mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-01-25 20:57:35 +01:00
Update ollama and openai impls to use the rest embedder internally
This commit is contained in:
parent
8708cbef25
commit
ac52c857e8
@ -339,6 +339,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
prompt_reader: grenad::Reader<R>,
|
||||
indexer: GrenadParameters,
|
||||
embedder: Arc<Embedder>,
|
||||
request_threads: &rayon::ThreadPool,
|
||||
) -> Result<grenad::Reader<BufReader<File>>> {
|
||||
puffin::profile_function!();
|
||||
let n_chunks = embedder.chunk_count_hint(); // chunk level parallelism
|
||||
@ -376,7 +377,10 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
|
||||
if chunks.len() == chunks.capacity() {
|
||||
let chunked_embeds = embedder
|
||||
.embed_chunks(std::mem::replace(&mut chunks, Vec::with_capacity(n_chunks)))
|
||||
.embed_chunks(
|
||||
std::mem::replace(&mut chunks, Vec::with_capacity(n_chunks)),
|
||||
request_threads,
|
||||
)
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
|
||||
@ -394,7 +398,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
// send last chunk
|
||||
if !chunks.is_empty() {
|
||||
let chunked_embeds = embedder
|
||||
.embed_chunks(std::mem::take(&mut chunks))
|
||||
.embed_chunks(std::mem::take(&mut chunks), request_threads)
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
for (docid, embeddings) in chunks_ids
|
||||
@ -408,7 +412,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
|
||||
|
||||
if !current_chunk.is_empty() {
|
||||
let embeds = embedder
|
||||
.embed_chunks(vec![std::mem::take(&mut current_chunk)])
|
||||
.embed_chunks(vec![std::mem::take(&mut current_chunk)], request_threads)
|
||||
.map_err(crate::vector::Error::from)
|
||||
.map_err(crate::Error::from)?;
|
||||
|
||||
|
@ -238,7 +238,15 @@ fn send_original_documents_data(
|
||||
|
||||
let documents_chunk_cloned = original_documents_chunk.clone();
|
||||
let lmdb_writer_sx_cloned = lmdb_writer_sx.clone();
|
||||
|
||||
let request_threads = rayon::ThreadPoolBuilder::new()
|
||||
.num_threads(crate::vector::REQUEST_PARALLELISM)
|
||||
.thread_name(|index| format!("embedding-request-{index}"))
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
rayon::spawn(move || {
|
||||
/// FIXME: unwrap
|
||||
for (name, (embedder, prompt)) in embedders {
|
||||
let result = extract_vector_points(
|
||||
documents_chunk_cloned.clone(),
|
||||
@ -249,7 +257,12 @@ fn send_original_documents_data(
|
||||
);
|
||||
match result {
|
||||
Ok(ExtractedVectorPoints { manual_vectors, remove_vectors, prompts }) => {
|
||||
let embeddings = match extract_embeddings(prompts, indexer, embedder.clone()) {
|
||||
let embeddings = match extract_embeddings(
|
||||
prompts,
|
||||
indexer,
|
||||
embedder.clone(),
|
||||
&request_threads,
|
||||
) {
|
||||
Ok(results) => Some(results),
|
||||
Err(error) => {
|
||||
let _ = lmdb_writer_sx_cloned.send(Err(error));
|
||||
|
@ -2,9 +2,7 @@ use std::path::PathBuf;
|
||||
|
||||
use hf_hub::api::sync::ApiError;
|
||||
|
||||
use super::ollama::OllamaError;
|
||||
use crate::error::FaultSource;
|
||||
use crate::vector::openai::OpenAiError;
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
#[error("Error while generating embeddings: {inner}")]
|
||||
@ -52,43 +50,12 @@ pub enum EmbedErrorKind {
|
||||
TensorValue(candle_core::Error),
|
||||
#[error("could not run model: {0}")]
|
||||
ModelForward(candle_core::Error),
|
||||
#[error("could not reach OpenAI: {0}")]
|
||||
OpenAiNetwork(ureq::Transport),
|
||||
#[error("unexpected response from OpenAI: {0}")]
|
||||
OpenAiUnexpected(ureq::Error),
|
||||
#[error("could not authenticate against OpenAI: {0:?}")]
|
||||
OpenAiAuth(Option<OpenAiError>),
|
||||
#[error("sent too many requests to OpenAI: {0:?}")]
|
||||
OpenAiTooManyRequests(Option<OpenAiError>),
|
||||
#[error("received internal error from OpenAI: {0:?}")]
|
||||
OpenAiInternalServerError(Option<OpenAiError>),
|
||||
#[error("sent too many tokens in a request to OpenAI: {0:?}")]
|
||||
OpenAiTooManyTokens(Option<OpenAiError>),
|
||||
#[error("received unhandled HTTP status code {0} from OpenAI")]
|
||||
OpenAiUnhandledStatusCode(u16),
|
||||
#[error("attempt to embed the following text in a configuration where embeddings must be user provided: {0:?}")]
|
||||
ManualEmbed(String),
|
||||
#[error("could not initialize asynchronous runtime: {0}")]
|
||||
OpenAiRuntimeInit(std::io::Error),
|
||||
#[error("initializing web client for sending embedding requests failed: {0}")]
|
||||
InitWebClient(reqwest::Error),
|
||||
// Dedicated Ollama error kinds, might have to merge them into one cohesive error type for all backends.
|
||||
#[error("unexpected response from Ollama: {0}")]
|
||||
OllamaUnexpected(reqwest::Error),
|
||||
#[error("sent too many requests to Ollama: {0}")]
|
||||
OllamaTooManyRequests(OllamaError),
|
||||
#[error("received internal error from Ollama: {0}")]
|
||||
OllamaInternalServerError(OllamaError),
|
||||
#[error("model not found. Meilisearch will not automatically download models from the Ollama library, please pull the model manually: {0}")]
|
||||
OllamaModelNotFoundError(OllamaError),
|
||||
#[error("received unhandled HTTP status code {0} from Ollama")]
|
||||
OllamaUnhandledStatusCode(u16),
|
||||
#[error("error serializing template context: {0}")]
|
||||
RestTemplateContextSerialization(liquid::Error),
|
||||
#[error(
|
||||
"error rendering request template: {0}. Hint: available variable in the context: {{{{input}}}}'"
|
||||
)]
|
||||
RestTemplateError(liquid::Error),
|
||||
#[error("model not found. Meilisearch will not automatically download models from the Ollama library, please pull the model manually: {0:?}")]
|
||||
OllamaModelNotFoundError(Option<String>),
|
||||
#[error("error deserialization the response body as JSON: {0}")]
|
||||
RestResponseDeserialization(std::io::Error),
|
||||
#[error("component `{0}` not found in path `{1}` in response: `{2}`")]
|
||||
@ -128,77 +95,14 @@ impl EmbedError {
|
||||
Self { kind: EmbedErrorKind::ModelForward(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_network(inner: ureq::Transport) -> Self {
|
||||
Self { kind: EmbedErrorKind::OpenAiNetwork(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_unexpected(inner: ureq::Error) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiUnexpected(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_auth_error(inner: Option<OpenAiError>) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiAuth(inner), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_too_many_requests(inner: Option<OpenAiError>) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiTooManyRequests(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_internal_server_error(inner: Option<OpenAiError>) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiInternalServerError(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_too_many_tokens(inner: Option<OpenAiError>) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiTooManyTokens(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_unhandled_status_code(code: u16) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiUnhandledStatusCode(code), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn embed_on_manual_embedder(texts: String) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::ManualEmbed(texts), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn openai_runtime_init(inner: std::io::Error) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OpenAiRuntimeInit(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub fn openai_initialize_web_client(inner: reqwest::Error) -> Self {
|
||||
Self { kind: EmbedErrorKind::InitWebClient(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn ollama_unexpected(inner: reqwest::Error) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OllamaUnexpected(inner), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn ollama_model_not_found(inner: OllamaError) -> EmbedError {
|
||||
pub(crate) fn ollama_model_not_found(inner: Option<String>) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OllamaModelNotFoundError(inner), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn ollama_too_many_requests(inner: OllamaError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OllamaTooManyRequests(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn ollama_internal_server_error(inner: OllamaError) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OllamaInternalServerError(inner), fault: FaultSource::Runtime }
|
||||
}
|
||||
|
||||
pub(crate) fn ollama_unhandled_status_code(code: u16) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::OllamaUnhandledStatusCode(code), fault: FaultSource::Bug }
|
||||
}
|
||||
|
||||
pub(crate) fn rest_template_context_serialization(error: liquid::Error) -> EmbedError {
|
||||
Self {
|
||||
kind: EmbedErrorKind::RestTemplateContextSerialization(error),
|
||||
fault: FaultSource::Bug,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn rest_template_render(error: liquid::Error) -> EmbedError {
|
||||
Self { kind: EmbedErrorKind::RestTemplateError(error), fault: FaultSource::User }
|
||||
}
|
||||
|
||||
pub(crate) fn rest_response_deserialization(error: std::io::Error) -> EmbedError {
|
||||
Self {
|
||||
kind: EmbedErrorKind::RestResponseDeserialization(error),
|
||||
@ -335,17 +239,6 @@ impl NewEmbedderError {
|
||||
fault: FaultSource::Runtime,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn ollama_could_not_determine_dimension(inner: EmbedError) -> NewEmbedderError {
|
||||
Self {
|
||||
kind: NewEmbedderErrorKind::CouldNotDetermineDimension(inner),
|
||||
fault: FaultSource::User,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn openai_invalid_api_key_format(inner: reqwest::header::InvalidHeaderValue) -> Self {
|
||||
Self { kind: NewEmbedderErrorKind::InvalidApiKeyFormat(inner), fault: FaultSource::User }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, thiserror::Error)]
|
||||
@ -392,7 +285,4 @@ pub enum NewEmbedderErrorKind {
|
||||
CouldNotDetermineDimension(EmbedError),
|
||||
#[error("loading model failed: {0}")]
|
||||
LoadModel(candle_core::Error),
|
||||
// openai
|
||||
#[error("The API key passed to Authorization error was in an invalid format: {0}")]
|
||||
InvalidApiKeyFormat(reqwest::header::InvalidHeaderValue),
|
||||
}
|
||||
|
@ -17,6 +17,8 @@ pub use self::error::Error;
|
||||
|
||||
pub type Embedding = Vec<f32>;
|
||||
|
||||
pub const REQUEST_PARALLELISM: usize = 40;
|
||||
|
||||
/// One or multiple embeddings stored consecutively in a flat vector.
|
||||
pub struct Embeddings<F> {
|
||||
data: Vec<F>,
|
||||
@ -99,7 +101,7 @@ pub enum Embedder {
|
||||
/// An embedder based on running local models, fetched from the Hugging Face Hub.
|
||||
HuggingFace(hf::Embedder),
|
||||
/// An embedder based on making embedding queries against the OpenAI API.
|
||||
OpenAi(openai::sync::Embedder),
|
||||
OpenAi(openai::Embedder),
|
||||
/// An embedder based on the user providing the embeddings in the documents and queries.
|
||||
UserProvided(manual::Embedder),
|
||||
Ollama(ollama::Embedder),
|
||||
@ -202,7 +204,7 @@ impl Embedder {
|
||||
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
|
||||
Ok(match options {
|
||||
EmbedderOptions::HuggingFace(options) => Self::HuggingFace(hf::Embedder::new(options)?),
|
||||
EmbedderOptions::OpenAi(options) => Self::OpenAi(openai::sync::Embedder::new(options)?),
|
||||
EmbedderOptions::OpenAi(options) => Self::OpenAi(openai::Embedder::new(options)?),
|
||||
EmbedderOptions::Ollama(options) => Self::Ollama(ollama::Embedder::new(options)?),
|
||||
EmbedderOptions::UserProvided(options) => {
|
||||
Self::UserProvided(manual::Embedder::new(options))
|
||||
@ -213,17 +215,14 @@ impl Embedder {
|
||||
/// Embed one or multiple texts.
|
||||
///
|
||||
/// Each text can be embedded as one or multiple embeddings.
|
||||
pub async fn embed(
|
||||
pub fn embed(
|
||||
&self,
|
||||
texts: Vec<String>,
|
||||
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.embed(texts),
|
||||
Embedder::OpenAi(embedder) => embedder.embed(texts),
|
||||
Embedder::Ollama(embedder) => {
|
||||
let client = embedder.new_client()?;
|
||||
embedder.embed(texts, &client).await
|
||||
}
|
||||
Embedder::Ollama(embedder) => embedder.embed(texts),
|
||||
Embedder::UserProvided(embedder) => embedder.embed(texts),
|
||||
}
|
||||
}
|
||||
@ -231,18 +230,15 @@ impl Embedder {
|
||||
/// Embed multiple chunks of texts.
|
||||
///
|
||||
/// Each chunk is composed of one or multiple texts.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// - if called from an asynchronous context
|
||||
pub fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
threads: &rayon::ThreadPool,
|
||||
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
match self {
|
||||
Embedder::HuggingFace(embedder) => embedder.embed_chunks(text_chunks),
|
||||
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks),
|
||||
Embedder::Ollama(embedder) => embedder.embed_chunks(text_chunks),
|
||||
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks, threads),
|
||||
Embedder::Ollama(embedder) => embedder.embed_chunks(text_chunks, threads),
|
||||
Embedder::UserProvided(embedder) => embedder.embed_chunks(text_chunks),
|
||||
}
|
||||
}
|
||||
|
@ -1,293 +1,94 @@
|
||||
// Copied from "openai.rs" with the sections I actually understand changed for Ollama.
|
||||
// The common components of the Ollama and OpenAI interfaces might need to be extracted.
|
||||
use rayon::iter::{IntoParallelIterator as _, ParallelIterator as _};
|
||||
|
||||
use std::fmt::Display;
|
||||
|
||||
use reqwest::StatusCode;
|
||||
|
||||
use super::error::{EmbedError, NewEmbedderError};
|
||||
use super::openai::Retry;
|
||||
use super::{DistributionShift, Embedding, Embeddings};
|
||||
use super::error::{EmbedError, EmbedErrorKind, NewEmbedderError, NewEmbedderErrorKind};
|
||||
use super::rest::{Embedder as RestEmbedder, EmbedderOptions as RestEmbedderOptions};
|
||||
use super::{DistributionShift, Embeddings};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Embedder {
|
||||
headers: reqwest::header::HeaderMap,
|
||||
options: EmbedderOptions,
|
||||
rest_embedder: RestEmbedder,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
||||
pub struct EmbedderOptions {
|
||||
pub embedding_model: EmbeddingModel,
|
||||
}
|
||||
|
||||
#[derive(
|
||||
Debug, Clone, Hash, PartialEq, Eq, serde::Serialize, serde::Deserialize, deserr::Deserr,
|
||||
)]
|
||||
#[deserr(deny_unknown_fields)]
|
||||
pub struct EmbeddingModel {
|
||||
name: String,
|
||||
dimensions: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug, serde::Serialize)]
|
||||
struct OllamaRequest<'a> {
|
||||
model: &'a str,
|
||||
prompt: &'a str,
|
||||
}
|
||||
|
||||
#[derive(Debug, serde::Deserialize)]
|
||||
struct OllamaResponse {
|
||||
embedding: Embedding,
|
||||
}
|
||||
|
||||
#[derive(Debug, serde::Deserialize)]
|
||||
pub struct OllamaError {
|
||||
error: String,
|
||||
}
|
||||
|
||||
impl EmbeddingModel {
|
||||
pub fn max_token(&self) -> usize {
|
||||
// this might not be the same for all models
|
||||
8192
|
||||
}
|
||||
|
||||
pub fn default_dimensions(&self) -> usize {
|
||||
// Dimensions for nomic-embed-text
|
||||
768
|
||||
}
|
||||
|
||||
pub fn name(&self) -> String {
|
||||
self.name.clone()
|
||||
}
|
||||
|
||||
pub fn from_name(name: &str) -> Self {
|
||||
Self { name: name.to_string(), dimensions: 0 }
|
||||
}
|
||||
|
||||
pub fn supports_overriding_dimensions(&self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for EmbeddingModel {
|
||||
fn default() -> Self {
|
||||
Self { name: "nomic-embed-text".to_string(), dimensions: 0 }
|
||||
}
|
||||
pub embedding_model: String,
|
||||
}
|
||||
|
||||
impl EmbedderOptions {
|
||||
pub fn with_default_model() -> Self {
|
||||
Self { embedding_model: Default::default() }
|
||||
Self { embedding_model: "nomic-embed-text".into() }
|
||||
}
|
||||
|
||||
pub fn with_embedding_model(embedding_model: EmbeddingModel) -> Self {
|
||||
pub fn with_embedding_model(embedding_model: String) -> Self {
|
||||
Self { embedding_model }
|
||||
}
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new_client(&self) -> Result<reqwest::Client, EmbedError> {
|
||||
reqwest::ClientBuilder::new()
|
||||
.default_headers(self.headers.clone())
|
||||
.build()
|
||||
.map_err(EmbedError::openai_initialize_web_client)
|
||||
}
|
||||
|
||||
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
|
||||
let mut headers = reqwest::header::HeaderMap::new();
|
||||
headers.insert(
|
||||
reqwest::header::CONTENT_TYPE,
|
||||
reqwest::header::HeaderValue::from_static("application/json"),
|
||||
);
|
||||
|
||||
let mut embedder = Self { options, headers };
|
||||
|
||||
let rt = tokio::runtime::Builder::new_current_thread()
|
||||
.enable_io()
|
||||
.enable_time()
|
||||
.build()
|
||||
.map_err(EmbedError::openai_runtime_init)
|
||||
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
|
||||
|
||||
// Get dimensions from Ollama
|
||||
let request =
|
||||
OllamaRequest { model: &embedder.options.embedding_model.name(), prompt: "test" };
|
||||
// TODO: Refactor into shared error type
|
||||
let client = embedder
|
||||
.new_client()
|
||||
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
|
||||
|
||||
rt.block_on(async move {
|
||||
let response = client
|
||||
.post(get_ollama_path())
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(EmbedError::ollama_unexpected)
|
||||
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
|
||||
|
||||
// Process error in case model not found
|
||||
let response = Self::check_response(response).await.map_err(|_err| {
|
||||
let e = EmbedError::ollama_model_not_found(OllamaError {
|
||||
error: format!("model: {}", embedder.options.embedding_model.name()),
|
||||
});
|
||||
NewEmbedderError::ollama_could_not_determine_dimension(e)
|
||||
})?;
|
||||
|
||||
let response: OllamaResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::ollama_unexpected)
|
||||
.map_err(NewEmbedderError::ollama_could_not_determine_dimension)?;
|
||||
|
||||
let embedding = Embeddings::from_single_embedding(response.embedding);
|
||||
|
||||
embedder.options.embedding_model.dimensions = embedding.dimension();
|
||||
|
||||
tracing::info!(
|
||||
"ollama model {} with dimensionality {} added",
|
||||
embedder.options.embedding_model.name(),
|
||||
embedding.dimension()
|
||||
);
|
||||
|
||||
Ok(embedder)
|
||||
})
|
||||
}
|
||||
|
||||
async fn check_response(response: reqwest::Response) -> Result<reqwest::Response, Retry> {
|
||||
if !response.status().is_success() {
|
||||
// Not the same number of possible error cases covered as with OpenAI.
|
||||
match response.status() {
|
||||
StatusCode::TOO_MANY_REQUESTS => {
|
||||
let error_response: OllamaError = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::ollama_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
return Err(Retry::rate_limited(EmbedError::ollama_too_many_requests(
|
||||
OllamaError { error: error_response.error },
|
||||
)));
|
||||
}
|
||||
StatusCode::SERVICE_UNAVAILABLE => {
|
||||
let error_response: OllamaError = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::ollama_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
return Err(Retry::retry_later(EmbedError::ollama_internal_server_error(
|
||||
OllamaError { error: error_response.error },
|
||||
)));
|
||||
}
|
||||
StatusCode::NOT_FOUND => {
|
||||
let error_response: OllamaError = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::ollama_unexpected)
|
||||
.map_err(Retry::give_up)?;
|
||||
|
||||
return Err(Retry::give_up(EmbedError::ollama_model_not_found(OllamaError {
|
||||
error: error_response.error,
|
||||
})));
|
||||
}
|
||||
code => {
|
||||
return Err(Retry::give_up(EmbedError::ollama_unhandled_status_code(
|
||||
code.as_u16(),
|
||||
)));
|
||||
}
|
||||
let model = options.embedding_model.as_str();
|
||||
let rest_embedder = match RestEmbedder::new(RestEmbedderOptions {
|
||||
api_key: None,
|
||||
distribution: None,
|
||||
dimensions: None,
|
||||
url: get_ollama_path(),
|
||||
query: serde_json::json!({
|
||||
"model": model,
|
||||
}),
|
||||
input_field: vec!["prompt".to_owned()],
|
||||
path_to_embeddings: Default::default(),
|
||||
embedding_object: vec!["embedding".to_owned()],
|
||||
input_type: super::rest::InputType::Text,
|
||||
}) {
|
||||
Ok(embedder) => embedder,
|
||||
Err(NewEmbedderError {
|
||||
kind:
|
||||
NewEmbedderErrorKind::CouldNotDetermineDimension(EmbedError {
|
||||
kind: super::error::EmbedErrorKind::RestOtherStatusCode(404, error),
|
||||
fault: _,
|
||||
}),
|
||||
fault: _,
|
||||
}) => {
|
||||
return Err(NewEmbedderError::could_not_determine_dimension(
|
||||
EmbedError::ollama_model_not_found(error),
|
||||
))
|
||||
}
|
||||
}
|
||||
Ok(response)
|
||||
Err(error) => return Err(error),
|
||||
};
|
||||
|
||||
Ok(Self { rest_embedder })
|
||||
}
|
||||
|
||||
pub async fn embed(
|
||||
&self,
|
||||
texts: Vec<String>,
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
// Ollama only embedds one document at a time.
|
||||
let mut results = Vec::with_capacity(texts.len());
|
||||
|
||||
// The retry loop is inside the texts loop, might have to switch that around
|
||||
for text in texts {
|
||||
// Retries copied from openai.rs
|
||||
for attempt in 0..7 {
|
||||
let retry_duration = match self.try_embed(&text, client).await {
|
||||
Ok(result) => {
|
||||
results.push(result);
|
||||
break;
|
||||
}
|
||||
Err(retry) => {
|
||||
tracing::warn!("Failed: {}", retry.error);
|
||||
retry.into_duration(attempt)
|
||||
}
|
||||
}?;
|
||||
tracing::warn!(
|
||||
"Attempt #{}, retrying after {}ms.",
|
||||
attempt,
|
||||
retry_duration.as_millis()
|
||||
);
|
||||
tokio::time::sleep(retry_duration).await;
|
||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
match self.rest_embedder.embed(texts) {
|
||||
Ok(embeddings) => Ok(embeddings),
|
||||
Err(EmbedError { kind: EmbedErrorKind::RestOtherStatusCode(404, error), fault: _ }) => {
|
||||
Err(EmbedError::ollama_model_not_found(error))
|
||||
}
|
||||
Err(error) => Err(error),
|
||||
}
|
||||
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
async fn try_embed(
|
||||
&self,
|
||||
text: &str,
|
||||
client: &reqwest::Client,
|
||||
) -> Result<Embeddings<f32>, Retry> {
|
||||
let request = OllamaRequest { model: &self.options.embedding_model.name(), prompt: text };
|
||||
let response = client
|
||||
.post(get_ollama_path())
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(EmbedError::openai_network)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
let response = Self::check_response(response).await?;
|
||||
|
||||
let response: OllamaResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
tracing::trace!("response: {:?}", response.embedding);
|
||||
|
||||
let embedding = Embeddings::from_single_embedding(response.embedding);
|
||||
Ok(embedding)
|
||||
}
|
||||
|
||||
pub fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
threads: &rayon::ThreadPool,
|
||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
let rt = tokio::runtime::Builder::new_current_thread()
|
||||
.enable_io()
|
||||
.enable_time()
|
||||
.build()
|
||||
.map_err(EmbedError::openai_runtime_init)?;
|
||||
let client = self.new_client()?;
|
||||
rt.block_on(futures::future::try_join_all(
|
||||
text_chunks.into_iter().map(|prompts| self.embed(prompts, &client)),
|
||||
))
|
||||
threads.install(move || {
|
||||
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
|
||||
})
|
||||
}
|
||||
|
||||
// Defaults copied from openai.rs
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
10
|
||||
self.rest_embedder.chunk_count_hint()
|
||||
}
|
||||
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
10
|
||||
self.rest_embedder.prompt_count_in_chunk_hint()
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
self.options.embedding_model.dimensions
|
||||
self.rest_embedder.dimensions()
|
||||
}
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
@ -295,12 +96,6 @@ impl Embedder {
|
||||
}
|
||||
}
|
||||
|
||||
impl Display for OllamaError {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "{}", self.error)
|
||||
}
|
||||
}
|
||||
|
||||
fn get_ollama_path() -> String {
|
||||
// Important: Hostname not enough, has to be entire path to embeddings endpoint
|
||||
std::env::var("MEILI_OLLAMA_URL").unwrap_or("http://localhost:11434/api/embeddings".to_string())
|
||||
|
@ -1,9 +1,9 @@
|
||||
use std::fmt::Display;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
use rayon::iter::{IntoParallelIterator, ParallelIterator as _};
|
||||
|
||||
use super::error::{EmbedError, NewEmbedderError};
|
||||
use super::{DistributionShift, Embedding, Embeddings};
|
||||
use super::rest::{Embedder as RestEmbedder, EmbedderOptions as RestEmbedderOptions};
|
||||
use super::{DistributionShift, Embeddings};
|
||||
use crate::vector::error::EmbedErrorKind;
|
||||
|
||||
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
||||
pub struct EmbedderOptions {
|
||||
@ -12,6 +12,32 @@ pub struct EmbedderOptions {
|
||||
pub dimensions: Option<usize>,
|
||||
}
|
||||
|
||||
impl EmbedderOptions {
|
||||
pub fn dimensions(&self) -> usize {
|
||||
if self.embedding_model.supports_overriding_dimensions() {
|
||||
self.dimensions.unwrap_or(self.embedding_model.default_dimensions())
|
||||
} else {
|
||||
self.embedding_model.default_dimensions()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn query(&self) -> serde_json::Value {
|
||||
let model = self.embedding_model.name();
|
||||
|
||||
let mut query = serde_json::json!({
|
||||
"model": model,
|
||||
});
|
||||
|
||||
if self.embedding_model.supports_overriding_dimensions() {
|
||||
if let Some(dimensions) = self.dimensions {
|
||||
query["dimensions"] = dimensions.into();
|
||||
}
|
||||
}
|
||||
|
||||
query
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(
|
||||
Debug,
|
||||
Clone,
|
||||
@ -117,364 +143,112 @@ impl EmbedderOptions {
|
||||
}
|
||||
}
|
||||
|
||||
// retrying in case of failure
|
||||
|
||||
pub struct Retry {
|
||||
pub error: EmbedError,
|
||||
strategy: RetryStrategy,
|
||||
}
|
||||
|
||||
pub enum RetryStrategy {
|
||||
GiveUp,
|
||||
Retry,
|
||||
RetryTokenized,
|
||||
RetryAfterRateLimit,
|
||||
}
|
||||
|
||||
impl Retry {
|
||||
pub fn give_up(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::GiveUp }
|
||||
}
|
||||
|
||||
pub fn retry_later(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::Retry }
|
||||
}
|
||||
|
||||
pub fn retry_tokenized(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::RetryTokenized }
|
||||
}
|
||||
|
||||
pub fn rate_limited(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::RetryAfterRateLimit }
|
||||
}
|
||||
|
||||
pub fn into_duration(self, attempt: u32) -> Result<tokio::time::Duration, EmbedError> {
|
||||
match self.strategy {
|
||||
RetryStrategy::GiveUp => Err(self.error),
|
||||
RetryStrategy::Retry => Ok(tokio::time::Duration::from_millis((10u64).pow(attempt))),
|
||||
RetryStrategy::RetryTokenized => Ok(tokio::time::Duration::from_millis(1)),
|
||||
RetryStrategy::RetryAfterRateLimit => {
|
||||
Ok(tokio::time::Duration::from_millis(100 + 10u64.pow(attempt)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn must_tokenize(&self) -> bool {
|
||||
matches!(self.strategy, RetryStrategy::RetryTokenized)
|
||||
}
|
||||
|
||||
pub fn into_error(self) -> EmbedError {
|
||||
self.error
|
||||
}
|
||||
}
|
||||
|
||||
// openai api structs
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
struct OpenAiRequest<'a, S: AsRef<str> + serde::Serialize> {
|
||||
model: &'a str,
|
||||
input: &'a [S],
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
dimensions: Option<usize>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
struct OpenAiTokensRequest<'a> {
|
||||
model: &'a str,
|
||||
input: &'a [usize],
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
dimensions: Option<usize>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
struct OpenAiResponse {
|
||||
data: Vec<OpenAiEmbedding>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
struct OpenAiErrorResponse {
|
||||
error: OpenAiError,
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
pub struct OpenAiError {
|
||||
message: String,
|
||||
// type: String,
|
||||
code: Option<String>,
|
||||
}
|
||||
|
||||
impl Display for OpenAiError {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match &self.code {
|
||||
Some(code) => write!(f, "{} ({})", self.message, code),
|
||||
None => write!(f, "{}", self.message),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
struct OpenAiEmbedding {
|
||||
embedding: Embedding,
|
||||
// object: String,
|
||||
// index: usize,
|
||||
}
|
||||
|
||||
fn infer_api_key() -> String {
|
||||
std::env::var("MEILI_OPENAI_API_KEY")
|
||||
.or_else(|_| std::env::var("OPENAI_API_KEY"))
|
||||
.unwrap_or_default()
|
||||
}
|
||||
|
||||
pub mod sync {
|
||||
use rayon::iter::{IntoParallelIterator, ParallelIterator as _};
|
||||
#[derive(Debug)]
|
||||
pub struct Embedder {
|
||||
tokenizer: tiktoken_rs::CoreBPE,
|
||||
rest_embedder: RestEmbedder,
|
||||
options: EmbedderOptions,
|
||||
}
|
||||
|
||||
use super::{
|
||||
EmbedError, Embedding, Embeddings, NewEmbedderError, OpenAiErrorResponse, OpenAiRequest,
|
||||
OpenAiResponse, OpenAiTokensRequest, Retry, OPENAI_EMBEDDINGS_URL,
|
||||
};
|
||||
use crate::vector::DistributionShift;
|
||||
impl Embedder {
|
||||
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
|
||||
let mut inferred_api_key = Default::default();
|
||||
let api_key = options.api_key.as_ref().unwrap_or_else(|| {
|
||||
inferred_api_key = infer_api_key();
|
||||
&inferred_api_key
|
||||
});
|
||||
|
||||
const REQUEST_PARALLELISM: usize = 10;
|
||||
let rest_embedder = RestEmbedder::new(RestEmbedderOptions {
|
||||
api_key: Some(api_key.clone()),
|
||||
distribution: options.embedding_model.distribution(),
|
||||
dimensions: Some(options.dimensions()),
|
||||
url: OPENAI_EMBEDDINGS_URL.to_owned(),
|
||||
query: options.query(),
|
||||
input_field: vec!["input".to_owned()],
|
||||
input_type: crate::vector::rest::InputType::TextArray,
|
||||
path_to_embeddings: vec!["data".to_owned()],
|
||||
embedding_object: vec!["embedding".to_owned()],
|
||||
})?;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Embedder {
|
||||
tokenizer: tiktoken_rs::CoreBPE,
|
||||
options: super::EmbedderOptions,
|
||||
bearer: String,
|
||||
threads: rayon::ThreadPool,
|
||||
// looking at the code it is very unclear that this can actually fail.
|
||||
let tokenizer = tiktoken_rs::cl100k_base().unwrap();
|
||||
|
||||
Ok(Self { options, rest_embedder, tokenizer })
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new(options: super::EmbedderOptions) -> Result<Self, NewEmbedderError> {
|
||||
let mut inferred_api_key = Default::default();
|
||||
let api_key = options.api_key.as_ref().unwrap_or_else(|| {
|
||||
inferred_api_key = super::infer_api_key();
|
||||
&inferred_api_key
|
||||
});
|
||||
let bearer = format!("Bearer {api_key}");
|
||||
|
||||
// looking at the code it is very unclear that this can actually fail.
|
||||
let tokenizer = tiktoken_rs::cl100k_base().unwrap();
|
||||
|
||||
// FIXME: unwrap
|
||||
let threads = rayon::ThreadPoolBuilder::new()
|
||||
.num_threads(REQUEST_PARALLELISM)
|
||||
.thread_name(|index| format!("embedder-chunk-{index}"))
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
Ok(Self { options, bearer, tokenizer, threads })
|
||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
match self.rest_embedder.embed_ref(&texts) {
|
||||
Ok(embeddings) => Ok(embeddings),
|
||||
Err(EmbedError { kind: EmbedErrorKind::RestBadRequest(error), fault: _ }) => {
|
||||
tracing::warn!(error=?error, "OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your document template.");
|
||||
self.try_embed_tokenized(&texts)
|
||||
}
|
||||
Err(error) => Err(error),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
let mut tokenized = false;
|
||||
|
||||
let client = ureq::agent();
|
||||
|
||||
for attempt in 0..7 {
|
||||
let result = if tokenized {
|
||||
self.try_embed_tokenized(&texts, &client)
|
||||
} else {
|
||||
self.try_embed(&texts, &client)
|
||||
};
|
||||
|
||||
let retry_duration = match result {
|
||||
Ok(embeddings) => return Ok(embeddings),
|
||||
Err(retry) => {
|
||||
tracing::warn!("Failed: {}", retry.error);
|
||||
tokenized |= retry.must_tokenize();
|
||||
retry.into_duration(attempt)
|
||||
}
|
||||
}?;
|
||||
|
||||
let retry_duration = retry_duration.min(std::time::Duration::from_secs(60)); // don't wait more than a minute
|
||||
tracing::warn!(
|
||||
"Attempt #{}, retrying after {}ms.",
|
||||
attempt,
|
||||
retry_duration.as_millis()
|
||||
);
|
||||
std::thread::sleep(retry_duration);
|
||||
fn try_embed_tokenized(&self, text: &[String]) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
pub const OVERLAP_SIZE: usize = 200;
|
||||
let mut all_embeddings = Vec::with_capacity(text.len());
|
||||
for text in text {
|
||||
let max_token_count = self.options.embedding_model.max_token();
|
||||
let encoded = self.tokenizer.encode_ordinary(text.as_str());
|
||||
let len = encoded.len();
|
||||
if len < max_token_count {
|
||||
all_embeddings.append(&mut self.rest_embedder.embed_ref(&[text])?);
|
||||
continue;
|
||||
}
|
||||
|
||||
let result = if tokenized {
|
||||
self.try_embed_tokenized(&texts, &client)
|
||||
} else {
|
||||
self.try_embed(&texts, &client)
|
||||
};
|
||||
let mut tokens = encoded.as_slice();
|
||||
let mut embeddings_for_prompt = Embeddings::new(self.dimensions());
|
||||
while tokens.len() > max_token_count {
|
||||
let window = &tokens[..max_token_count];
|
||||
let embedding = self.rest_embedder.embed_tokens(window)?;
|
||||
/// FIXME: unwrap
|
||||
embeddings_for_prompt.append(embedding.into_inner()).unwrap();
|
||||
|
||||
result.map_err(Retry::into_error)
|
||||
}
|
||||
|
||||
fn check_response(
|
||||
response: Result<ureq::Response, ureq::Error>,
|
||||
) -> Result<ureq::Response, Retry> {
|
||||
match response {
|
||||
Ok(response) => Ok(response),
|
||||
Err(ureq::Error::Status(code, response)) => {
|
||||
let error_response: Option<OpenAiErrorResponse> = response.into_json().ok();
|
||||
let error = error_response.map(|response| response.error);
|
||||
Err(match code {
|
||||
401 => Retry::give_up(EmbedError::openai_auth_error(error)),
|
||||
429 => Retry::rate_limited(EmbedError::openai_too_many_requests(error)),
|
||||
400 => {
|
||||
tracing::warn!("OpenAI: received `BAD_REQUEST`. Input was maybe too long, retrying on tokenized version. For best performance, limit the size of your document template.");
|
||||
|
||||
Retry::retry_tokenized(EmbedError::openai_too_many_tokens(error))
|
||||
}
|
||||
500..=599 => {
|
||||
Retry::retry_later(EmbedError::openai_internal_server_error(error))
|
||||
}
|
||||
x => Retry::retry_later(EmbedError::openai_unhandled_status_code(code)),
|
||||
})
|
||||
}
|
||||
Err(ureq::Error::Transport(transport)) => {
|
||||
Err(Retry::retry_later(EmbedError::openai_network(transport)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn try_embed<S: AsRef<str> + serde::Serialize>(
|
||||
&self,
|
||||
texts: &[S],
|
||||
client: &ureq::Agent,
|
||||
) -> Result<Vec<Embeddings<f32>>, Retry> {
|
||||
for text in texts {
|
||||
tracing::trace!("Received prompt: {}", text.as_ref())
|
||||
}
|
||||
let request = OpenAiRequest {
|
||||
model: self.options.embedding_model.name(),
|
||||
input: texts,
|
||||
dimensions: self.overriden_dimensions(),
|
||||
};
|
||||
let response = client
|
||||
.post(OPENAI_EMBEDDINGS_URL)
|
||||
.set("Authorization", &self.bearer)
|
||||
.send_json(&request);
|
||||
|
||||
let response = Self::check_response(response)?;
|
||||
|
||||
let response: OpenAiResponse = response
|
||||
.into_json()
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
tracing::trace!("response: {:?}", response.data);
|
||||
|
||||
Ok(response
|
||||
.data
|
||||
.into_iter()
|
||||
.map(|data| Embeddings::from_single_embedding(data.embedding))
|
||||
.collect())
|
||||
}
|
||||
|
||||
fn try_embed_tokenized(
|
||||
&self,
|
||||
text: &[String],
|
||||
client: &ureq::Agent,
|
||||
) -> Result<Vec<Embeddings<f32>>, Retry> {
|
||||
pub const OVERLAP_SIZE: usize = 200;
|
||||
let mut all_embeddings = Vec::with_capacity(text.len());
|
||||
for text in text {
|
||||
let max_token_count = self.options.embedding_model.max_token();
|
||||
let encoded = self.tokenizer.encode_ordinary(text.as_str());
|
||||
let len = encoded.len();
|
||||
if len < max_token_count {
|
||||
all_embeddings.append(&mut self.try_embed(&[text], client)?);
|
||||
continue;
|
||||
}
|
||||
|
||||
let mut tokens = encoded.as_slice();
|
||||
let mut embeddings_for_prompt = Embeddings::new(self.dimensions());
|
||||
while tokens.len() > max_token_count {
|
||||
let window = &tokens[..max_token_count];
|
||||
embeddings_for_prompt.push(self.embed_tokens(window, client)?).unwrap();
|
||||
|
||||
tokens = &tokens[max_token_count - OVERLAP_SIZE..];
|
||||
}
|
||||
|
||||
// end of text
|
||||
embeddings_for_prompt.push(self.embed_tokens(tokens, client)?).unwrap();
|
||||
|
||||
all_embeddings.push(embeddings_for_prompt);
|
||||
}
|
||||
Ok(all_embeddings)
|
||||
}
|
||||
|
||||
fn embed_tokens(&self, tokens: &[usize], client: &ureq::Agent) -> Result<Embedding, Retry> {
|
||||
for attempt in 0..9 {
|
||||
let duration = match self.try_embed_tokens(tokens, client) {
|
||||
Ok(embedding) => return Ok(embedding),
|
||||
Err(retry) => retry.into_duration(attempt),
|
||||
}
|
||||
.map_err(Retry::retry_later)?;
|
||||
|
||||
std::thread::sleep(duration);
|
||||
tokens = &tokens[max_token_count - OVERLAP_SIZE..];
|
||||
}
|
||||
|
||||
self.try_embed_tokens(tokens, client)
|
||||
.map_err(|retry| Retry::give_up(retry.into_error()))
|
||||
// end of text
|
||||
let embedding = self.rest_embedder.embed_tokens(tokens)?;
|
||||
/// FIXME: unwrap
|
||||
embeddings_for_prompt.append(embedding.into_inner()).unwrap();
|
||||
|
||||
all_embeddings.push(embeddings_for_prompt);
|
||||
}
|
||||
Ok(all_embeddings)
|
||||
}
|
||||
|
||||
fn try_embed_tokens(
|
||||
&self,
|
||||
tokens: &[usize],
|
||||
client: &ureq::Agent,
|
||||
) -> Result<Embedding, Retry> {
|
||||
let request = OpenAiTokensRequest {
|
||||
model: self.options.embedding_model.name(),
|
||||
input: tokens,
|
||||
dimensions: self.overriden_dimensions(),
|
||||
};
|
||||
let response = client
|
||||
.post(OPENAI_EMBEDDINGS_URL)
|
||||
.set("Authorization", &self.bearer)
|
||||
.send_json(&request);
|
||||
pub fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
threads: &rayon::ThreadPool,
|
||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
threads.install(move || {
|
||||
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
|
||||
})
|
||||
}
|
||||
|
||||
let response = Self::check_response(response)?;
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
self.rest_embedder.chunk_count_hint()
|
||||
}
|
||||
|
||||
let mut response: OpenAiResponse = response
|
||||
.into_json()
|
||||
.map_err(EmbedError::openai_unexpected)
|
||||
.map_err(Retry::retry_later)?;
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
self.rest_embedder.prompt_count_in_chunk_hint()
|
||||
}
|
||||
|
||||
Ok(response.data.pop().map(|data| data.embedding).unwrap_or_default())
|
||||
}
|
||||
pub fn dimensions(&self) -> usize {
|
||||
self.options.dimensions()
|
||||
}
|
||||
|
||||
pub fn embed_chunks(
|
||||
&self,
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
self.threads
|
||||
.install(move || text_chunks.into_par_iter().map(|chunk| self.embed(chunk)))
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
10
|
||||
}
|
||||
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
10
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
if self.options.embedding_model.supports_overriding_dimensions() {
|
||||
self.options.dimensions.unwrap_or(self.options.embedding_model.default_dimensions())
|
||||
} else {
|
||||
self.options.embedding_model.default_dimensions()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
self.options.embedding_model.distribution()
|
||||
}
|
||||
|
||||
fn overriden_dimensions(&self) -> Option<usize> {
|
||||
if self.options.embedding_model.supports_overriding_dimensions() {
|
||||
self.options.dimensions
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
pub fn distribution(&self) -> Option<DistributionShift> {
|
||||
self.options.embedding_model.distribution()
|
||||
}
|
||||
}
|
||||
|
@ -1,9 +1,62 @@
|
||||
use rayon::iter::{IntoParallelIterator as _, ParallelIterator as _};
|
||||
use serde::Serialize;
|
||||
|
||||
use super::openai::Retry;
|
||||
use super::{DistributionShift, EmbedError, Embeddings, NewEmbedderError};
|
||||
use crate::VectorOrArrayOfVectors;
|
||||
use super::{
|
||||
DistributionShift, EmbedError, Embedding, Embeddings, NewEmbedderError, REQUEST_PARALLELISM,
|
||||
};
|
||||
|
||||
// retrying in case of failure
|
||||
|
||||
pub struct Retry {
|
||||
pub error: EmbedError,
|
||||
strategy: RetryStrategy,
|
||||
}
|
||||
|
||||
pub enum RetryStrategy {
|
||||
GiveUp,
|
||||
Retry,
|
||||
RetryTokenized,
|
||||
RetryAfterRateLimit,
|
||||
}
|
||||
|
||||
impl Retry {
|
||||
pub fn give_up(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::GiveUp }
|
||||
}
|
||||
|
||||
pub fn retry_later(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::Retry }
|
||||
}
|
||||
|
||||
pub fn retry_tokenized(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::RetryTokenized }
|
||||
}
|
||||
|
||||
pub fn rate_limited(error: EmbedError) -> Self {
|
||||
Self { error, strategy: RetryStrategy::RetryAfterRateLimit }
|
||||
}
|
||||
|
||||
pub fn into_duration(self, attempt: u32) -> Result<std::time::Duration, EmbedError> {
|
||||
match self.strategy {
|
||||
RetryStrategy::GiveUp => Err(self.error),
|
||||
RetryStrategy::Retry => Ok(std::time::Duration::from_millis((10u64).pow(attempt))),
|
||||
RetryStrategy::RetryTokenized => Ok(std::time::Duration::from_millis(1)),
|
||||
RetryStrategy::RetryAfterRateLimit => {
|
||||
Ok(std::time::Duration::from_millis(100 + 10u64.pow(attempt)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn must_tokenize(&self) -> bool {
|
||||
matches!(self.strategy, RetryStrategy::RetryTokenized)
|
||||
}
|
||||
|
||||
pub fn into_error(self) -> EmbedError {
|
||||
self.error
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Embedder {
|
||||
client: ureq::Agent,
|
||||
options: EmbedderOptions,
|
||||
@ -11,20 +64,35 @@ pub struct Embedder {
|
||||
dimensions: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct EmbedderOptions {
|
||||
api_key: Option<String>,
|
||||
distribution: Option<DistributionShift>,
|
||||
dimensions: Option<usize>,
|
||||
url: String,
|
||||
query: liquid::Template,
|
||||
response_field: Vec<String>,
|
||||
pub api_key: Option<String>,
|
||||
pub distribution: Option<DistributionShift>,
|
||||
pub dimensions: Option<usize>,
|
||||
pub url: String,
|
||||
pub query: serde_json::Value,
|
||||
pub input_field: Vec<String>,
|
||||
// path to the array of embeddings
|
||||
pub path_to_embeddings: Vec<String>,
|
||||
// shape of a single embedding
|
||||
pub embedding_object: Vec<String>,
|
||||
pub input_type: InputType,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum InputType {
|
||||
Text,
|
||||
TextArray,
|
||||
}
|
||||
|
||||
impl Embedder {
|
||||
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
|
||||
let bearer = options.api_key.as_deref().map(|api_key| format!("Bearer: {api_key}"));
|
||||
let bearer = options.api_key.as_deref().map(|api_key| format!("Bearer {api_key}"));
|
||||
|
||||
let client = ureq::agent();
|
||||
let client = ureq::AgentBuilder::new()
|
||||
.max_idle_connections(REQUEST_PARALLELISM * 2)
|
||||
.max_idle_connections_per_host(REQUEST_PARALLELISM * 2)
|
||||
.build();
|
||||
|
||||
let dimensions = if let Some(dimensions) = options.dimensions {
|
||||
dimensions
|
||||
@ -36,7 +104,20 @@ impl Embedder {
|
||||
}
|
||||
|
||||
pub fn embed(&self, texts: Vec<String>) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
embed(&self.client, &self.options, self.bearer.as_deref(), texts.as_slice())
|
||||
embed(&self.client, &self.options, self.bearer.as_deref(), texts.as_slice(), texts.len())
|
||||
}
|
||||
|
||||
pub fn embed_ref<S>(&self, texts: &[S]) -> Result<Vec<Embeddings<f32>>, EmbedError>
|
||||
where
|
||||
S: AsRef<str> + Serialize,
|
||||
{
|
||||
embed(&self.client, &self.options, self.bearer.as_deref(), texts, texts.len())
|
||||
}
|
||||
|
||||
pub fn embed_tokens(&self, tokens: &[usize]) -> Result<Embeddings<f32>, EmbedError> {
|
||||
let mut embeddings = embed(&self.client, &self.options, self.bearer.as_deref(), tokens, 1)?;
|
||||
// unwrap: guaranteed that embeddings.len() == 1, otherwise the previous line terminated in error
|
||||
Ok(embeddings.pop().unwrap())
|
||||
}
|
||||
|
||||
pub fn embed_chunks(
|
||||
@ -44,17 +125,20 @@ impl Embedder {
|
||||
text_chunks: Vec<Vec<String>>,
|
||||
threads: &rayon::ThreadPool,
|
||||
) -> Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
|
||||
threads
|
||||
.install(move || text_chunks.into_par_iter().map(|chunk| self.embed(chunk)))
|
||||
.collect()
|
||||
threads.install(move || {
|
||||
text_chunks.into_par_iter().map(move |chunk| self.embed(chunk)).collect()
|
||||
})
|
||||
}
|
||||
|
||||
pub fn chunk_count_hint(&self) -> usize {
|
||||
10
|
||||
super::REQUEST_PARALLELISM
|
||||
}
|
||||
|
||||
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
||||
10
|
||||
match self.options.input_type {
|
||||
InputType::Text => 1,
|
||||
InputType::TextArray => 10,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn dimensions(&self) -> usize {
|
||||
@ -71,9 +155,9 @@ fn infer_dimensions(
|
||||
options: &EmbedderOptions,
|
||||
bearer: Option<&str>,
|
||||
) -> Result<usize, NewEmbedderError> {
|
||||
let v = embed(client, options, bearer, ["test"].as_slice())
|
||||
let v = embed(client, options, bearer, ["test"].as_slice(), 1)
|
||||
.map_err(NewEmbedderError::could_not_determine_dimension)?;
|
||||
// unwrap: guaranteed that v.len() == ["test"].len() == 1, otherwise the previous line terminated in error
|
||||
// unwrap: guaranteed that v.len() == 1, otherwise the previous line terminated in error
|
||||
Ok(v.first().unwrap().dimension())
|
||||
}
|
||||
|
||||
@ -82,33 +166,57 @@ fn embed<S>(
|
||||
options: &EmbedderOptions,
|
||||
bearer: Option<&str>,
|
||||
inputs: &[S],
|
||||
expected_count: usize,
|
||||
) -> Result<Vec<Embeddings<f32>>, EmbedError>
|
||||
where
|
||||
S: serde::Serialize,
|
||||
S: Serialize,
|
||||
{
|
||||
let request = client.post(&options.url);
|
||||
let request =
|
||||
if let Some(bearer) = bearer { request.set("Authorization", bearer) } else { request };
|
||||
let request = request.set("Content-Type", "application/json");
|
||||
|
||||
let body = options
|
||||
.query
|
||||
.render(
|
||||
&liquid::to_object(&serde_json::json!({
|
||||
"input": inputs,
|
||||
}))
|
||||
.map_err(EmbedError::rest_template_context_serialization)?,
|
||||
)
|
||||
.map_err(EmbedError::rest_template_render)?;
|
||||
let input_value = match options.input_type {
|
||||
InputType::Text => serde_json::json!(inputs.first()),
|
||||
InputType::TextArray => serde_json::json!(inputs),
|
||||
};
|
||||
|
||||
let body = match options.input_field.as_slice() {
|
||||
[] => {
|
||||
// inject input in body
|
||||
input_value
|
||||
}
|
||||
[input] => {
|
||||
let mut body = options.query.clone();
|
||||
|
||||
/// FIXME unwrap
|
||||
body.as_object_mut().unwrap().insert(input.clone(), input_value);
|
||||
body
|
||||
}
|
||||
[path @ .., input] => {
|
||||
let mut body = options.query.clone();
|
||||
|
||||
/// FIXME unwrap
|
||||
let mut current_value = &mut body;
|
||||
for component in path {
|
||||
current_value = current_value
|
||||
.as_object_mut()
|
||||
.unwrap()
|
||||
.entry(component.clone())
|
||||
.or_insert(serde_json::json!({}));
|
||||
}
|
||||
|
||||
current_value.as_object_mut().unwrap().insert(input.clone(), input_value);
|
||||
body
|
||||
}
|
||||
};
|
||||
|
||||
for attempt in 0..7 {
|
||||
let response = request.send_string(&body);
|
||||
let response = request.clone().send_json(&body);
|
||||
let result = check_response(response);
|
||||
|
||||
let retry_duration = match result {
|
||||
Ok(response) => {
|
||||
return response_to_embedding(response, &options.response_field, inputs.len())
|
||||
}
|
||||
Ok(response) => return response_to_embedding(response, options, expected_count),
|
||||
Err(retry) => {
|
||||
tracing::warn!("Failed: {}", retry.error);
|
||||
retry.into_duration(attempt)
|
||||
@ -120,11 +228,11 @@ where
|
||||
std::thread::sleep(retry_duration);
|
||||
}
|
||||
|
||||
let response = request.send_string(&body);
|
||||
let response = request.send_json(&body);
|
||||
let result = check_response(response);
|
||||
result
|
||||
.map_err(Retry::into_error)
|
||||
.and_then(|response| response_to_embedding(response, &options.response_field, inputs.len()))
|
||||
.and_then(|response| response_to_embedding(response, options, expected_count))
|
||||
}
|
||||
|
||||
fn check_response(response: Result<ureq::Response, ureq::Error>) -> Result<ureq::Response, Retry> {
|
||||
@ -139,7 +247,10 @@ fn check_response(response: Result<ureq::Response, ureq::Error>) -> Result<ureq:
|
||||
500..=599 => {
|
||||
Retry::retry_later(EmbedError::rest_internal_server_error(code, error_response))
|
||||
}
|
||||
x => Retry::retry_later(EmbedError::rest_other_status_code(code, error_response)),
|
||||
402..=499 => {
|
||||
Retry::give_up(EmbedError::rest_other_status_code(code, error_response))
|
||||
}
|
||||
_ => Retry::retry_later(EmbedError::rest_other_status_code(code, error_response)),
|
||||
})
|
||||
}
|
||||
Err(ureq::Error::Transport(transport)) => {
|
||||
@ -148,34 +259,66 @@ fn check_response(response: Result<ureq::Response, ureq::Error>) -> Result<ureq:
|
||||
}
|
||||
}
|
||||
|
||||
fn response_to_embedding<S: AsRef<str>>(
|
||||
fn response_to_embedding(
|
||||
response: ureq::Response,
|
||||
response_field: &[S],
|
||||
options: &EmbedderOptions,
|
||||
expected_count: usize,
|
||||
) -> Result<Vec<Embeddings<f32>>, EmbedError> {
|
||||
let response: serde_json::Value =
|
||||
response.into_json().map_err(EmbedError::rest_response_deserialization)?;
|
||||
|
||||
let mut current_value = &response;
|
||||
for component in response_field {
|
||||
for component in &options.path_to_embeddings {
|
||||
let component = component.as_ref();
|
||||
let current_value = current_value.get(component).ok_or_else(|| {
|
||||
EmbedError::rest_response_missing_embeddings(response, component, response_field)
|
||||
current_value = current_value.get(component).ok_or_else(|| {
|
||||
EmbedError::rest_response_missing_embeddings(
|
||||
response.clone(),
|
||||
component,
|
||||
&options.path_to_embeddings,
|
||||
)
|
||||
})?;
|
||||
}
|
||||
|
||||
let embeddings = current_value.to_owned();
|
||||
let embeddings = match options.input_type {
|
||||
InputType::Text => {
|
||||
for component in &options.embedding_object {
|
||||
current_value = current_value.get(component).ok_or_else(|| {
|
||||
EmbedError::rest_response_missing_embeddings(
|
||||
response.clone(),
|
||||
component,
|
||||
&options.embedding_object,
|
||||
)
|
||||
})?;
|
||||
}
|
||||
let embeddings = current_value.to_owned();
|
||||
let embeddings: Embedding =
|
||||
serde_json::from_value(embeddings).map_err(EmbedError::rest_response_format)?;
|
||||
|
||||
let embeddings: VectorOrArrayOfVectors =
|
||||
serde_json::from_value(embeddings).map_err(EmbedError::rest_response_format)?;
|
||||
|
||||
let embeddings = embeddings.into_array_of_vectors();
|
||||
|
||||
let embeddings: Vec<Embeddings<f32>> = embeddings
|
||||
.into_iter()
|
||||
.flatten()
|
||||
.map(|embedding| Embeddings::from_single_embedding(embedding))
|
||||
.collect();
|
||||
vec![Embeddings::from_single_embedding(embeddings)]
|
||||
}
|
||||
InputType::TextArray => {
|
||||
let empty = vec![];
|
||||
let values = current_value.as_array().unwrap_or(&empty);
|
||||
let mut embeddings: Vec<Embeddings<f32>> = Vec::with_capacity(expected_count);
|
||||
for value in values {
|
||||
let mut current_value = value;
|
||||
for component in &options.embedding_object {
|
||||
current_value = current_value.get(component).ok_or_else(|| {
|
||||
EmbedError::rest_response_missing_embeddings(
|
||||
response.clone(),
|
||||
component,
|
||||
&options.embedding_object,
|
||||
)
|
||||
})?;
|
||||
}
|
||||
let embedding = current_value.to_owned();
|
||||
let embedding: Embedding =
|
||||
serde_json::from_value(embedding).map_err(EmbedError::rest_response_format)?;
|
||||
embeddings.push(Embeddings::from_single_embedding(embedding));
|
||||
}
|
||||
embeddings
|
||||
}
|
||||
};
|
||||
|
||||
if embeddings.len() != expected_count {
|
||||
return Err(EmbedError::rest_response_embedding_count(expected_count, embeddings.len()));
|
||||
|
@ -204,7 +204,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
|
||||
},
|
||||
super::EmbedderOptions::Ollama(options) => Self {
|
||||
source: Setting::Set(EmbedderSource::Ollama),
|
||||
model: Setting::Set(options.embedding_model.name().to_owned()),
|
||||
model: Setting::Set(options.embedding_model.to_owned()),
|
||||
revision: Setting::NotSet,
|
||||
api_key: Setting::NotSet,
|
||||
dimensions: Setting::NotSet,
|
||||
@ -248,7 +248,7 @@ impl From<EmbeddingSettings> for EmbeddingConfig {
|
||||
let mut options: ollama::EmbedderOptions =
|
||||
super::ollama::EmbedderOptions::with_default_model();
|
||||
if let Some(model) = model.set() {
|
||||
options.embedding_model = super::ollama::EmbeddingModel::from_name(&model);
|
||||
options.embedding_model = model;
|
||||
}
|
||||
this.embedder_options = super::EmbedderOptions::Ollama(options);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user