mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-11-26 14:54:27 +01:00
Introduce a common way to manage the coordination between ranking rules
This commit is contained in:
parent
5065d8b0c1
commit
ce0d1e0e13
523
milli/src/search/new/ranking_rules.rs
Normal file
523
milli/src/search/new/ranking_rules.rs
Normal file
@ -0,0 +1,523 @@
|
||||
use heed::RoTxn;
|
||||
use roaring::RoaringBitmap;
|
||||
|
||||
use super::db_cache::DatabaseCache;
|
||||
use super::resolve_query_graph::resolve_query_graph;
|
||||
use super::QueryGraph;
|
||||
use crate::new::graph_based_ranking_rule::GraphBasedRankingRule;
|
||||
use crate::new::ranking_rule_graph::proximity::ProximityGraph;
|
||||
use crate::new::words::Words;
|
||||
// use crate::search::new::sort::Sort;
|
||||
use crate::{Index, Result, TermsMatchingStrategy};
|
||||
|
||||
pub trait RankingRuleOutputIter<'transaction, Query> {
|
||||
fn next_bucket(&mut self) -> Result<Option<RankingRuleOutput<Query>>>;
|
||||
}
|
||||
|
||||
pub struct RankingRuleOutputIterWrapper<'transaction, Query> {
|
||||
iter: Box<dyn Iterator<Item = Result<RankingRuleOutput<Query>>> + 'transaction>,
|
||||
}
|
||||
impl<'transaction, Query> RankingRuleOutputIterWrapper<'transaction, Query> {
|
||||
pub fn new(
|
||||
iter: Box<dyn Iterator<Item = Result<RankingRuleOutput<Query>>> + 'transaction>,
|
||||
) -> Self {
|
||||
Self { iter }
|
||||
}
|
||||
}
|
||||
impl<'transaction, Query> RankingRuleOutputIter<'transaction, Query>
|
||||
for RankingRuleOutputIterWrapper<'transaction, Query>
|
||||
{
|
||||
fn next_bucket(&mut self) -> Result<Option<RankingRuleOutput<Query>>> {
|
||||
match self.iter.next() {
|
||||
Some(x) => x.map(Some),
|
||||
None => Ok(None),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait RankingRuleQueryTrait: Sized + Clone + 'static {}
|
||||
#[derive(Clone)]
|
||||
pub struct PlaceholderQuery;
|
||||
impl RankingRuleQueryTrait for PlaceholderQuery {}
|
||||
impl RankingRuleQueryTrait for QueryGraph {}
|
||||
|
||||
pub trait RankingRule<'transaction, Query: RankingRuleQueryTrait> {
|
||||
// TODO: add an update_candidates function to deal with distinct
|
||||
// attributes?
|
||||
|
||||
fn start_iteration(
|
||||
&mut self,
|
||||
index: &Index,
|
||||
txn: &'transaction RoTxn,
|
||||
db_cache: &mut DatabaseCache<'transaction>,
|
||||
universe: &RoaringBitmap,
|
||||
query: &Query,
|
||||
) -> Result<()>;
|
||||
|
||||
fn next_bucket(
|
||||
&mut self,
|
||||
index: &Index,
|
||||
txn: &'transaction RoTxn,
|
||||
db_cache: &mut DatabaseCache<'transaction>,
|
||||
universe: &RoaringBitmap,
|
||||
) -> Result<Option<RankingRuleOutput<Query>>>;
|
||||
|
||||
fn end_iteration(
|
||||
&mut self,
|
||||
index: &Index,
|
||||
txn: &'transaction RoTxn,
|
||||
db_cache: &mut DatabaseCache<'transaction>,
|
||||
);
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct RankingRuleOutput<Q> {
|
||||
/// The query tree that must be used by the child ranking rule to fetch candidates.
|
||||
pub query: Q,
|
||||
/// The allowed candidates for the child ranking rule
|
||||
pub candidates: RoaringBitmap,
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn get_start_universe<'transaction>(
|
||||
index: &Index,
|
||||
txn: &'transaction RoTxn,
|
||||
db_cache: &mut DatabaseCache<'transaction>,
|
||||
query_graph: &QueryGraph,
|
||||
term_matching_strategy: TermsMatchingStrategy,
|
||||
// filters: Filters,
|
||||
// mut distinct: Option<D>,
|
||||
) -> Result<RoaringBitmap> {
|
||||
// NOTE:
|
||||
//
|
||||
// There is a performance problem when using `distinct` + exhaustive number of hits,
|
||||
// especially for search that yield many results (many ~= almost all of the
|
||||
// dataset).
|
||||
//
|
||||
// We'll solve it later. Maybe there are smart ways to go about it.
|
||||
//
|
||||
// For example, if there are millions of possible values for the distinct attribute,
|
||||
// then we could just look at the documents which share any distinct attribute with
|
||||
// another one, and remove the later docids them from the universe.
|
||||
// => NO! because we don't know which one to remove, only after the sorting is done can we know it
|
||||
// => this kind of computation can be done, but only in the evaluation of the number
|
||||
// of hits for the documents that aren't returned by the search.
|
||||
//
|
||||
// `Distinct` otherwise should always be computed during
|
||||
|
||||
let universe = index.documents_ids(txn).unwrap();
|
||||
|
||||
// resolve the whole query tree to retrieve an exhaustive list of documents matching the query.
|
||||
// NOTE: this is wrong
|
||||
// Instead, we should only compute the documents corresponding to the last remaining
|
||||
// word, 2-gram, and 3-gran.
|
||||
// let candidates = resolve_query_graph(index, txn, db_cache, query_graph, &universe)?;
|
||||
|
||||
// Distinct should be lazy if placeholder?
|
||||
//
|
||||
// // because the initial_candidates should be an exhaustive count of the matching documents,
|
||||
// // we precompute the distinct attributes.
|
||||
// let initial_candidates = match &mut distinct {
|
||||
// Some(distinct) => {
|
||||
// let mut initial_candidates = RoaringBitmap::new();
|
||||
// for c in distinct.distinct(candidates.clone(), RoaringBitmap::new()) {
|
||||
// initial_candidates.insert(c?);
|
||||
// }
|
||||
// initial_candidates
|
||||
// }
|
||||
// None => candidates.clone(),
|
||||
// };
|
||||
|
||||
Ok(/*candidates*/ universe)
|
||||
}
|
||||
|
||||
pub fn execute_search<'transaction>(
|
||||
index: &Index,
|
||||
txn: &'transaction heed::RoTxn,
|
||||
// TODO: ranking rules parameter
|
||||
db_cache: &mut DatabaseCache<'transaction>,
|
||||
universe: &RoaringBitmap,
|
||||
query_graph: &QueryGraph,
|
||||
// _from: usize,
|
||||
// _length: usize,
|
||||
) -> Result<Vec<u32>> {
|
||||
let words = Words::new(TermsMatchingStrategy::Last);
|
||||
// let sort = Sort::new(index, txn, "sort1".to_owned(), true)?;
|
||||
let proximity = GraphBasedRankingRule::<ProximityGraph>::default();
|
||||
// TODO: ranking rules given as argument
|
||||
let mut ranking_rules: Vec<Box<dyn RankingRule<'transaction, QueryGraph>>> =
|
||||
vec![Box::new(words), Box::new(proximity) /* Box::new(sort) */];
|
||||
|
||||
let ranking_rules_len = ranking_rules.len();
|
||||
ranking_rules[0].start_iteration(index, txn, db_cache, universe, query_graph)?;
|
||||
|
||||
// TODO: parent_candidates could be used only during debugging?
|
||||
let mut candidates = vec![RoaringBitmap::default(); ranking_rules_len];
|
||||
candidates[0] = universe.clone();
|
||||
|
||||
let mut cur_ranking_rule_index = 0;
|
||||
|
||||
macro_rules! back {
|
||||
() => {
|
||||
candidates[cur_ranking_rule_index].clear();
|
||||
ranking_rules[cur_ranking_rule_index].end_iteration(index, txn, db_cache);
|
||||
if cur_ranking_rule_index == 0 {
|
||||
break;
|
||||
} else {
|
||||
cur_ranking_rule_index -= 1;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
let mut results = vec![];
|
||||
// TODO: skip buckets when we want to start from an offset
|
||||
while results.len() < 20 {
|
||||
// The universe for this bucket is zero or one element, so we don't need to sort
|
||||
// anything, just extend the results and go back to the parent ranking rule.
|
||||
if candidates[cur_ranking_rule_index].len() <= 1 {
|
||||
results.extend(&candidates[cur_ranking_rule_index]);
|
||||
back!();
|
||||
continue;
|
||||
}
|
||||
let Some(next_bucket) = ranking_rules[cur_ranking_rule_index].next_bucket(index, txn, db_cache, &candidates[cur_ranking_rule_index])? else {
|
||||
back!();
|
||||
continue;
|
||||
};
|
||||
|
||||
candidates[cur_ranking_rule_index] -= &next_bucket.candidates;
|
||||
|
||||
if next_bucket.candidates.len() <= 1 {
|
||||
// Only zero or one candidate, no need to sort through the child ranking rule.
|
||||
results.extend(next_bucket.candidates);
|
||||
continue;
|
||||
} else {
|
||||
// many candidates, give to next ranking rule, if any
|
||||
if cur_ranking_rule_index == ranking_rules_len - 1 {
|
||||
// TODO: don't extend too much, up to the limit only
|
||||
results.extend(next_bucket.candidates);
|
||||
} else {
|
||||
cur_ranking_rule_index += 1;
|
||||
candidates[cur_ranking_rule_index] = next_bucket.candidates.clone();
|
||||
ranking_rules[cur_ranking_rule_index].start_iteration(
|
||||
index,
|
||||
txn,
|
||||
db_cache,
|
||||
&next_bucket.candidates,
|
||||
&next_bucket.query,
|
||||
)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::fs::File;
|
||||
use std::io::{BufRead, BufReader, Cursor, Seek};
|
||||
use std::time::Instant;
|
||||
|
||||
use heed::EnvOpenOptions;
|
||||
|
||||
use super::{execute_search, get_start_universe};
|
||||
use crate::documents::{DocumentsBatchBuilder, DocumentsBatchReader};
|
||||
use crate::index::tests::TempIndex;
|
||||
use crate::new::db_cache::DatabaseCache;
|
||||
use crate::new::make_query_graph;
|
||||
use crate::update::{IndexDocuments, IndexDocumentsConfig, IndexerConfig, Settings};
|
||||
use crate::{Criterion, Index, Object, Search, TermsMatchingStrategy};
|
||||
|
||||
#[test]
|
||||
fn execute_new_search() {
|
||||
let index = TempIndex::new();
|
||||
index
|
||||
.add_documents(documents!([
|
||||
{
|
||||
"id": 7,
|
||||
"text": "the super quick super brown fox jumps over",
|
||||
},
|
||||
{
|
||||
"id": 8,
|
||||
"text": "the super quick brown fox jumps over",
|
||||
},
|
||||
{
|
||||
"id": 9,
|
||||
"text": "the quick super brown fox jumps over",
|
||||
},
|
||||
{
|
||||
"id": 10,
|
||||
"text": "the quick brown fox jumps over",
|
||||
},
|
||||
{
|
||||
"id": 11,
|
||||
"text": "the quick brown fox jumps over the lazy dog",
|
||||
},
|
||||
{
|
||||
"id": 12,
|
||||
"text": "the quick brown cat jumps over the lazy dog",
|
||||
},
|
||||
]))
|
||||
.unwrap();
|
||||
let txn = index.read_txn().unwrap();
|
||||
|
||||
let mut db_cache = DatabaseCache::default();
|
||||
|
||||
let query_graph =
|
||||
make_query_graph(&index, &txn, &mut db_cache, "the quick brown fox jumps over")
|
||||
.unwrap();
|
||||
println!("{}", query_graph.graphviz());
|
||||
|
||||
// TODO: filters + maybe distinct attributes?
|
||||
let universe = get_start_universe(
|
||||
&index,
|
||||
&txn,
|
||||
&mut db_cache,
|
||||
&query_graph,
|
||||
TermsMatchingStrategy::Last,
|
||||
)
|
||||
.unwrap();
|
||||
println!("universe: {universe:?}");
|
||||
|
||||
let results =
|
||||
execute_search(&index, &txn, &mut db_cache, &universe, &query_graph /* 0, 20 */)
|
||||
.unwrap();
|
||||
println!("{results:?}")
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn search_movies_new() {
|
||||
let mut options = EnvOpenOptions::new();
|
||||
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
|
||||
|
||||
let index = Index::new(options, "data_movies").unwrap();
|
||||
let txn = index.read_txn().unwrap();
|
||||
|
||||
let primary_key = index.primary_key(&txn).unwrap().unwrap();
|
||||
let primary_key = index.fields_ids_map(&txn).unwrap().id(primary_key).unwrap();
|
||||
|
||||
// loop {
|
||||
// let start = Instant::now();
|
||||
|
||||
// let mut db_cache = DatabaseCache::default();
|
||||
|
||||
// let query_graph = make_query_graph(
|
||||
// &index,
|
||||
// &txn,
|
||||
// &mut db_cache,
|
||||
// "released from prison by the government",
|
||||
// )
|
||||
// .unwrap();
|
||||
// // println!("{}", query_graph.graphviz());
|
||||
|
||||
// // TODO: filters + maybe distinct attributes?
|
||||
// let universe = get_start_universe(
|
||||
// &index,
|
||||
// &txn,
|
||||
// &mut db_cache,
|
||||
// &query_graph,
|
||||
// TermsMatchingStrategy::Last,
|
||||
// )
|
||||
// .unwrap();
|
||||
// // println!("universe: {universe:?}");
|
||||
|
||||
// let results = execute_search(
|
||||
// &index,
|
||||
// &txn,
|
||||
// &mut db_cache,
|
||||
// &universe,
|
||||
// &query_graph, /* 0, 20 */
|
||||
// )
|
||||
// .unwrap();
|
||||
|
||||
// let elapsed = start.elapsed();
|
||||
// println!("{}us: {results:?}", elapsed.as_micros());
|
||||
// }
|
||||
let start = Instant::now();
|
||||
|
||||
let mut db_cache = DatabaseCache::default();
|
||||
|
||||
let query_graph =
|
||||
make_query_graph(&index, &txn, &mut db_cache, "released from prison by the government")
|
||||
.unwrap();
|
||||
// println!("{}", query_graph.graphviz());
|
||||
|
||||
// TODO: filters + maybe distinct attributes?
|
||||
let universe = get_start_universe(
|
||||
&index,
|
||||
&txn,
|
||||
&mut db_cache,
|
||||
&query_graph,
|
||||
TermsMatchingStrategy::Last,
|
||||
)
|
||||
.unwrap();
|
||||
// println!("universe: {universe:?}");
|
||||
|
||||
let results =
|
||||
execute_search(&index, &txn, &mut db_cache, &universe, &query_graph /* 0, 20 */)
|
||||
.unwrap();
|
||||
|
||||
let elapsed = start.elapsed();
|
||||
|
||||
let ids = index
|
||||
.documents(&txn, results.iter().copied())
|
||||
.unwrap()
|
||||
.into_iter()
|
||||
.map(|x| {
|
||||
let obkv = &x.1;
|
||||
let id = obkv.get(primary_key).unwrap();
|
||||
let id: serde_json::Value = serde_json::from_slice(id).unwrap();
|
||||
id.as_str().unwrap().to_owned()
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
println!("{}us: {results:?}", elapsed.as_micros());
|
||||
println!("external ids: {ids:?}");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn search_movies_old() {
|
||||
let mut options = EnvOpenOptions::new();
|
||||
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
|
||||
|
||||
let index = Index::new(options, "data_movies").unwrap();
|
||||
let txn = index.read_txn().unwrap();
|
||||
|
||||
let start = Instant::now();
|
||||
|
||||
let mut s = Search::new(&txn, &index);
|
||||
s.query("released from prison by the government");
|
||||
s.terms_matching_strategy(TermsMatchingStrategy::Last);
|
||||
// s.criterion_implementation_strategy(crate::CriterionImplementationStrategy::OnlySetBased);
|
||||
let docs = s.execute().unwrap();
|
||||
|
||||
let elapsed = start.elapsed();
|
||||
|
||||
println!("{}us: {:?}", elapsed.as_micros(), docs.documents_ids);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn _settings_movies() {
|
||||
let mut options = EnvOpenOptions::new();
|
||||
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
|
||||
|
||||
let index = Index::new(options, "data_movies").unwrap();
|
||||
let mut wtxn = index.write_txn().unwrap();
|
||||
|
||||
// let primary_key = "id";
|
||||
// let searchable_fields = vec!["title", "overview"];
|
||||
// let filterable_fields = vec!["release_date", "genres"];
|
||||
// let sortable_fields = vec[];
|
||||
|
||||
let config = IndexerConfig::default();
|
||||
let mut builder = Settings::new(&mut wtxn, &index, &config);
|
||||
|
||||
builder.set_min_word_len_one_typo(5);
|
||||
builder.set_min_word_len_two_typos(100);
|
||||
|
||||
// builder.set_primary_key(primary_key.to_owned());
|
||||
|
||||
// let searchable_fields = searchable_fields.iter().map(|s| s.to_string()).collect();
|
||||
// builder.set_searchable_fields(searchable_fields);
|
||||
|
||||
// let filterable_fields = filterable_fields.iter().map(|s| s.to_string()).collect();
|
||||
// builder.set_filterable_fields(filterable_fields);
|
||||
|
||||
builder.set_criteria(vec![Criterion::Words, Criterion::Proximity]);
|
||||
|
||||
// let sortable_fields = sortable_fields.iter().map(|s| s.to_string()).collect();
|
||||
// builder.set_sortable_fields(sortable_fields);
|
||||
|
||||
builder.execute(|_| (), || false).unwrap();
|
||||
}
|
||||
|
||||
// #[test]
|
||||
fn _index_movies() {
|
||||
let mut options = EnvOpenOptions::new();
|
||||
options.map_size(100 * 1024 * 1024 * 1024); // 100 GB
|
||||
|
||||
let index = Index::new(options, "data_movies").unwrap();
|
||||
let mut wtxn = index.write_txn().unwrap();
|
||||
|
||||
let primary_key = "id";
|
||||
let searchable_fields = vec!["title", "overview"];
|
||||
let filterable_fields = vec!["release_date", "genres"];
|
||||
// let sortable_fields = vec[];
|
||||
|
||||
let config = IndexerConfig::default();
|
||||
let mut builder = Settings::new(&mut wtxn, &index, &config);
|
||||
|
||||
builder.set_primary_key(primary_key.to_owned());
|
||||
|
||||
let searchable_fields = searchable_fields.iter().map(|s| s.to_string()).collect();
|
||||
builder.set_searchable_fields(searchable_fields);
|
||||
|
||||
let filterable_fields = filterable_fields.iter().map(|s| s.to_string()).collect();
|
||||
builder.set_filterable_fields(filterable_fields);
|
||||
|
||||
builder.set_criteria(vec![Criterion::Words]);
|
||||
|
||||
// let sortable_fields = sortable_fields.iter().map(|s| s.to_string()).collect();
|
||||
// builder.set_sortable_fields(sortable_fields);
|
||||
|
||||
builder.execute(|_| (), || false).unwrap();
|
||||
|
||||
let config = IndexerConfig::default();
|
||||
let indexing_config = IndexDocumentsConfig::default();
|
||||
let builder =
|
||||
IndexDocuments::new(&mut wtxn, &index, &config, indexing_config, |_| (), || false)
|
||||
.unwrap();
|
||||
|
||||
let documents = documents_from(
|
||||
"/Users/meilisearch/Documents/milli2/benchmarks/datasets/movies.json",
|
||||
"json",
|
||||
);
|
||||
let (builder, user_error) = builder.add_documents(documents).unwrap();
|
||||
user_error.unwrap();
|
||||
builder.execute().unwrap();
|
||||
wtxn.commit().unwrap();
|
||||
|
||||
index.prepare_for_closing().wait();
|
||||
}
|
||||
|
||||
fn documents_from(filename: &str, filetype: &str) -> DocumentsBatchReader<impl BufRead + Seek> {
|
||||
let reader = File::open(filename)
|
||||
.unwrap_or_else(|_| panic!("could not find the dataset in: {}", filename));
|
||||
let reader = BufReader::new(reader);
|
||||
let documents = match filetype {
|
||||
"csv" => documents_from_csv(reader).unwrap(),
|
||||
"json" => documents_from_json(reader).unwrap(),
|
||||
"jsonl" => documents_from_jsonl(reader).unwrap(),
|
||||
otherwise => panic!("invalid update format {:?}", otherwise),
|
||||
};
|
||||
DocumentsBatchReader::from_reader(Cursor::new(documents)).unwrap()
|
||||
}
|
||||
|
||||
fn documents_from_jsonl(reader: impl BufRead) -> crate::Result<Vec<u8>> {
|
||||
let mut documents = DocumentsBatchBuilder::new(Vec::new());
|
||||
|
||||
for result in serde_json::Deserializer::from_reader(reader).into_iter::<Object>() {
|
||||
let object = result.unwrap();
|
||||
documents.append_json_object(&object)?;
|
||||
}
|
||||
|
||||
documents.into_inner().map_err(Into::into)
|
||||
}
|
||||
|
||||
fn documents_from_json(reader: impl BufRead) -> crate::Result<Vec<u8>> {
|
||||
let mut documents = DocumentsBatchBuilder::new(Vec::new());
|
||||
|
||||
documents.append_json_array(reader)?;
|
||||
|
||||
documents.into_inner().map_err(Into::into)
|
||||
}
|
||||
|
||||
fn documents_from_csv(reader: impl BufRead) -> crate::Result<Vec<u8>> {
|
||||
let csv = csv::Reader::from_reader(reader);
|
||||
|
||||
let mut documents = DocumentsBatchBuilder::new(Vec::new());
|
||||
documents.append_csv(csv)?;
|
||||
|
||||
documents.into_inner().map_err(Into::into)
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user