.await;
@ -225,9 +223,19 @@ async fn test_get_all_documents_attributes_to_retrieve() {
assert_eq!(response["limit"], json!(20));
assert_eq!(response["total"], json!(77));
let (response, code) = index.get_all_documents_raw("?fields=").await;
assert_eq!(code, 200);
assert_eq!(response["results"].as_array().unwrap().len(), 20);
for results in response["results"].as_array().unwrap() {
assert_eq!(results.as_object().unwrap().keys().count(), 0);
}
assert_eq!(response["offset"], json!(0));
assert_eq!(response["limit"], json!(20));
assert_eq!(response["total"], json!(77));
let (response, code) = index
.get_all_documents(GetAllDocumentsOptions {
attributes_to_retrieve: Some(vec![]),
fields: Some(vec!["wrong"]),
..Default::default()
})
.await;
@ -242,22 +250,7 @@ async fn test_get_all_documents_attributes_to_retrieve() {
let (response, code) = index
.get_all_documents(GetAllDocumentsOptions {
attributes_to_retrieve: Some(vec!["wrong"]),
..Default::default()
})
.await;
assert_eq!(code, 200);
assert_eq!(response["results"].as_array().unwrap().len(), 20);
for results in response["results"].as_array().unwrap() {
assert_eq!(results.as_object().unwrap().keys().count(), 0);
}
assert_eq!(response["offset"], json!(0));
assert_eq!(response["limit"], json!(20));
assert_eq!(response["total"], json!(77));
let (response, code) = index
.get_all_documents(GetAllDocumentsOptions {
attributes_to_retrieve: Some(vec!["name", "tags"]),
fields: Some(vec!["name", "tags"]),
..Default::default()
})
.await;
@ -270,10 +263,7 @@ async fn test_get_all_documents_attributes_to_retrieve() {
}
let (response, code) = index
.get_all_documents(GetAllDocumentsOptions {
attributes_to_retrieve: Some(vec!["*"]),
..Default::default()
})
.get_all_documents(GetAllDocumentsOptions { fields: Some(vec!["*"]), ..Default::default() })
.await;
assert_eq!(code, 200);
assert_eq!(response["results"].as_array().unwrap().len(), 20);
@ -283,7 +273,7 @@ async fn test_get_all_documents_attributes_to_retrieve() {
let (response, code) = index
.get_all_documents(GetAllDocumentsOptions {
attributes_to_retrieve: Some(vec!["*", "wrong"]),
fields: Some(vec!["*", "wrong"]),
..Default::default()
})
.await;
@ -316,12 +306,10 @@ async fn get_document_s_nested_attributes_to_retrieve() {
assert_eq!(code, 202);
index.wait_task(1).await;
let (response, code) =
index.get_document(0, Some(GetDocumentOptions { fields: Some(vec!["content"]) })).await;
let (response, code) = index.get_document(0, Some(json!({ "fields": ["content"] }))).await;
assert_eq!(code, 200);
assert_eq!(response, json!({}));
let (response, code) =
index.get_document(1, Some(GetDocumentOptions { fields: Some(vec!["content"]) })).await;
let (response, code) = index.get_document(1, Some(json!({ "fields": ["content"] }))).await;
assert_eq!(code, 200);
assert_eq!(
response,
@ -333,9 +321,7 @@ async fn get_document_s_nested_attributes_to_retrieve() {
})
);
let (response, code) = index
.get_document(0, Some(GetDocumentOptions { fields: Some(vec!["content.truc"]) }))
.await;
let (response, code) = index.get_document(0, Some(json!({ "fields": ["content.truc"] }))).await;
assert_eq!(code, 200);
assert_eq!(
response,
@ -343,9 +329,7 @@ async fn get_document_s_nested_attributes_to_retrieve() {
"content.truc": "foobar",
})
);
let (response, code) = index
.get_document(1, Some(GetDocumentOptions { fields: Some(vec!["content.truc"]) }))
.await;
let (response, code) = index.get_document(1, Some(json!({ "fields": ["content.truc"] }))).await;
assert_eq!(code, 200);
assert_eq!(
response,
@ -540,3 +524,207 @@ async fn get_document_by_filter() {
}
"###);
}
#[actix_rt::test]
async fn get_document_with_vectors() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = json!([
{"id": 0, "name": "kefir", "_vectors": { "manual": [0, 0, 0] }},
{"id": 1, "name": "echo", "_vectors": { "manual": null }},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
// by default you shouldn't see the `_vectors` object
let (documents, _code) = index.get_all_documents(Default::default()).await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir"
},
{
"id": 1,
"name": "echo"
}
],
"offset": 0,
"limit": 20,
"total": 2
}
"###);
let (documents, _code) = index.get_document(0, None).await;
snapshot!(json_string!(documents), @r###"
{
"id": 0,
"name": "kefir"
}
"###);
// if we try to retrieve the vectors with the `fields` parameter they
// still shouldn't be displayed
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions {
fields: Some(vec!["name", "_vectors"]),
..Default::default()
})
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"name": "kefir"
},
{
"name": "echo"
}
],
"offset": 0,
"limit": 20,
"total": 2
}
"###);
let (documents, _code) =
index.get_document(0, Some(json!({"fields": ["name", "_vectors"]}))).await;
snapshot!(json_string!(documents), @r###"
{
"name": "kefir"
}
"###);
// If we specify the retrieve vectors boolean and nothing else we should get the vectors
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
0.0,
0.0,
0.0
]
],
"regenerate": false
}
}
},
{
"id": 1,
"name": "echo",
"_vectors": {}
}
],
"offset": 0,
"limit": 20,
"total": 2
}
"###);
let (documents, _code) = index.get_document(0, Some(json!({"retrieveVectors": true}))).await;
snapshot!(json_string!(documents), @r###"
{
"id": 0,
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
0.0,
0.0,
0.0
]
],
"regenerate": false
}
}
}
"###);
// If we specify the retrieve vectors boolean and exclude vectors form the `fields` we should still get the vectors
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions {
retrieve_vectors: true,
fields: Some(vec!["name"]),
..Default::default()
})
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
0.0,
0.0,
0.0
]
],
"regenerate": false
}
}
},
{
"name": "echo",
"_vectors": {}
}
],
"offset": 0,
"limit": 20,
"total": 2
}
"###);
let (documents, _code) =
index.get_document(0, Some(json!({"retrieveVectors": true, "fields": ["name"]}))).await;
snapshot!(json_string!(documents), @r###"
{
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
0.0,
0.0,
0.0
]
],
"regenerate": false
}
}
}
"###);
}

View file

@ -1938,3 +1938,210 @@ async fn import_dump_v6_containing_experimental_features() {
})
.await;
}
// In this test we must generate the dump ourselves to ensure the
// `user provided` vectors are well set
#[actix_rt::test]
#[cfg_attr(target_os = "windows", ignore)]
async fn generate_and_import_dump_containing_vectors() {
let temp = tempfile::tempdir().unwrap();
let mut opt = default_settings(temp.path());
let server = Server::new_with_options(opt.clone()).await.unwrap();
let (code, _) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let index = server.index("pets");
let (response, code) = index
.update_settings(json!(
{
"embedders": {
"doggo_embedder": {
"source": "huggingFace",
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"documentTemplate": "{{doc.doggo}}",
}
}
}
))
.await;
snapshot!(code, @"202 Accepted");
let response = index.wait_task(response.uid()).await;
snapshot!(response);
let (response, code) = index
.add_documents(
json!([
{"id": 0, "doggo": "kefir", "_vectors": { "doggo_embedder": vec![0; 384] }},
{"id": 1, "doggo": "echo", "_vectors": { "doggo_embedder": { "regenerate": false, "embeddings": vec![1; 384] }}},
{"id": 2, "doggo": "intel", "_vectors": { "doggo_embedder": { "regenerate": true, "embeddings": vec![2; 384] }}},
{"id": 3, "doggo": "bill", "_vectors": { "doggo_embedder": { "regenerate": true }}},
{"id": 4, "doggo": "max" },
]),
None,
)
.await;
snapshot!(code, @"202 Accepted");
let response = index.wait_task(response.uid()).await;
snapshot!(response);
let (response, code) = server.create_dump().await;
snapshot!(code, @"202 Accepted");
let response = index.wait_task(response.uid()).await;
snapshot!(response["status"], @r###""succeeded""###);
// ========= We made a dump, now we should clear the DB and try to import our dump
drop(server);
tokio::fs::remove_dir_all(&opt.db_path).await.unwrap();
let dump_name = format!("{}.dump", response["details"]["dumpUid"].as_str().unwrap());
let dump_path = opt.dump_dir.join(dump_name);
assert!(dump_path.exists(), "path: `{}`", dump_path.display());
opt.import_dump = Some(dump_path);
// NOTE: We shouldn't have to change the database path but I lost one hour
// because of a « bad path » error and that fixed it.
opt.db_path = temp.path().join("data.ms");
let mut server = Server::new_auth_with_options(opt, temp).await;
server.use_api_key("MASTER_KEY");
let (indexes, code) = server.list_indexes(None, None).await;
assert_eq!(code, 200, "{indexes}");
snapshot!(indexes["results"].as_array().unwrap().len(), @"1");
snapshot!(indexes["results"][0]["uid"], @r###""pets""###);
snapshot!(indexes["results"][0]["primaryKey"], @r###""id""###);
let (response, code) = server.get_features().await;
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let index = server.index("pets");
let (response, code) = index.settings().await;
meili_snap::snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"displayedAttributes": [
"*"
],
"searchableAttributes": [
"*"
],
"filterableAttributes": [],
"sortableAttributes": [],
"rankingRules": [
"words",
"typo",
"proximity",
"attribute",
"sort",
"exactness"
],
"stopWords": [],
"nonSeparatorTokens": [],
"separatorTokens": [],
"dictionary": [],
"synonyms": {},
"distinctAttribute": null,
"proximityPrecision": "byWord",
"typoTolerance": {
"enabled": true,
"minWordSizeForTypos": {
"oneTypo": 5,
"twoTypos": 9
},
"disableOnWords": [],
"disableOnAttributes": []
},
"faceting": {
"maxValuesPerFacet": 100,
"sortFacetValuesBy": {
"*": "alpha"
}
},
"pagination": {
"maxTotalHits": 1000
},
"embedders": {
"doggo_embedder": {
"source": "huggingFace",
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"documentTemplate": "{{doc.doggo}}"
}
},
"searchCutoffMs": null
}
"###);
index
.search(json!({"retrieveVectors": true}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"], { "[]._vectors.doggo_embedder.embeddings" => "[vector]" }), @r###"
[
{
"id": 0,
"doggo": "kefir",
"_vectors": {
"doggo_embedder": {
"embeddings": "[vector]",
"regenerate": false
}
}
},
{
"id": 1,
"doggo": "echo",
"_vectors": {
"doggo_embedder": {
"embeddings": "[vector]",
"regenerate": false
}
}
},
{
"id": 2,
"doggo": "intel",
"_vectors": {
"doggo_embedder": {
"embeddings": "[vector]",
"regenerate": true
}
}
},
{
"id": 3,
"doggo": "bill",
"_vectors": {
"doggo_embedder": {
"embeddings": "[vector]",
"regenerate": true
}
}
},
{
"id": 4,
"doggo": "max",
"_vectors": {
"doggo_embedder": {
"embeddings": "[vector]",
"regenerate": true
}
}
}
]
"###);
})
.await;
}

View file

@ -0,0 +1,25 @@
---
source: meilisearch/tests/dumps/mod.rs
---
{
"uid": 0,
"indexUid": "pets",
"status": "succeeded",
"type": "settingsUpdate",
"canceledBy": null,
"details": {
"embedders": {
"doggo_embedder": {
"source": "huggingFace",
"model": "sentence-transformers/all-MiniLM-L6-v2",
"revision": "e4ce9877abf3edfe10b0d82785e83bdcb973e22e",
"documentTemplate": "{{doc.doggo}}"
}
}
},
"error": null,
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}

View file

@ -0,0 +1,19 @@
---
source: meilisearch/tests/dumps/mod.rs
---
{
"uid": 1,
"indexUid": "pets",
"status": "succeeded",
"type": "documentAdditionOrUpdate",
"canceledBy": null,
"details": {
"receivedDocuments": 5,
"indexedDocuments": 5
},
"error": null,
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}

View file

@ -13,6 +13,7 @@ mod snapshot;
mod stats;
mod swap_indexes;
mod tasks;
mod vector;
// Tests are isolated by features in different modules to allow better readability, test
// targetability, and improved incremental compilation times.

View file

@ -167,6 +167,74 @@ async fn search_bad_hits_per_page() {
"###);
}
#[actix_rt::test]
async fn search_bad_attributes_to_retrieve() {
let server = Server::new().await;
let index = server.index("test");
let (response, code) = index.search_post(json!({"attributesToRetrieve": "doggo"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.attributesToRetrieve`: expected an array, but found a string: `\"doggo\"`",
"code": "invalid_search_attributes_to_retrieve",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_attributes_to_retrieve"
}
"###);
// Can't make the `attributes_to_retrieve` fail with a get search since it'll accept anything as an array of strings.
}
#[actix_rt::test]
async fn search_bad_retrieve_vectors() {
let server = Server::new().await;
let index = server.index("test");
let (response, code) = index.search_post(json!({"retrieveVectors": "doggo"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.retrieveVectors`: expected a boolean, but found a string: `\"doggo\"`",
"code": "invalid_search_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_retrieve_vectors"
}
"###);
let (response, code) = index.search_post(json!({"retrieveVectors": [true]})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.retrieveVectors`: expected a boolean, but found an array: `[true]`",
"code": "invalid_search_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_retrieve_vectors"
}
"###);
let (response, code) = index.search_get("retrieveVectors=").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `retrieveVectors`: could not parse `` as a boolean, expected either `true` or `false`",
"code": "invalid_search_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_retrieve_vectors"
}
"###);
let (response, code) = index.search_get("retrieveVectors=doggo").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `retrieveVectors`: could not parse `doggo` as a boolean, expected either `true` or `false`",
"code": "invalid_search_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_search_retrieve_vectors"
}
"###);
}
#[actix_rt::test]
async fn search_bad_attributes_to_crop() {
let server = Server::new().await;

View file

@ -124,29 +124,29 @@ async fn simple_search() {
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2}}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]}},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]}}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}}},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}}}]"###);
snapshot!(response["semanticHitCount"], @"0");
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.5}, "showRankingScore": true}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.5}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.9848484848484848},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":0.9848484848484848},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["semanticHitCount"], @"2");
let (response, code) = index
.search_post(
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8}, "showRankingScore": true}),
json!({"q": "Captain", "vector": [1.0, 1.0], "hybrid": {"semanticRatio": 0.8}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["semanticHitCount"], @"3");
}
@ -204,10 +204,10 @@ async fn distribution_shift() {
let server = Server::new().await;
let index = index_with_documents_user_provided(&server, &SIMPLE_SEARCH_DOCUMENTS_VEC).await;
let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"semanticRatio": 1.0}});
let search = json!({"q": "Captain", "vector": [1.0, 1.0], "showRankingScore": true, "hybrid": {"semanticRatio": 1.0}, "retrieveVectors": true});
let (response, code) = index.search_post(search.clone()).await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":0.9472135901451112}]"###);
let (response, code) = index
.update_settings(json!({
@ -228,7 +228,7 @@ async fn distribution_shift() {
let (response, code) = index.search_post(search).await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.19161224365234375},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.1920928955078125e-7},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.1920928955078125e-7}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":0.19161224365234375},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":1.1920928955078125e-7},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":1.1920928955078125e-7}]"###);
}
#[actix_rt::test]
@ -239,20 +239,23 @@ async fn highlighter() {
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 0.2},
"attributesToHighlight": [
"desc"
"retrieveVectors": true,
"attributesToHighlight": [
"desc",
"_vectors",
],
"highlightPreTag": "**BEGIN**",
"highlightPostTag": "**END**"
"highlightPreTag": "**BEGIN**",
"highlightPostTag": "**END**",
}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}}},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}}}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"}},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1"}},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2"}}]"###);
snapshot!(response["semanticHitCount"], @"0");
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 0.8},
"retrieveVectors": true,
"showRankingScore": true,
"attributesToHighlight": [
"desc"
@ -262,13 +265,14 @@ async fn highlighter() {
}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_formatted":{"title":"Captain Planet","desc":"He's not part of the **BEGIN**Marvel**END** Cinematic Universe","id":"2"},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_formatted":{"title":"Shazam!","desc":"a **BEGIN**Captain**END** **BEGIN**Marvel**END** ersatz","id":"1"},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["semanticHitCount"], @"3");
// no highlighting on full semantic
let (response, code) = index
.search_post(json!({"q": "Captain Marvel", "vector": [1.0, 1.0],
"hybrid": {"semanticRatio": 1.0},
"retrieveVectors": true,
"showRankingScore": true,
"attributesToHighlight": [
"desc"
@ -278,7 +282,7 @@ async fn highlighter() {
}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":["2.0","3.0"]}},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_formatted":{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":["1.0","2.0"]}},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_formatted":{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":["1.0","3.0"]}},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_formatted":{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3"},"_rankingScore":0.990290343761444},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_formatted":{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2"},"_rankingScore":0.974341630935669},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_formatted":{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1"},"_rankingScore":0.9472135901451112}]"###);
snapshot!(response["semanticHitCount"], @"3");
}
@ -361,12 +365,12 @@ async fn single_document() {
let (response, code) = index
.search_post(
json!({"vector": [1.0, 3.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}),
json!({"vector": [1.0, 3.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"][0], @r###"{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0}"###);
snapshot!(response["hits"][0], @r###"{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":1.0}"###);
snapshot!(response["semanticHitCount"], @"1");
}
@ -377,25 +381,25 @@ async fn query_combination() {
// search without query and vector, but with hybrid => still placeholder
let (response, code) = index
.search_post(json!({"hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}))
.search_post(json!({"hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":1.0}]"###);
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":1.0}]"###);
snapshot!(response["semanticHitCount"], @"null");
// same with a different semantic ratio
let (response, code) = index
.search_post(json!({"hybrid": {"semanticRatio": 0.76}, "showRankingScore": true}))
.search_post(json!({"hybrid": {"semanticRatio": 0.76}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":1.0}]"###);
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":1.0}]"###);
snapshot!(response["semanticHitCount"], @"null");
// wrong vector dimensions
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0, 1.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}))
.search_post(json!({"vector": [1.0, 0.0, 1.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"400 Bad Request");
@ -410,34 +414,34 @@ async fn query_combination() {
// full vector
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}))
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.7773500680923462},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.7236068248748779},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.6581138968467712}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":0.7773500680923462},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":0.7236068248748779},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":0.6581138968467712}]"###);
snapshot!(response["semanticHitCount"], @"3");
// full keyword, without a query
let (response, code) = index
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true}))
.search_post(json!({"vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":1.0}]"###);
snapshot!(response["hits"], @r###"[{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":1.0},{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":1.0},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":1.0}]"###);
snapshot!(response["semanticHitCount"], @"null");
// query + vector, full keyword => keyword
let (response, code) = index
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true}))
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "hybrid": {"semanticRatio": 0.0}, "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.9848484848484848},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":[2.0,3.0]},"_rankingScore":0.9848484848484848},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":[1.0,3.0]},"_rankingScore":0.9242424242424242}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":0.9848484848484848},{"title":"Captain Marvel","desc":"a Shazam ersatz","id":"3","_vectors":{"default":{"embeddings":[[2.0,3.0]],"regenerate":false}},"_rankingScore":0.9848484848484848},{"title":"Shazam!","desc":"a Captain Marvel ersatz","id":"1","_vectors":{"default":{"embeddings":[[1.0,3.0]],"regenerate":false}},"_rankingScore":0.9242424242424242}]"###);
snapshot!(response["semanticHitCount"], @"null");
// query + vector, no hybrid keyword =>
let (response, code) = index
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "showRankingScore": true}))
.search_post(json!({"q": "Captain", "vector": [1.0, 0.0], "showRankingScore": true, "retrieveVectors": true}))
.await;
snapshot!(code, @"400 Bad Request");
@ -453,7 +457,7 @@ async fn query_combination() {
// full vector, without a vector => error
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true}),
json!({"q": "Captain", "hybrid": {"semanticRatio": 1.0}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
@ -470,11 +474,93 @@ async fn query_combination() {
// hybrid without a vector => full keyword
let (response, code) = index
.search_post(
json!({"q": "Planet", "hybrid": {"semanticRatio": 0.99}, "showRankingScore": true}),
json!({"q": "Planet", "hybrid": {"semanticRatio": 0.99}, "showRankingScore": true, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":[1.0,2.0]},"_rankingScore":0.9242424242424242}]"###);
snapshot!(response["hits"], @r###"[{"title":"Captain Planet","desc":"He's not part of the Marvel Cinematic Universe","id":"2","_vectors":{"default":{"embeddings":[[1.0,2.0]],"regenerate":false}},"_rankingScore":0.9242424242424242}]"###);
snapshot!(response["semanticHitCount"], @"0");
}
#[actix_rt::test]
async fn retrieve_vectors() {
let server = Server::new().await;
let index = index_with_documents_hf(&server, &SIMPLE_SEARCH_DOCUMENTS).await;
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["hits"], {"[]._vectors.default.embeddings" => "[vectors]"}, @r###"
[
{
"title": "Captain Planet",
"desc": "He's not part of the Marvel Cinematic Universe",
"id": "2",
"_vectors": {
"default": {
"embeddings": "[vectors]",
"regenerate": true
}
}
},
{
"title": "Captain Marvel",
"desc": "a Shazam ersatz",
"id": "3",
"_vectors": {
"default": {
"embeddings": "[vectors]",
"regenerate": true
}
}
},
{
"title": "Shazam!",
"desc": "a Captain Marvel ersatz",
"id": "1",
"_vectors": {
"default": {
"embeddings": "[vectors]",
"regenerate": true
}
}
}
]
"###);
// remove `_vectors` from displayed attributes
let (response, code) =
index.update_settings(json!({ "displayedAttributes": ["id", "title", "desc"]} )).await;
assert_eq!(202, code, "{:?}", response);
index.wait_task(response.uid()).await;
let (response, code) = index
.search_post(
json!({"q": "Captain", "hybrid": {"semanticRatio": 0.2}, "retrieveVectors": true}),
)
.await;
snapshot!(code, @"200 OK");
insta::assert_json_snapshot!(response["hits"], {"[]._vectors.default.embeddings" => "[vectors]"}, @r###"
[
{
"title": "Captain Planet",
"desc": "He's not part of the Marvel Cinematic Universe",
"id": "2"
},
{
"title": "Captain Marvel",
"desc": "a Shazam ersatz",
"id": "3"
},
{
"title": "Shazam!",
"desc": "a Captain Marvel ersatz",
"id": "1"
}
]
"###);
}

View file

@ -1290,21 +1290,38 @@ async fn experimental_feature_vector_store() {
index.add_documents(json!(documents), None).await;
index.wait_task(0).await;
let (response, code) = index
.search_post(json!({
index
.search(json!({
"vector": [1.0, 2.0, 3.0],
"showRankingScore": true
}))
}), |response, code|{
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"message": "Passing `vector` as a parameter requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
})
.await;
index
.search(json!({
"retrieveVectors": true,
"showRankingScore": true
}), |response, code|{
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"message": "Passing `retrieveVectors` as a parameter requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
})
.await;
meili_snap::snapshot!(code, @"400 Bad Request");
meili_snap::snapshot!(meili_snap::json_string!(response), @r###"
{
"message": "Passing `vector` as a query parameter requires enabling the `vector store` experimental feature. See https://github.com/meilisearch/product/discussions/677",
"code": "feature_not_enabled",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#feature_not_enabled"
}
"###);
let (response, code) = server.set_features(json!({"vectorStore": true})).await;
meili_snap::snapshot!(code, @"200 OK");
@ -1337,6 +1354,7 @@ async fn experimental_feature_vector_store() {
.search_post(json!({
"vector": [1.0, 2.0, 3.0],
"showRankingScore": true,
"retrieveVectors": true,
}))
.await;
@ -1348,11 +1366,16 @@ async fn experimental_feature_vector_store() {
"title": "Shazam!",
"id": "287947",
"_vectors": {
"manual": [
1.0,
2.0,
3.0
]
"manual": {
"embeddings": [
[
1.0,
2.0,
3.0
]
],
"regenerate": false
}
},
"_rankingScore": 1.0
},
@ -1360,11 +1383,16 @@ async fn experimental_feature_vector_store() {
"title": "Captain Marvel",
"id": "299537",
"_vectors": {
"manual": [
1.0,
2.0,
54.0
]
"manual": {
"embeddings": [
[
1.0,
2.0,
54.0
]
],
"regenerate": false
}
},
"_rankingScore": 0.9129111766815186
},
@ -1372,11 +1400,16 @@ async fn experimental_feature_vector_store() {
"title": "Gläss",
"id": "450465",
"_vectors": {
"manual": [
-100.0,
340.0,
90.0
]
"manual": {
"embeddings": [
[
-100.0,
340.0,
90.0
]
],
"regenerate": false
}
},
"_rankingScore": 0.8106412887573242
},
@ -1384,11 +1417,16 @@ async fn experimental_feature_vector_store() {
"title": "How to Train Your Dragon: The Hidden World",
"id": "166428",
"_vectors": {
"manual": [
-100.0,
231.0,
32.0
]
"manual": {
"embeddings": [
[
-100.0,
231.0,
32.0
]
],
"regenerate": false
}
},
"_rankingScore": 0.7412010431289673
},
@ -1396,11 +1434,16 @@ async fn experimental_feature_vector_store() {
"title": "Escape Room",
"id": "522681",
"_vectors": {
"manual": [
10.0,
-23.0,
32.0
]
"manual": {
"embeddings": [
[
10.0,
-23.0,
32.0
]
],
"regenerate": false
}
},
"_rankingScore": 0.6972063183784485
}

View file

@ -756,3 +756,54 @@ async fn filter_reserved_geo_point_string() {
})
.await;
}
#[actix_rt::test]
async fn similar_bad_retrieve_vectors() {
let server = Server::new().await;
server.set_features(json!({"vectorStore": true})).await;
let index = server.index("test");
let (response, code) = index.similar_post(json!({"retrieveVectors": "doggo"})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.retrieveVectors`: expected a boolean, but found a string: `\"doggo\"`",
"code": "invalid_similar_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_retrieve_vectors"
}
"###);
let (response, code) = index.similar_post(json!({"retrieveVectors": [true]})).await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value type at `.retrieveVectors`: expected a boolean, but found an array: `[true]`",
"code": "invalid_similar_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_retrieve_vectors"
}
"###);
let (response, code) = index.similar_get("retrieveVectors=").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `retrieveVectors`: could not parse `` as a boolean, expected either `true` or `false`",
"code": "invalid_similar_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_retrieve_vectors"
}
"###);
let (response, code) = index.similar_get("retrieveVectors=doggo").await;
snapshot!(code, @"400 Bad Request");
snapshot!(json_string!(response), @r###"
{
"message": "Invalid value in parameter `retrieveVectors`: could not parse `doggo` as a boolean, expected either `true` or `false`",
"code": "invalid_similar_retrieve_vectors",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_similar_retrieve_vectors"
}
"###);
}

View file

@ -78,7 +78,7 @@ async fn basic() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 143}), |response, code| {
.similar(json!({"id": 143, "retrieveVectors": true}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
@ -87,11 +87,16 @@ async fn basic() {
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
"manual": {
"embeddings": [
[
0.10000000149011612,
0.6000000238418579,
0.800000011920929
]
],
"regenerate": false
}
}
},
{
@ -99,11 +104,16 @@ async fn basic() {
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
"manual": {
"embeddings": [
[
0.6000000238418579,
0.800000011920929,
-0.20000000298023224
]
],
"regenerate": false
}
}
},
{
@ -111,11 +121,16 @@ async fn basic() {
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
"manual": {
"embeddings": [
[
0.699999988079071,
0.699999988079071,
-0.4000000059604645
]
],
"regenerate": false
}
}
},
{
@ -123,11 +138,16 @@ async fn basic() {
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
"manual": {
"embeddings": [
[
0.800000011920929,
0.4000000059604645,
-0.5
]
],
"regenerate": false
}
}
}
]
@ -136,7 +156,7 @@ async fn basic() {
.await;
index
.similar(json!({"id": "299537"}), |response, code| {
.similar(json!({"id": "299537", "retrieveVectors": true}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
@ -145,11 +165,16 @@ async fn basic() {
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
"manual": {
"embeddings": [
[
0.699999988079071,
0.699999988079071,
-0.4000000059604645
]
],
"regenerate": false
}
}
},
{
@ -157,11 +182,16 @@ async fn basic() {
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
"manual": {
"embeddings": [
[
0.800000011920929,
0.4000000059604645,
-0.5
]
],
"regenerate": false
}
}
},
{
@ -169,11 +199,16 @@ async fn basic() {
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
"manual": {
"embeddings": [
[
0.10000000149011612,
0.6000000238418579,
0.800000011920929
]
],
"regenerate": false
}
}
},
{
@ -181,11 +216,16 @@ async fn basic() {
"release_year": 1930,
"id": "143",
"_vectors": {
"manual": [
-0.5,
0.3,
0.85
]
"manual": {
"embeddings": [
[
-0.5,
0.30000001192092896,
0.8500000238418579
]
],
"regenerate": false
}
}
}
]
@ -228,7 +268,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0, "retrieveVectors": true}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"4");
@ -239,11 +279,16 @@ async fn ranking_score_threshold() {
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
"manual": {
"embeddings": [
[
0.10000000149011612,
0.6000000238418579,
0.800000011920929
]
],
"regenerate": false
}
},
"_rankingScore": 0.890957772731781
},
@ -252,11 +297,16 @@ async fn ranking_score_threshold() {
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
"manual": {
"embeddings": [
[
0.6000000238418579,
0.800000011920929,
-0.20000000298023224
]
],
"regenerate": false
}
},
"_rankingScore": 0.39060014486312866
},
@ -265,11 +315,16 @@ async fn ranking_score_threshold() {
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
"manual": {
"embeddings": [
[
0.699999988079071,
0.699999988079071,
-0.4000000059604645
]
],
"regenerate": false
}
},
"_rankingScore": 0.2819308042526245
},
@ -278,11 +333,16 @@ async fn ranking_score_threshold() {
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
"manual": {
"embeddings": [
[
0.800000011920929,
0.4000000059604645,
-0.5
]
],
"regenerate": false
}
},
"_rankingScore": 0.1662663221359253
}
@ -294,7 +354,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.2}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.2, "retrieveVectors": true}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"3");
@ -305,11 +365,16 @@ async fn ranking_score_threshold() {
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
"manual": {
"embeddings": [
[
0.10000000149011612,
0.6000000238418579,
0.800000011920929
]
],
"regenerate": false
}
},
"_rankingScore": 0.890957772731781
},
@ -318,11 +383,16 @@ async fn ranking_score_threshold() {
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
"manual": {
"embeddings": [
[
0.6000000238418579,
0.800000011920929,
-0.20000000298023224
]
],
"regenerate": false
}
},
"_rankingScore": 0.39060014486312866
},
@ -331,11 +401,16 @@ async fn ranking_score_threshold() {
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
"manual": {
"embeddings": [
[
0.699999988079071,
0.699999988079071,
-0.4000000059604645
]
],
"regenerate": false
}
},
"_rankingScore": 0.2819308042526245
}
@ -347,7 +422,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.3}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.3, "retrieveVectors": true}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"2");
@ -358,11 +433,16 @@ async fn ranking_score_threshold() {
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
"manual": {
"embeddings": [
[
0.10000000149011612,
0.6000000238418579,
0.800000011920929
]
],
"regenerate": false
}
},
"_rankingScore": 0.890957772731781
},
@ -371,11 +451,16 @@ async fn ranking_score_threshold() {
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
"manual": {
"embeddings": [
[
0.6000000238418579,
0.800000011920929,
-0.20000000298023224
]
],
"regenerate": false
}
},
"_rankingScore": 0.39060014486312866
}
@ -387,7 +472,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.6}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.6, "retrieveVectors": true}),
|response, code| {
snapshot!(code, @"200 OK");
meili_snap::snapshot!(meili_snap::json_string!(response["estimatedTotalHits"]), @"1");
@ -398,11 +483,16 @@ async fn ranking_score_threshold() {
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
"manual": {
"embeddings": [
[
0.10000000149011612,
0.6000000238418579,
0.800000011920929
]
],
"regenerate": false
}
},
"_rankingScore": 0.890957772731781
}
@ -414,7 +504,7 @@ async fn ranking_score_threshold() {
index
.similar(
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.9}),
json!({"id": 143, "showRankingScore": true, "rankingScoreThreshold": 0.9, "retrieveVectors": true}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @"[]");
@ -456,71 +546,97 @@ async fn filter() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 522681, "filter": "release_year = 2019"}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
}
},
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": [
0.7,
0.7,
-0.4
]
}
},
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": [
0.8,
0.4,
-0.5
]
}
}
]
"###);
})
.similar(
json!({"id": 522681, "filter": "release_year = 2019", "retrieveVectors": true}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": {
"embeddings": [
[
0.6000000238418579,
0.800000011920929,
-0.20000000298023224
]
],
"regenerate": false
}
}
},
{
"title": "How to Train Your Dragon: The Hidden World",
"release_year": 2019,
"id": "166428",
"_vectors": {
"manual": {
"embeddings": [
[
0.699999988079071,
0.699999988079071,
-0.4000000059604645
]
],
"regenerate": false
}
}
},
{
"title": "Shazam!",
"release_year": 2019,
"id": "287947",
"_vectors": {
"manual": {
"embeddings": [
[
0.800000011920929,
0.4000000059604645,
-0.5
]
],
"regenerate": false
}
}
}
]
"###);
},
)
.await;
index
.similar(json!({"id": 522681, "filter": "release_year < 2000"}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "All Quiet on the Western Front",
"release_year": 1930,
"id": "143",
"_vectors": {
"manual": [
-0.5,
0.3,
0.85
]
}
}
]
"###);
})
.similar(
json!({"id": 522681, "filter": "release_year < 2000", "retrieveVectors": true}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "All Quiet on the Western Front",
"release_year": 1930,
"id": "143",
"_vectors": {
"manual": {
"embeddings": [
[
-0.5,
0.30000001192092896,
0.8500000238418579
]
],
"regenerate": false
}
}
}
]
"###);
},
)
.await;
}
@ -557,7 +673,7 @@ async fn limit_and_offset() {
index.wait_task(value.uid()).await;
index
.similar(json!({"id": 143, "limit": 1}), |response, code| {
.similar(json!({"id": 143, "limit": 1, "retrieveVectors": true}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
@ -566,11 +682,16 @@ async fn limit_and_offset() {
"release_year": 2019,
"id": "522681",
"_vectors": {
"manual": [
0.1,
0.6,
0.8
]
"manual": {
"embeddings": [
[
0.10000000149011612,
0.6000000238418579,
0.800000011920929
]
],
"regenerate": false
}
}
}
]
@ -579,24 +700,32 @@ async fn limit_and_offset() {
.await;
index
.similar(json!({"id": 143, "limit": 1, "offset": 1}), |response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": [
0.6,
0.8,
-0.2
]
}
}
]
"###);
})
.similar(
json!({"id": 143, "limit": 1, "offset": 1, "retrieveVectors": true}),
|response, code| {
snapshot!(code, @"200 OK");
snapshot!(json_string!(response["hits"]), @r###"
[
{
"title": "Captain Marvel",
"release_year": 2019,
"id": "299537",
"_vectors": {
"manual": {
"embeddings": [
[
0.6000000238418579,
0.800000011920929,
-0.20000000298023224
]
],
"regenerate": false
}
}
}
]
"###);
},
)
.await;
}

View file

@ -0,0 +1,227 @@
mod settings;
use meili_snap::{json_string, snapshot};
use crate::common::index::Index;
use crate::common::{GetAllDocumentsOptions, Server};
use crate::json;
#[actix_rt::test]
async fn add_remove_user_provided() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = json!([
{"id": 0, "name": "kefir", "_vectors": { "manual": [0, 0, 0] }},
{"id": 1, "name": "echo", "_vectors": { "manual": [1, 1, 1] }},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
0.0,
0.0,
0.0
]
],
"regenerate": false
}
}
},
{
"id": 1,
"name": "echo",
"_vectors": {
"manual": {
"embeddings": [
[
1.0,
1.0,
1.0
]
],
"regenerate": false
}
}
}
],
"offset": 0,
"limit": 20,
"total": 2
}
"###);
let documents = json!([
{"id": 0, "name": "kefir", "_vectors": { "manual": [10, 10, 10] }},
{"id": 1, "name": "echo", "_vectors": { "manual": null }},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
10.0,
10.0,
10.0
]
],
"regenerate": false
}
}
},
{
"id": 1,
"name": "echo",
"_vectors": {}
}
],
"offset": 0,
"limit": 20,
"total": 2
}
"###);
let (value, code) = index.delete_document(0).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 1,
"name": "echo",
"_vectors": {}
}
],
"offset": 0,
"limit": 20,
"total": 1
}
"###);
}
async fn generate_default_user_provided_documents(server: &Server) -> Index {
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 3,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let documents = json!([
{"id": 0, "name": "kefir", "_vectors": { "manual": [0, 0, 0] }},
{"id": 1, "name": "echo", "_vectors": { "manual": [1, 1, 1] }},
{"id": 2, "name": "billou", "_vectors": { "manual": [[2, 2, 2], [2, 2, 3]] }},
{"id": 3, "name": "intel", "_vectors": { "manual": { "regenerate": false, "embeddings": [3, 3, 3] }}},
{"id": 4, "name": "max", "_vectors": { "manual": { "regenerate": false, "embeddings": [[4, 4, 4], [4, 4, 5]] }}},
]);
let (value, code) = index.add_documents(documents, None).await;
snapshot!(code, @"202 Accepted");
index.wait_task(value.uid()).await;
index
}
#[actix_rt::test]
async fn clear_documents() {
let server = Server::new().await;
let index = generate_default_user_provided_documents(&server).await;
let (value, _code) = index.clear_all_documents().await;
index.wait_task(value.uid()).await;
// Make sure the documents DB has been cleared
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [],
"offset": 0,
"limit": 20,
"total": 0
}
"###);
// Make sure the arroy DB has been cleared
let (documents, _code) = index.search_post(json!({ "vector": [1, 1, 1] })).await;
snapshot!(json_string!(documents), @r###"
{
"hits": [],
"query": "",
"processingTimeMs": 0,
"limit": 20,
"offset": 0,
"estimatedTotalHits": 0,
"semanticHitCount": 0
}
"###);
}

View file

@ -0,0 +1,228 @@
use meili_snap::{json_string, snapshot};
use crate::common::{GetAllDocumentsOptions, Server};
use crate::json;
use crate::vector::generate_default_user_provided_documents;
#[actix_rt::test]
async fn update_embedder() {
let server = Server::new().await;
let index = server.index("doggo");
let (value, code) = server.set_features(json!({"vectorStore": true})).await;
snapshot!(code, @"200 OK");
snapshot!(value, @r###"
{
"vectorStore": true,
"metrics": false,
"logsRoute": false
}
"###);
let (response, code) = index
.update_settings(json!({
"embedders": { "manual": {}},
}))
.await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
let (response, code) = index
.update_settings(json!({
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 2,
}
},
}))
.await;
snapshot!(code, @"202 Accepted");
let ret = server.wait_task(response.uid()).await;
snapshot!(ret, @r###"
{
"uid": 1,
"indexUid": "doggo",
"status": "succeeded",
"type": "settingsUpdate",
"canceledBy": null,
"details": {
"embedders": {
"manual": {
"source": "userProvided",
"dimensions": 2
}
}
},
"error": null,
"duration": "[duration]",
"enqueuedAt": "[date]",
"startedAt": "[date]",
"finishedAt": "[date]"
}
"###);
}
#[actix_rt::test]
async fn reset_embedder_documents() {
let server = Server::new().await;
let index = generate_default_user_provided_documents(&server).await;
let (response, code) = index.delete_settings().await;
snapshot!(code, @"202 Accepted");
server.wait_task(response.uid()).await;
// Make sure the documents are still present
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions {
limit: None,
offset: None,
retrieve_vectors: false,
fields: None,
})
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir"
},
{
"id": 1,
"name": "echo"
},
{
"id": 2,
"name": "billou"
},
{
"id": 3,
"name": "intel"
},
{
"id": 4,
"name": "max"
}
],
"offset": 0,
"limit": 20,
"total": 5
}
"###);
// Make sure we are still able to retrieve their vectors
let (documents, _code) = index
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
.await;
snapshot!(json_string!(documents), @r###"
{
"results": [
{
"id": 0,
"name": "kefir",
"_vectors": {
"manual": {
"embeddings": [
[
0.0,
0.0,
0.0
]
],
"regenerate": false
}
}
},
{
"id": 1,
"name": "echo",
"_vectors": {
"manual": {
"embeddings": [
[
1.0,
1.0,
1.0
]
],
"regenerate": false
}
}
},
{
"id": 2,
"name": "billou",
"_vectors": {
"manual": {
"embeddings": [
[
2.0,
2.0,
2.0
],
[
2.0,
2.0,
3.0
]
],
"regenerate": false
}
}
},
{
"id": 3,
"name": "intel",
"_vectors": {
"manual": {
"embeddings": [
[
3.0,
3.0,
3.0
]
],
"regenerate": false
}
}
},
{
"id": 4,
"name": "max",
"_vectors": {
"manual": {
"embeddings": [
[
4.0,
4.0,
4.0
],
[
4.0,
4.0,
5.0
]
],
"regenerate": false
}
}
}
],
"offset": 0,
"limit": 20,
"total": 5
}
"###);
// Make sure the arroy DB has been cleared
let (documents, _code) = index.search_post(json!({ "vector": [1, 1, 1] })).await;
snapshot!(json_string!(documents), @r###"
{
"message": "Cannot find embedder with name `default`.",
"code": "invalid_embedder",
"type": "invalid_request",
"link": "https://docs.meilisearch.com/errors#invalid_embedder"
}
"###);
}