mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-11-25 22:34:28 +01:00
Documentation for the vector module
This commit is contained in:
parent
ec81c2bf1a
commit
bc58e8a310
@ -16,46 +16,62 @@ pub use self::error::Error;
|
||||
|
||||
pub type Embedding = Vec<f32>;
|
||||
|
||||
/// One or multiple embeddings stored consecutively in a flat vector.
|
||||
pub struct Embeddings<F> {
|
||||
data: Vec<F>,
|
||||
dimension: usize,
|
||||
}
|
||||
|
||||
impl<F> Embeddings<F> {
|
||||
/// Declares an empty vector of embeddings of the specified dimensions.
|
||||
pub fn new(dimension: usize) -> Self {
|
||||
Self { data: Default::default(), dimension }
|
||||
}
|
||||
|
||||
/// Declares a vector of embeddings containing a single element.
|
||||
///
|
||||
/// The dimension is inferred from the length of the passed embedding.
|
||||
pub fn from_single_embedding(embedding: Vec<F>) -> Self {
|
||||
Self { dimension: embedding.len(), data: embedding }
|
||||
}
|
||||
|
||||
/// Declares a vector of embeddings from its components.
|
||||
///
|
||||
/// `data.len()` must be a multiple of `dimension`, otherwise an error is returned.
|
||||
pub fn from_inner(data: Vec<F>, dimension: usize) -> Result<Self, Vec<F>> {
|
||||
let mut this = Self::new(dimension);
|
||||
this.append(data)?;
|
||||
Ok(this)
|
||||
}
|
||||
|
||||
/// Returns the number of embeddings in this vector of embeddings.
|
||||
pub fn embedding_count(&self) -> usize {
|
||||
self.data.len() / self.dimension
|
||||
}
|
||||
|
||||
/// Dimension of a single embedding.
|
||||
pub fn dimension(&self) -> usize {
|
||||
self.dimension
|
||||
}
|
||||
|
||||
/// Deconstructs self into the inner flat vector.
|
||||
pub fn into_inner(self) -> Vec<F> {
|
||||
self.data
|
||||
}
|
||||
|
||||
/// A reference to the inner flat vector.
|
||||
pub fn as_inner(&self) -> &[F] {
|
||||
&self.data
|
||||
}
|
||||
|
||||
/// Iterates over the embeddings contained in the flat vector.
|
||||
pub fn iter(&self) -> impl Iterator<Item = &'_ [F]> + '_ {
|
||||
self.data.as_slice().chunks_exact(self.dimension)
|
||||
}
|
||||
|
||||
/// Push an embedding at the end of the embeddings.
|
||||
///
|
||||
/// If `embedding.len() != self.dimension`, then the push operation fails.
|
||||
pub fn push(&mut self, mut embedding: Vec<F>) -> Result<(), Vec<F>> {
|
||||
if embedding.len() != self.dimension {
|
||||
return Err(embedding);
|
||||
@ -64,6 +80,9 @@ impl<F> Embeddings<F> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Append a flat vector of embeddings a the end of the embeddings.
|
||||
///
|
||||
/// If `embeddings.len() % self.dimension != 0`, then the append operation fails.
|
||||
pub fn append(&mut self, mut embeddings: Vec<F>) -> Result<(), Vec<F>> {
|
||||
if embeddings.len() % self.dimension != 0 {
|
||||
return Err(embeddings);
|
||||
@ -73,37 +92,57 @@ impl<F> Embeddings<F> {
|
||||
}
|
||||
}
|
||||
|
||||
/// An embedder can be used to transform text into embeddings.
|
||||
#[derive(Debug)]
|
||||
pub enum Embedder {
|
||||
/// An embedder based on running local models, fetched from the Hugging Face Hub.
|
||||
HuggingFace(hf::Embedder),
|
||||
/// An embedder based on making embedding queries against the OpenAI API.
|
||||
OpenAi(openai::Embedder),
|
||||
/// An embedder based on the user providing the embeddings in the documents and queries.
|
||||
UserProvided(manual::Embedder),
|
||||
Ollama(ollama::Embedder),
|
||||
}
|
||||
|
||||
/// Configuration for an embedder.
|
||||
#[derive(Debug, Clone, Default, serde::Deserialize, serde::Serialize)]
|
||||
pub struct EmbeddingConfig {
|
||||
/// Options of the embedder, specific to each kind of embedder
|
||||
pub embedder_options: EmbedderOptions,
|
||||
/// Document template
|
||||
pub prompt: PromptData,
|
||||
// TODO: add metrics and anything needed
|
||||
}
|
||||
|
||||
/// Map of embedder configurations.
|
||||
///
|
||||
/// Each configuration is mapped to a name.
|
||||
#[derive(Clone, Default)]
|
||||
pub struct EmbeddingConfigs(HashMap<String, (Arc<Embedder>, Arc<Prompt>)>);
|
||||
|
||||
impl EmbeddingConfigs {
|
||||
/// Create the map from its internal component.s
|
||||
pub fn new(data: HashMap<String, (Arc<Embedder>, Arc<Prompt>)>) -> Self {
|
||||
Self(data)
|
||||
}
|
||||
|
||||
/// Get an embedder configuration and template from its name.
|
||||
pub fn get(&self, name: &str) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
|
||||
self.0.get(name).cloned()
|
||||
}
|
||||
|
||||
/// Get the default embedder configuration, if any.
|
||||
pub fn get_default(&self) -> Option<(Arc<Embedder>, Arc<Prompt>)> {
|
||||
self.get_default_embedder_name().and_then(|default| self.get(&default))
|
||||
}
|
||||
|
||||
/// Get the name of the default embedder configuration.
|
||||
///
|
||||
/// The default embedder is determined as follows:
|
||||
///
|
||||
/// - If there is only one embedder, it is always the default.
|
||||
/// - If there are multiple embedders and one of them is called `default`, then that one is the default embedder.
|
||||
/// - In all other cases, there is no default embedder.
|
||||
pub fn get_default_embedder_name(&self) -> Option<String> {
|
||||
let mut it = self.0.keys();
|
||||
let first_name = it.next();
|
||||
@ -126,6 +165,7 @@ impl IntoIterator for EmbeddingConfigs {
|
||||
}
|
||||
}
|
||||
|
||||
/// Options of an embedder, specific to each kind of embedder.
|
||||
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
||||
pub enum EmbedderOptions {
|
||||
HuggingFace(hf::EmbedderOptions),
|
||||
@ -141,10 +181,12 @@ impl Default for EmbedderOptions {
|
||||
}
|
||||
|
||||
impl EmbedderOptions {
|
||||
/// Default options for the Hugging Face embedder
|
||||
pub fn huggingface() -> Self {
|
||||
Self::HuggingFace(hf::EmbedderOptions::new())
|
||||
}
|
||||
|
||||
/// Default options for the OpenAI embedder
|
||||
pub fn openai(api_key: Option<String>) -> Self {
|
||||
Self::OpenAi(openai::EmbedderOptions::with_default_model(api_key))
|
||||
}
|
||||
@ -155,6 +197,7 @@ impl EmbedderOptions {
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
/// Spawns a new embedder built from its options.
|
||||
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
|
||||
Ok(match options {
|
||||
EmbedderOptions::HuggingFace(options) => Self::HuggingFace(hf::Embedder::new(options)?),
|
||||
@ -166,6 +209,9 @@ impl Embedder {
|
||||
})
|
||||
}
|
||||
|
||||
/// Embed one or multiple texts.
|
||||
///
|
||||
/// Each text can be embedded as one or multiple embeddings.
|
||||
pub async fn embed(
|
||||
&self,
|
||||
texts: Vec<String>,
|
||||
@ -184,6 +230,10 @@ impl Embedder {
|
||||
}
|
||||
}
|
||||
|
||||
/// Embed multiple chunks of texts.
|
||||
///
|
||||
/// Each chunk is composed of one or multiple texts.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// - if called from an asynchronous context
|
||||
@ -199,6 +249,7 @@ impl Embedder {
|
||||
}
|
||||
}
|
||||
|
||||
/// Indicates the preferred number of chunks to pass to [`Self::embed_chunks`]
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.chunk_count_hint(),
|
||||
@ -208,6 +259,7 @@ impl Embedder {
|
||||
}
|
||||
}
|
||||
|
||||
/// Indicates the preferred number of texts in a single chunk passed to [`Self::embed`]
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.prompt_count_in_chunk_hint(),
|
||||
@ -217,6 +269,7 @@ impl Embedder {
|
||||
}
|
||||
}
|
||||
|
||||
/// Indicates the dimensions of a single embedding produced by the embedder.
|
||||
pub fn dimensions(&self) -> usize {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.dimensions(),
|
||||
@ -226,6 +279,7 @@ impl Embedder {
|
||||
}
|
||||
}
|
||||
|
||||
/// An optional distribution used to apply an affine transformation to the similarity score of a document.
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.distribution(),
|
||||
@ -236,9 +290,20 @@ impl Embedder {
|
||||
}
|
||||
}
|
||||
|
||||
/// Describes the mean and sigma of distribution of embedding similarity in the embedding space.
|
||||
///
|
||||
/// The intended use is to make the similarity score more comparable to the regular ranking score.
|
||||
/// This allows to correct effects where results are too "packed" around a certain value.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct DistributionShift {
|
||||
/// Value where the results are "packed".
|
||||
///
|
||||
/// Similarity scores are translated so that they are packed around 0.5 instead
|
||||
pub current_mean: f32,
|
||||
|
||||
/// standard deviation of a similarity score.
|
||||
///
|
||||
/// Set below 0.4 to make the results less packed around the mean, and above 0.4 to make them more packed.
|
||||
pub current_sigma: f32,
|
||||
}
|
||||
|
||||
@ -280,6 +345,7 @@ impl DistributionShift {
|
||||
}
|
||||
}
|
||||
|
||||
/// Whether CUDA is supported in this version of Meilisearch.
|
||||
pub const fn is_cuda_enabled() -> bool {
|
||||
cfg!(feature = "cuda")
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user