mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-01-11 05:54:30 +01:00
ollama and openai use new EmbedderOptions
This commit is contained in:
parent
a1beddd5d9
commit
d731fa661b
@ -28,19 +28,22 @@ impl EmbedderOptions {
|
||||
impl Embedder {
|
||||
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
|
||||
let model = options.embedding_model.as_str();
|
||||
let rest_embedder = match RestEmbedder::new(RestEmbedderOptions {
|
||||
let rest_embedder = match RestEmbedder::new(
|
||||
RestEmbedderOptions {
|
||||
api_key: options.api_key,
|
||||
dimensions: None,
|
||||
distribution: options.distribution,
|
||||
url: options.url.unwrap_or_else(get_ollama_path),
|
||||
query: serde_json::json!({
|
||||
request: serde_json::json!({
|
||||
"model": model,
|
||||
"prompt": super::rest::REQUEST_PLACEHOLDER,
|
||||
}),
|
||||
input_field: vec!["prompt".to_owned()],
|
||||
path_to_embeddings: Default::default(),
|
||||
embedding_object: vec!["embedding".to_owned()],
|
||||
input_type: super::rest::InputType::Text,
|
||||
}) {
|
||||
response: serde_json::json!({
|
||||
"embedding": super::rest::RESPONSE_PLACEHOLDER,
|
||||
}),
|
||||
},
|
||||
super::rest::ConfigurationSource::Ollama,
|
||||
) {
|
||||
Ok(embedder) => embedder,
|
||||
Err(NewEmbedderError {
|
||||
kind:
|
||||
|
@ -26,20 +26,21 @@ impl EmbedderOptions {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn query(&self) -> serde_json::Value {
|
||||
pub fn request(&self) -> serde_json::Value {
|
||||
let model = self.embedding_model.name();
|
||||
|
||||
let mut query = serde_json::json!({
|
||||
let mut request = serde_json::json!({
|
||||
"model": model,
|
||||
"input": [super::rest::REQUEST_PLACEHOLDER, super::rest::REPEAT_PLACEHOLDER]
|
||||
});
|
||||
|
||||
if self.embedding_model.supports_overriding_dimensions() {
|
||||
if let Some(dimensions) = self.dimensions {
|
||||
query["dimensions"] = dimensions.into();
|
||||
request["dimensions"] = dimensions.into();
|
||||
}
|
||||
}
|
||||
|
||||
query
|
||||
request
|
||||
}
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
@ -180,17 +181,23 @@ impl Embedder {
|
||||
|
||||
let url = options.url.as_deref().unwrap_or(OPENAI_EMBEDDINGS_URL).to_owned();
|
||||
|
||||
let rest_embedder = RestEmbedder::new(RestEmbedderOptions {
|
||||
let rest_embedder = RestEmbedder::new(
|
||||
RestEmbedderOptions {
|
||||
api_key: Some(api_key.clone()),
|
||||
distribution: None,
|
||||
dimensions: Some(options.dimensions()),
|
||||
url,
|
||||
query: options.query(),
|
||||
input_field: vec!["input".to_owned()],
|
||||
input_type: crate::vector::rest::InputType::TextArray,
|
||||
path_to_embeddings: vec!["data".to_owned()],
|
||||
embedding_object: vec!["embedding".to_owned()],
|
||||
})?;
|
||||
request: options.request(),
|
||||
response: serde_json::json!({
|
||||
"data": [{
|
||||
"embedding": super::rest::RESPONSE_PLACEHOLDER
|
||||
},
|
||||
super::rest::REPEAT_PLACEHOLDER
|
||||
]
|
||||
}),
|
||||
},
|
||||
super::rest::ConfigurationSource::OpenAi,
|
||||
)?;
|
||||
|
||||
// looking at the code it is very unclear that this can actually fail.
|
||||
let tokenizer = tiktoken_rs::cl100k_base().unwrap();
|
||||
@ -201,7 +208,7 @@ impl Embedder {
|
||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
match self.rest_embedder.embed_ref(&texts) {
|
||||
Ok(embeddings) => Ok(embeddings),
|
||||
Err(EmbedError { kind: EmbedErrorKind::RestBadRequest(error), fault: _ }) => {
|
||||
Err(EmbedError { kind: EmbedErrorKind::RestBadRequest(error, _), fault: _ }) => {
|
||||
tracing::warn!(error=?error, "OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your document template.");
|
||||
self.try_embed_tokenized(&texts)
|
||||
}
|
||||
@ -225,7 +232,7 @@ impl Embedder {
|
||||
|
||||
let embedding = self.rest_embedder.embed_tokens(tokens)?;
|
||||
embeddings_for_prompt.append(embedding.into_inner()).map_err(|got| {
|
||||
EmbedError::openai_unexpected_dimension(self.dimensions(), got.len())
|
||||
EmbedError::rest_unexpected_dimension(self.dimensions(), got.len())
|
||||
})?;
|
||||
|
||||
all_embeddings.push(embeddings_for_prompt);
|
||||
|
Loading…
x
Reference in New Issue
Block a user