WIP multi embedders

fixed template bugs
This commit is contained in:
Louis Dureuil 2023-12-12 21:19:48 +01:00
parent abbe131084
commit 922a640188
No known key found for this signature in database
20 changed files with 438 additions and 158 deletions

View File

@ -1361,7 +1361,6 @@ impl IndexScheduler {
let embedder = Arc::new(
Embedder::new(embedder_options.clone())
.map_err(meilisearch_types::milli::vector::Error::from)
.map_err(meilisearch_types::milli::UserError::from)
.map_err(meilisearch_types::milli::Error::from)?,
);
{

View File

@ -222,6 +222,8 @@ InvalidVectorsType , InvalidRequest , BAD_REQUEST ;
InvalidDocumentId , InvalidRequest , BAD_REQUEST ;
InvalidDocumentLimit , InvalidRequest , BAD_REQUEST ;
InvalidDocumentOffset , InvalidRequest , BAD_REQUEST ;
InvalidEmbedder , InvalidRequest , BAD_REQUEST ;
InvalidHybridQuery , InvalidRequest , BAD_REQUEST ;
InvalidIndexLimit , InvalidRequest , BAD_REQUEST ;
InvalidIndexOffset , InvalidRequest , BAD_REQUEST ;
InvalidIndexPrimaryKey , InvalidRequest , BAD_REQUEST ;
@ -233,6 +235,7 @@ InvalidSearchAttributesToRetrieve , InvalidRequest , BAD_REQUEST ;
InvalidSearchCropLength , InvalidRequest , BAD_REQUEST ;
InvalidSearchCropMarker , InvalidRequest , BAD_REQUEST ;
InvalidSearchFacets , InvalidRequest , BAD_REQUEST ;
InvalidSemanticRatio , InvalidRequest , BAD_REQUEST ;
InvalidFacetSearchFacetName , InvalidRequest , BAD_REQUEST ;
InvalidSearchFilter , InvalidRequest , BAD_REQUEST ;
InvalidSearchHighlightPostTag , InvalidRequest , BAD_REQUEST ;
@ -340,6 +343,7 @@ impl ErrorCode for milli::Error {
}
UserError::MissingDocumentField(_) => Code::InvalidDocumentFields,
UserError::InvalidPrompt(_) => Code::InvalidSettingsEmbedders,
UserError::TooManyEmbedders(_) => Code::InvalidSettingsEmbedders,
UserError::InvalidPromptForEmbeddings(..) => Code::InvalidSettingsEmbedders,
UserError::NoPrimaryKeyCandidateFound => Code::IndexPrimaryKeyNoCandidateFound,
UserError::MultiplePrimaryKeyCandidatesFound { .. } => {
@ -363,6 +367,7 @@ impl ErrorCode for milli::Error {
UserError::InvalidMinTypoWordLenSetting(_, _) => {
Code::InvalidSettingsTypoTolerance
}
UserError::InvalidEmbedder(_) => Code::InvalidEmbedder,
UserError::VectorEmbeddingError(_) => Code::VectorEmbeddingError,
}
}

View File

@ -36,7 +36,7 @@ use crate::routes::{create_all_stats, Stats};
use crate::search::{
FacetSearchResult, MatchingStrategy, SearchQuery, SearchQueryWithIndex, SearchResult,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEMANTIC_RATIO,
};
use crate::Opt;
@ -586,6 +586,11 @@ pub struct SearchAggregator {
// vector
// The maximum number of floats in a vector request
max_vector_size: usize,
// Whether the semantic ratio passed to a hybrid search equals the default ratio.
semantic_ratio: bool,
// Whether a non-default embedder was specified
embedder: bool,
hybrid: bool,
// every time a search is done, we increment the counter linked to the used settings
matching_strategy: HashMap<String, usize>,
@ -639,6 +644,7 @@ impl SearchAggregator {
crop_marker,
matching_strategy,
attributes_to_search_on,
hybrid,
} = query;
let mut ret = Self::default();
@ -712,6 +718,12 @@ impl SearchAggregator {
ret.show_ranking_score = *show_ranking_score;
ret.show_ranking_score_details = *show_ranking_score_details;
if let Some(hybrid) = hybrid {
ret.semantic_ratio = hybrid.semantic_ratio != DEFAULT_SEMANTIC_RATIO();
ret.embedder = hybrid.embedder.is_some();
ret.hybrid = true;
}
ret
}
@ -765,6 +777,9 @@ impl SearchAggregator {
facets_total_number_of_facets,
show_ranking_score,
show_ranking_score_details,
semantic_ratio,
embedder,
hybrid,
} = other;
if self.timestamp.is_none() {
@ -810,6 +825,9 @@ impl SearchAggregator {
// vector
self.max_vector_size = self.max_vector_size.max(max_vector_size);
self.semantic_ratio |= semantic_ratio;
self.hybrid |= hybrid;
self.embedder |= embedder;
// pagination
self.max_limit = self.max_limit.max(max_limit);
@ -878,6 +896,9 @@ impl SearchAggregator {
facets_total_number_of_facets,
show_ranking_score,
show_ranking_score_details,
semantic_ratio,
embedder,
hybrid,
} = self;
if total_received == 0 {
@ -917,6 +938,11 @@ impl SearchAggregator {
"vector": {
"max_vector_size": max_vector_size,
},
"hybrid": {
"enabled": hybrid,
"semantic_ratio": semantic_ratio,
"embedder": embedder,
},
"pagination": {
"max_limit": max_limit,
"max_offset": max_offset,
@ -1012,6 +1038,7 @@ impl MultiSearchAggregator {
crop_marker: _,
matching_strategy: _,
attributes_to_search_on: _,
hybrid: _,
} = query;
index_uid.as_str()
@ -1158,6 +1185,7 @@ impl FacetSearchAggregator {
filter,
matching_strategy,
attributes_to_search_on,
hybrid,
} = query;
let mut ret = Self::default();
@ -1171,7 +1199,8 @@ impl FacetSearchAggregator {
|| vector.is_some()
|| filter.is_some()
|| *matching_strategy != MatchingStrategy::default()
|| attributes_to_search_on.is_some();
|| attributes_to_search_on.is_some()
|| hybrid.is_some();
ret
}

View File

@ -14,9 +14,9 @@ use crate::analytics::{Analytics, FacetSearchAggregator};
use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData;
use crate::search::{
add_search_rules, perform_facet_search, MatchingStrategy, SearchQuery, DEFAULT_CROP_LENGTH,
DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG,
DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
add_search_rules, perform_facet_search, HybridQuery, MatchingStrategy, SearchQuery,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
};
pub fn configure(cfg: &mut web::ServiceConfig) {
@ -37,6 +37,8 @@ pub struct FacetSearchQuery {
pub q: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSearchVector>)]
pub vector: Option<Vec<f32>>,
#[deserr(default, error = DeserrJsonError<InvalidHybridQuery>)]
pub hybrid: Option<HybridQuery>,
#[deserr(default, error = DeserrJsonError<InvalidSearchFilter>)]
pub filter: Option<Value>,
#[deserr(default, error = DeserrJsonError<InvalidSearchMatchingStrategy>, default)]
@ -96,6 +98,7 @@ impl From<FacetSearchQuery> for SearchQuery {
filter,
matching_strategy,
attributes_to_search_on,
hybrid,
} = value;
SearchQuery {
@ -120,6 +123,7 @@ impl From<FacetSearchQuery> for SearchQuery {
matching_strategy,
vector: vector.map(VectorQuery::Vector),
attributes_to_search_on,
hybrid,
}
}
}

View File

@ -8,7 +8,7 @@ use meilisearch_types::deserr::{DeserrJsonError, DeserrQueryParamError};
use meilisearch_types::error::deserr_codes::*;
use meilisearch_types::error::ResponseError;
use meilisearch_types::index_uid::IndexUid;
use meilisearch_types::milli::VectorQuery;
use meilisearch_types::milli::{self, VectorQuery};
use meilisearch_types::serde_cs::vec::CS;
use serde_json::Value;
@ -17,9 +17,9 @@ use crate::extractors::authentication::policies::*;
use crate::extractors::authentication::GuardedData;
use crate::extractors::sequential_extractor::SeqHandler;
use crate::search::{
add_search_rules, perform_search, MatchingStrategy, SearchQuery, DEFAULT_CROP_LENGTH,
DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG, DEFAULT_HIGHLIGHT_PRE_TAG,
DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET,
add_search_rules, perform_search, HybridQuery, MatchingStrategy, SearchQuery,
DEFAULT_CROP_LENGTH, DEFAULT_CROP_MARKER, DEFAULT_HIGHLIGHT_POST_TAG,
DEFAULT_HIGHLIGHT_PRE_TAG, DEFAULT_SEARCH_LIMIT, DEFAULT_SEARCH_OFFSET, DEFAULT_SEMANTIC_RATIO,
};
pub fn configure(cfg: &mut web::ServiceConfig) {
@ -75,6 +75,10 @@ pub struct SearchQueryGet {
matching_strategy: MatchingStrategy,
#[deserr(default, error = DeserrQueryParamError<InvalidSearchAttributesToSearchOn>)]
pub attributes_to_search_on: Option<CS<String>>,
#[deserr(default, error = DeserrQueryParamError<InvalidHybridQuery>)]
pub hybrid_embedder: Option<String>,
#[deserr(default, error = DeserrQueryParamError<InvalidHybridQuery>)]
pub hybrid_semantic_ratio: Option<f32>,
}
impl From<SearchQueryGet> for SearchQuery {
@ -87,6 +91,18 @@ impl From<SearchQueryGet> for SearchQuery {
None => None,
};
let hybrid = match (other.hybrid_embedder, other.hybrid_semantic_ratio) {
(None, None) => None,
(None, Some(semantic_ratio)) => Some(HybridQuery { semantic_ratio, embedder: None }),
(Some(embedder), None) => Some(HybridQuery {
semantic_ratio: DEFAULT_SEMANTIC_RATIO(),
embedder: Some(embedder),
}),
(Some(embedder), Some(semantic_ratio)) => {
Some(HybridQuery { semantic_ratio, embedder: Some(embedder) })
}
};
Self {
q: other.q,
vector: other.vector.map(CS::into_inner).map(VectorQuery::Vector),
@ -109,6 +125,7 @@ impl From<SearchQueryGet> for SearchQuery {
crop_marker: other.crop_marker,
matching_strategy: other.matching_strategy,
attributes_to_search_on: other.attributes_to_search_on.map(|o| o.into_iter().collect()),
hybrid,
}
}
}
@ -159,6 +176,9 @@ pub async fn search_with_url_query(
let index = index_scheduler.index(&index_uid)?;
let features = index_scheduler.features();
embed(&mut query, index_scheduler.get_ref(), &index).await?;
let search_result =
tokio::task::spawn_blocking(move || perform_search(&index, query, features)).await?;
if let Ok(ref search_result) = search_result {
@ -213,22 +233,31 @@ pub async fn search_with_post(
pub async fn embed(
query: &mut SearchQuery,
index_scheduler: &IndexScheduler,
index: &meilisearch_types::milli::Index,
index: &milli::Index,
) -> Result<(), ResponseError> {
if let Some(VectorQuery::String(prompt)) = query.vector.take() {
let embedder_configs = index.embedding_configs(&index.read_txn()?)?;
let embedder = index_scheduler.embedders(embedder_configs)?;
/// FIXME: add error if no embedder, remove unwrap, support multiple embedders
let embedder_name = if let Some(HybridQuery {
semantic_ratio: _,
embedder: Some(embedder),
}) = &query.hybrid
{
embedder
} else {
"default"
};
let embeddings = embedder
.get("default")
.unwrap()
.get(embedder_name)
.ok_or(milli::UserError::InvalidEmbedder(embedder_name.to_owned()))
.map_err(milli::Error::from)?
.0
.embed(vec![prompt])
.await
.map_err(meilisearch_types::milli::vector::Error::from)
.map_err(meilisearch_types::milli::UserError::from)
.map_err(meilisearch_types::milli::Error::from)?
.map_err(milli::vector::Error::from)
.map_err(milli::Error::from)?
.pop()
.expect("No vector returned from embedding");

View File

@ -36,6 +36,7 @@ pub const DEFAULT_CROP_LENGTH: fn() -> usize = || 10;
pub const DEFAULT_CROP_MARKER: fn() -> String = || "".to_string();
pub const DEFAULT_HIGHLIGHT_PRE_TAG: fn() -> String = || "<em>".to_string();
pub const DEFAULT_HIGHLIGHT_POST_TAG: fn() -> String = || "</em>".to_string();
pub const DEFAULT_SEMANTIC_RATIO: fn() -> f32 = || 0.5;
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
#[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)]
@ -44,6 +45,8 @@ pub struct SearchQuery {
pub q: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSearchVector>)]
pub vector: Option<milli::VectorQuery>,
#[deserr(default, error = DeserrJsonError<InvalidHybridQuery>)]
pub hybrid: Option<HybridQuery>,
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
pub offset: usize,
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSearchLimit>)]
@ -84,6 +87,15 @@ pub struct SearchQuery {
pub attributes_to_search_on: Option<Vec<String>>,
}
#[derive(Debug, Clone, Default, PartialEq, Deserr)]
#[deserr(error = DeserrJsonError<InvalidHybridQuery>, rename_all = camelCase, deny_unknown_fields)]
pub struct HybridQuery {
#[deserr(default, error = DeserrJsonError<InvalidSemanticRatio>, default = DEFAULT_SEMANTIC_RATIO())]
pub semantic_ratio: f32,
#[deserr(default, error = DeserrJsonError<InvalidEmbedder>, default)]
pub embedder: Option<String>,
}
impl SearchQuery {
pub fn is_finite_pagination(&self) -> bool {
self.page.or(self.hits_per_page).is_some()
@ -103,6 +115,8 @@ pub struct SearchQueryWithIndex {
pub q: Option<String>,
#[deserr(default, error = DeserrJsonError<InvalidSearchQ>)]
pub vector: Option<VectorQuery>,
#[deserr(default, error = DeserrJsonError<InvalidHybridQuery>)]
pub hybrid: Option<HybridQuery>,
#[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError<InvalidSearchOffset>)]
pub offset: usize,
#[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError<InvalidSearchLimit>)]
@ -168,6 +182,7 @@ impl SearchQueryWithIndex {
crop_marker,
matching_strategy,
attributes_to_search_on,
hybrid,
} = self;
(
index_uid,
@ -193,6 +208,7 @@ impl SearchQueryWithIndex {
crop_marker,
matching_strategy,
attributes_to_search_on,
hybrid,
// do not use ..Default::default() here,
// rather add any missing field from `SearchQuery` to `SearchQueryWithIndex`
},

View File

@ -63,6 +63,8 @@ pub enum InternalError {
InvalidMatchingWords,
#[error(transparent)]
ArroyError(#[from] arroy::Error),
#[error(transparent)]
VectorEmbeddingError(#[from] crate::vector::Error),
}
#[derive(Error, Debug)]
@ -188,8 +190,23 @@ only composed of alphanumeric characters (a-z A-Z 0-9), hyphens (-) and undersco
MissingDocumentField(#[from] crate::prompt::error::RenderPromptError),
#[error(transparent)]
InvalidPrompt(#[from] crate::prompt::error::NewPromptError),
#[error("Invalid prompt in for embeddings with name '{0}': {1}")]
#[error("Invalid prompt in for embeddings with name '{0}': {1}.")]
InvalidPromptForEmbeddings(String, crate::prompt::error::NewPromptError),
#[error("Too many embedders in the configuration. Found {0}, but limited to 256.")]
TooManyEmbedders(usize),
#[error("Cannot find embedder with name {0}.")]
InvalidEmbedder(String),
}
impl From<crate::vector::Error> for Error {
fn from(value: crate::vector::Error) -> Self {
match value.fault() {
FaultSource::User => Error::UserError(value.into()),
FaultSource::Runtime => Error::InternalError(value.into()),
FaultSource::Bug => Error::InternalError(value.into()),
FaultSource::Undecided => Error::InternalError(value.into()),
}
}
}
impl From<arroy::Error> for Error {

View File

@ -110,7 +110,6 @@ impl Prompt {
};
// render template with special object that's OK with `doc.*` and `fields.*`
/// FIXME: doesn't work for nested objects e.g. `doc.a.b`
this.template
.render(&template_checker::TemplateChecker)
.map_err(NewPromptError::invalid_fields_in_template)?;
@ -142,3 +141,80 @@ pub enum PromptFallbackStrategy {
#[default]
Error,
}
#[cfg(test)]
mod test {
use super::Prompt;
use crate::error::FaultSource;
use crate::prompt::error::{NewPromptError, NewPromptErrorKind};
#[test]
fn default_template() {
// does not panic
Prompt::default();
}
#[test]
fn empty_template() {
Prompt::new("".into(), None, None).unwrap();
}
#[test]
fn template_ok() {
Prompt::new("{{doc.title}}: {{doc.overview}}".into(), None, None).unwrap();
}
#[test]
fn template_syntax() {
assert!(matches!(
Prompt::new("{{doc.title: {{doc.overview}}".into(), None, None),
Err(NewPromptError {
kind: NewPromptErrorKind::CannotParseTemplate(_),
fault: FaultSource::User
})
));
}
#[test]
fn template_missing_doc() {
assert!(matches!(
Prompt::new("{{title}}: {{overview}}".into(), None, None),
Err(NewPromptError {
kind: NewPromptErrorKind::InvalidFieldsInTemplate(_),
fault: FaultSource::User
})
));
}
#[test]
fn template_nested_doc() {
Prompt::new("{{doc.actor.firstName}}: {{doc.actor.lastName}}".into(), None, None).unwrap();
}
#[test]
fn template_fields() {
Prompt::new("{% for field in fields %}{{field}}{% endfor %}".into(), None, None).unwrap();
}
#[test]
fn template_fields_ok() {
Prompt::new(
"{% for field in fields %}{{field.name}}: {{field.value}}{% endfor %}".into(),
None,
None,
)
.unwrap();
}
#[test]
fn template_fields_invalid() {
assert!(matches!(
// intentionally garbled field
Prompt::new("{% for field in fields %}{{field.vaelu}} {% endfor %}".into(), None, None),
Err(NewPromptError {
kind: NewPromptErrorKind::InvalidFieldsInTemplate(_),
fault: FaultSource::User
})
));
}
}

View File

@ -1,7 +1,7 @@
use liquid::model::{
ArrayView, DisplayCow, KStringCow, ObjectRender, ObjectSource, State, Value as LiquidValue,
};
use liquid::{ObjectView, ValueView};
use liquid::{Object, ObjectView, ValueView};
#[derive(Debug)]
pub struct TemplateChecker;
@ -31,11 +31,11 @@ impl ObjectView for DummyField {
}
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
Box::new(std::iter::empty())
Box::new(vec![DUMMY_VALUE.as_view(), DUMMY_VALUE.as_view()].into_iter())
}
fn iter<'k>(&'k self) -> Box<dyn Iterator<Item = (KStringCow<'k>, &'k dyn ValueView)> + 'k> {
Box::new(std::iter::empty())
Box::new(self.keys().zip(self.values()))
}
fn contains_key(&self, index: &str) -> bool {
@ -69,7 +69,12 @@ impl ValueView for DummyField {
}
fn query_state(&self, state: State) -> bool {
DUMMY_VALUE.query_state(state)
match state {
State::Truthy => true,
State::DefaultValue => false,
State::Empty => false,
State::Blank => false,
}
}
fn to_kstr(&self) -> KStringCow<'_> {
@ -77,7 +82,10 @@ impl ValueView for DummyField {
}
fn to_value(&self) -> LiquidValue {
LiquidValue::Nil
let mut this = Object::new();
this.insert("name".into(), LiquidValue::Nil);
this.insert("value".into(), LiquidValue::Nil);
LiquidValue::Object(this)
}
fn as_object(&self) -> Option<&dyn ObjectView> {
@ -103,7 +111,12 @@ impl ValueView for DummyFields {
}
fn query_state(&self, state: State) -> bool {
DUMMY_VALUE.query_state(state)
match state {
State::Truthy => true,
State::DefaultValue => false,
State::Empty => false,
State::Blank => false,
}
}
fn to_kstr(&self) -> KStringCow<'_> {
@ -111,7 +124,7 @@ impl ValueView for DummyFields {
}
fn to_value(&self) -> LiquidValue {
LiquidValue::Nil
LiquidValue::Array(vec![DummyField.to_value()])
}
fn as_array(&self) -> Option<&dyn ArrayView> {
@ -125,15 +138,15 @@ impl ArrayView for DummyFields {
}
fn size(&self) -> i64 {
i64::MAX
u16::MAX as i64
}
fn values<'k>(&'k self) -> Box<dyn Iterator<Item = &'k dyn ValueView> + 'k> {
Box::new(std::iter::empty())
Box::new(std::iter::once(DummyField.as_value()))
}
fn contains_key(&self, _index: i64) -> bool {
true
fn contains_key(&self, index: i64) -> bool {
index < self.size()
}
fn get(&self, _index: i64) -> Option<&dyn ValueView> {
@ -167,7 +180,8 @@ impl ObjectView for DummyDoc {
}
fn get<'s>(&'s self, _index: &str) -> Option<&'s dyn ValueView> {
Some(DUMMY_VALUE.as_view())
// Recursively sends itself
Some(self)
}
}
@ -189,7 +203,12 @@ impl ValueView for DummyDoc {
}
fn query_state(&self, state: State) -> bool {
DUMMY_VALUE.query_state(state)
match state {
State::Truthy => true,
State::DefaultValue => false,
State::Empty => false,
State::Blank => false,
}
}
fn to_kstr(&self) -> KStringCow<'_> {

View File

@ -516,7 +516,7 @@ pub fn execute_vector_search(
) -> Result<PartialSearchResult> {
check_sort_criteria(ctx, sort_criteria.as_ref())?;
/// FIXME: input universe = universe & documents_with_vectors
// FIXME: input universe = universe & documents_with_vectors
// for now if we're computing embeddings for ALL documents, we can assume that this is just universe
let ranking_rules = get_ranking_rules_for_vector(
ctx,

View File

@ -71,8 +71,8 @@ impl VectorStateDelta {
pub fn extract_vector_points<R: io::Read + io::Seek>(
obkv_documents: grenad::Reader<R>,
indexer: GrenadParameters,
field_id_map: FieldsIdsMap,
prompt: Option<&Prompt>,
field_id_map: &FieldsIdsMap,
prompt: &Prompt,
) -> Result<ExtractedVectorPoints> {
puffin::profile_function!();
@ -142,14 +142,11 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
// becomes autogenerated
match prompt {
Some(prompt) => VectorStateDelta::NowGenerated(prompt.render(
VectorStateDelta::NowGenerated(prompt.render(
obkv,
DelAdd::Addition,
&field_id_map,
)?),
None => VectorStateDelta::NowRemoved,
}
field_id_map,
)?)
} else {
VectorStateDelta::NowRemoved
}
@ -162,14 +159,10 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
match prompt {
Some(prompt) => {
// Don't give up if the old prompt was failing
let old_prompt = prompt
.render(obkv, DelAdd::Deletion, &field_id_map)
.unwrap_or_default();
let new_prompt =
prompt.render(obkv, DelAdd::Addition, &field_id_map)?;
let old_prompt =
prompt.render(obkv, DelAdd::Deletion, field_id_map).unwrap_or_default();
let new_prompt = prompt.render(obkv, DelAdd::Addition, field_id_map)?;
if old_prompt != new_prompt {
log::trace!(
"🚀 Changing prompt from\n{old_prompt}\n===to===\n{new_prompt}"
@ -179,10 +172,6 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
log::trace!("⏭️ Prompt unmodified, skipping");
VectorStateDelta::NoChange
}
}
// We no longer have a prompt, so we need to remove any existing vector
None => VectorStateDelta::NowRemoved,
}
} else {
VectorStateDelta::NowRemoved
}
@ -196,25 +185,17 @@ pub fn extract_vector_points<R: io::Read + io::Seek>(
.any(|deladd| deladd.get(DelAdd::Addition).is_some());
if document_is_kept {
match prompt {
Some(prompt) => {
// Don't give up if the old prompt was failing
let old_prompt = prompt
.render(obkv, DelAdd::Deletion, &field_id_map)
.unwrap_or_default();
let new_prompt = prompt.render(obkv, DelAdd::Addition, &field_id_map)?;
let old_prompt =
prompt.render(obkv, DelAdd::Deletion, field_id_map).unwrap_or_default();
let new_prompt = prompt.render(obkv, DelAdd::Addition, field_id_map)?;
if old_prompt != new_prompt {
log::trace!(
"🚀 Changing prompt from\n{old_prompt}\n===to===\n{new_prompt}"
);
log::trace!("🚀 Changing prompt from\n{old_prompt}\n===to===\n{new_prompt}");
VectorStateDelta::NowGenerated(new_prompt)
} else {
log::trace!("⏭️ Prompt unmodified, skipping");
VectorStateDelta::NoChange
}
}
None => VectorStateDelta::NowRemoved,
}
} else {
VectorStateDelta::NowRemoved
}
@ -322,7 +303,7 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
prompt_reader: grenad::Reader<R>,
indexer: GrenadParameters,
embedder: Arc<Embedder>,
) -> Result<(grenad::Reader<BufReader<File>>, Option<usize>)> {
) -> Result<grenad::Reader<BufReader<File>>> {
let rt = tokio::runtime::Builder::new_current_thread().enable_io().enable_time().build()?;
let n_chunks = embedder.chunk_count_hint(); // chunk level parellelism
@ -341,8 +322,6 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
let mut chunks_ids = Vec::with_capacity(n_chunks);
let mut cursor = prompt_reader.into_cursor()?;
let mut expected_dimension = None;
while let Some((key, value)) = cursor.move_on_next()? {
let docid = key.try_into().map(DocumentId::from_be_bytes).unwrap();
// SAFETY: precondition, the grenad value was saved from a string
@ -367,7 +346,6 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
.embed_chunks(std::mem::replace(&mut chunks, Vec::with_capacity(n_chunks))),
)
.map_err(crate::vector::Error::from)
.map_err(crate::UserError::from)
.map_err(crate::Error::from)?;
for (docid, embeddings) in chunks_ids
@ -376,7 +354,6 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
.zip(chunked_embeds.iter().flat_map(|embeds| embeds.iter()))
{
state_writer.insert(docid.to_be_bytes(), cast_slice(embeddings.as_inner()))?;
expected_dimension = Some(embeddings.dimension());
}
chunks_ids.clear();
}
@ -387,7 +364,6 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
let chunked_embeds = rt
.block_on(embedder.embed_chunks(std::mem::take(&mut chunks)))
.map_err(crate::vector::Error::from)
.map_err(crate::UserError::from)
.map_err(crate::Error::from)?;
for (docid, embeddings) in chunks_ids
.iter()
@ -395,7 +371,6 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
.zip(chunked_embeds.iter().flat_map(|embeds| embeds.iter()))
{
state_writer.insert(docid.to_be_bytes(), cast_slice(embeddings.as_inner()))?;
expected_dimension = Some(embeddings.dimension());
}
}
@ -403,14 +378,12 @@ pub fn extract_embeddings<R: io::Read + io::Seek>(
let embeds = rt
.block_on(embedder.embed(std::mem::take(&mut current_chunk)))
.map_err(crate::vector::Error::from)
.map_err(crate::UserError::from)
.map_err(crate::Error::from)?;
for (docid, embeddings) in current_chunk_ids.iter().zip(embeds.iter()) {
state_writer.insert(docid.to_be_bytes(), cast_slice(embeddings.as_inner()))?;
expected_dimension = Some(embeddings.dimension());
}
}
Ok((writer_into_reader(state_writer)?, expected_dimension))
writer_into_reader(state_writer)
}

View File

@ -292,43 +292,42 @@ fn send_original_documents_data(
let documents_chunk_cloned = original_documents_chunk.clone();
let lmdb_writer_sx_cloned = lmdb_writer_sx.clone();
rayon::spawn(move || {
let (embedder, prompt) = embedders.get("default").cloned().unzip();
let result =
extract_vector_points(documents_chunk_cloned, indexer, field_id_map, prompt.as_deref());
for (name, (embedder, prompt)) in embedders {
let result = extract_vector_points(
documents_chunk_cloned.clone(),
indexer,
&field_id_map,
&prompt,
);
match result {
Ok(ExtractedVectorPoints { manual_vectors, remove_vectors, prompts }) => {
/// FIXME: support multiple embedders
let results = embedder.and_then(|embedder| {
match extract_embeddings(prompts, indexer, embedder.clone()) {
let embeddings = match extract_embeddings(prompts, indexer, embedder.clone()) {
Ok(results) => Some(results),
Err(error) => {
let _ = lmdb_writer_sx_cloned.send(Err(error));
None
}
}
});
let (embeddings, expected_dimension) = results.unzip();
let expected_dimension = expected_dimension.flatten();
};
if !(remove_vectors.is_empty()
&& manual_vectors.is_empty()
&& embeddings.as_ref().map_or(true, |e| e.is_empty()))
{
/// FIXME FIXME FIXME
if expected_dimension.is_some() {
let _ = lmdb_writer_sx_cloned.send(Ok(TypedChunk::VectorPoints {
remove_vectors,
embeddings,
/// FIXME: compute an expected dimension from the manual vectors if any
expected_dimension: expected_dimension.unwrap(),
expected_dimension: embedder.dimensions(),
manual_vectors,
embedder_name: name,
}));
}
}
}
Err(error) => {
let _ = lmdb_writer_sx_cloned.send(Err(error));
}
};
}
}
});
// TODO: create a custom internal error

View File

@ -435,7 +435,7 @@ where
let mut word_docids = None;
let mut exact_word_docids = None;
let mut dimension = None;
let mut dimension = HashMap::new();
for result in lmdb_writer_rx {
if (self.should_abort)() {
@ -471,13 +471,15 @@ where
remove_vectors,
embeddings,
manual_vectors,
embedder_name,
} => {
dimension = Some(expected_dimension);
dimension.insert(embedder_name.clone(), expected_dimension);
TypedChunk::VectorPoints {
remove_vectors,
embeddings,
expected_dimension,
manual_vectors,
embedder_name,
}
}
otherwise => otherwise,
@ -513,14 +515,22 @@ where
self.index.put_primary_key(self.wtxn, &primary_key)?;
let number_of_documents = self.index.number_of_documents(self.wtxn)?;
if let Some(dimension) = dimension {
for (embedder_name, dimension) in dimension {
let wtxn = &mut *self.wtxn;
let vector_arroy = self.index.vector_arroy;
/// FIXME: unwrap
let embedder_index =
self.index.embedder_category_id.get(wtxn, &embedder_name)?.unwrap();
pool.install(|| {
/// FIXME: do for each embedder
let writer_index = (embedder_index as u16) << 8;
let mut rng = rand::rngs::StdRng::from_entropy();
for k in 0..=u8::MAX {
let writer = arroy::Writer::prepare(wtxn, vector_arroy, k.into(), dimension)?;
let writer = arroy::Writer::prepare(
wtxn,
vector_arroy,
writer_index | (k as u16),
dimension,
)?;
if writer.is_empty(wtxn)? {
break;
}

View File

@ -47,6 +47,7 @@ pub(crate) enum TypedChunk {
embeddings: Option<grenad::Reader<BufReader<File>>>,
expected_dimension: usize,
manual_vectors: grenad::Reader<BufReader<File>>,
embedder_name: String,
},
ScriptLanguageDocids(HashMap<(Script, Language), (RoaringBitmap, RoaringBitmap)>),
}
@ -100,8 +101,8 @@ impl TypedChunk {
TypedChunk::GeoPoints(grenad) => {
format!("GeoPoints {{ number_of_entries: {} }}", grenad.len())
}
TypedChunk::VectorPoints{ remove_vectors, manual_vectors, embeddings, expected_dimension } => {
format!("VectorPoints {{ remove_vectors: {}, manual_vectors: {}, embeddings: {}, dimension: {} }}", remove_vectors.len(), manual_vectors.len(), embeddings.as_ref().map(|e| e.len()).unwrap_or_default(), expected_dimension)
TypedChunk::VectorPoints{ remove_vectors, manual_vectors, embeddings, expected_dimension, embedder_name } => {
format!("VectorPoints {{ remove_vectors: {}, manual_vectors: {}, embeddings: {}, dimension: {}, embedder_name: {} }}", remove_vectors.len(), manual_vectors.len(), embeddings.as_ref().map(|e| e.len()).unwrap_or_default(), expected_dimension, embedder_name)
}
TypedChunk::ScriptLanguageDocids(sl_map) => {
format!("ScriptLanguageDocids {{ number_of_entries: {} }}", sl_map.len())
@ -360,12 +361,20 @@ pub(crate) fn write_typed_chunk_into_index(
manual_vectors,
embeddings,
expected_dimension,
embedder_name,
} => {
/// FIXME: allow customizing distance
/// FIXME: unwrap
let embedder_index = index.embedder_category_id.get(wtxn, &embedder_name)?.unwrap();
let writer_index = (embedder_index as u16) << 8;
// FIXME: allow customizing distance
let writers: std::result::Result<Vec<_>, _> = (0..=u8::MAX)
.map(|k| {
/// FIXME: allow customizing index and then do index << 8 + k
arroy::Writer::prepare(wtxn, index.vector_arroy, k.into(), expected_dimension)
arroy::Writer::prepare(
wtxn,
index.vector_arroy,
writer_index | (k as u16),
expected_dimension,
)
})
.collect();
let writers = writers?;
@ -456,7 +465,7 @@ pub(crate) fn write_typed_chunk_into_index(
}
}
log::debug!("There are 🤷‍♀️ entries in the arroy so far");
log::debug!("Finished vector chunk for {}", embedder_name);
}
TypedChunk::ScriptLanguageDocids(sl_map) => {
for (key, (deletion, addition)) in sl_map {

View File

@ -431,7 +431,6 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
let embedder = Arc::new(
Embedder::new(embedder_options.clone())
.map_err(crate::vector::Error::from)
.map_err(crate::UserError::from)
.map_err(crate::Error::from)?,
);
Ok((name, (embedder, prompt)))
@ -976,6 +975,19 @@ impl<'a, 't, 'i> Settings<'a, 't, 'i> {
Setting::NotSet => Some((name, EmbeddingSettings::default().into())),
})
.collect();
self.index.embedder_category_id.clear(self.wtxn)?;
for (index, (embedder_name, _)) in new_configs.iter().enumerate() {
self.index.embedder_category_id.put_with_flags(
self.wtxn,
heed::PutFlags::APPEND,
embedder_name,
&index
.try_into()
.map_err(|_| UserError::TooManyEmbedders(new_configs.len()))?,
)?;
}
if new_configs.is_empty() {
self.index.delete_embedding_configs(self.wtxn)?;
} else {
@ -1062,7 +1074,7 @@ fn validate_prompt(
match new {
Setting::Set(EmbeddingSettings {
embedder_options,
prompt:
document_template:
Setting::Set(PromptSettings { template: Setting::Set(template), strategy, fallback }),
}) => {
// validate
@ -1072,7 +1084,7 @@ fn validate_prompt(
Ok(Setting::Set(EmbeddingSettings {
embedder_options,
prompt: Setting::Set(PromptSettings {
document_template: Setting::Set(PromptSettings {
template: Setting::Set(template),
strategy,
fallback,

View File

@ -65,6 +65,8 @@ pub enum EmbedErrorKind {
OpenAiTooManyTokens(OpenAiError),
#[error("received unhandled HTTP status code {0} from OpenAI")]
OpenAiUnhandledStatusCode(u16),
#[error("attempt to embed the following text in a configuration where embeddings must be user provided: {0:?}")]
ManualEmbed(String),
}
impl EmbedError {
@ -111,6 +113,10 @@ impl EmbedError {
pub(crate) fn openai_unhandled_status_code(code: u16) -> EmbedError {
Self { kind: EmbedErrorKind::OpenAiUnhandledStatusCode(code), fault: FaultSource::Bug }
}
pub(crate) fn embed_on_manual_embedder(texts: String) -> EmbedError {
Self { kind: EmbedErrorKind::ManualEmbed(texts), fault: FaultSource::User }
}
}
#[derive(Debug, thiserror::Error)]
@ -170,6 +176,13 @@ impl NewEmbedderError {
Self { kind: NewEmbedderErrorKind::LoadModel(inner), fault: FaultSource::Runtime }
}
pub fn hf_could_not_determine_dimension(inner: EmbedError) -> NewEmbedderError {
Self {
kind: NewEmbedderErrorKind::CouldNotDetermineDimension(inner),
fault: FaultSource::Runtime,
}
}
pub fn openai_initialize_web_client(inner: reqwest::Error) -> Self {
Self { kind: NewEmbedderErrorKind::InitWebClient(inner), fault: FaultSource::Runtime }
}
@ -219,6 +232,8 @@ pub enum NewEmbedderErrorKind {
NewApiFail(ApiError),
#[error("fetching file from HG_HUB failed: {0}")]
ApiGet(ApiError),
#[error("could not determine model dimensions: test embedding failed with {0}")]
CouldNotDetermineDimension(EmbedError),
#[error("loading model failed: {0}")]
LoadModel(candle_core::Error),
// openai

View File

@ -62,6 +62,7 @@ pub struct Embedder {
model: BertModel,
tokenizer: Tokenizer,
options: EmbedderOptions,
dimensions: usize,
}
impl std::fmt::Debug for Embedder {
@ -126,10 +127,17 @@ impl Embedder {
tokenizer.with_padding(Some(pp));
}
Ok(Self { model, tokenizer, options })
let mut this = Self { model, tokenizer, options, dimensions: 0 };
let embeddings = this
.embed(vec!["test".into()])
.map_err(NewEmbedderError::hf_could_not_determine_dimension)?;
this.dimensions = embeddings.first().unwrap().dimension();
Ok(this)
}
pub async fn embed(
pub fn embed(
&self,
mut texts: Vec<String>,
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
@ -170,12 +178,11 @@ impl Embedder {
Ok(embeddings.into_iter().map(Embeddings::from_single_embedding).collect())
}
pub async fn embed_chunks(
pub fn embed_chunks(
&self,
text_chunks: Vec<Vec<String>>,
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
futures::future::try_join_all(text_chunks.into_iter().map(|prompts| self.embed(prompts)))
.await
text_chunks.into_iter().map(|prompts| self.embed(prompts)).collect()
}
pub fn chunk_count_hint(&self) -> usize {
@ -185,6 +192,10 @@ impl Embedder {
pub fn prompt_count_in_chunk_hint(&self) -> usize {
std::thread::available_parallelism().map(|x| x.get()).unwrap_or(8)
}
pub fn dimensions(&self) -> usize {
self.dimensions
}
}
fn normalize_l2(v: &Tensor) -> Result<Tensor, candle_core::Error> {

View File

@ -3,6 +3,7 @@ use crate::prompt::PromptData;
pub mod error;
pub mod hf;
pub mod manual;
pub mod openai;
pub mod settings;
@ -67,6 +68,7 @@ impl<F> Embeddings<F> {
pub enum Embedder {
HuggingFace(hf::Embedder),
OpenAi(openai::Embedder),
UserProvided(manual::Embedder),
}
#[derive(Debug, Clone, Default, serde::Deserialize, serde::Serialize)]
@ -80,6 +82,7 @@ pub struct EmbeddingConfig {
pub enum EmbedderOptions {
HuggingFace(hf::EmbedderOptions),
OpenAi(openai::EmbedderOptions),
UserProvided(manual::EmbedderOptions),
}
impl Default for EmbedderOptions {
@ -93,7 +96,7 @@ impl EmbedderOptions {
Self::HuggingFace(hf::EmbedderOptions::new())
}
pub fn openai(api_key: String) -> Self {
pub fn openai(api_key: Option<String>) -> Self {
Self::OpenAi(openai::EmbedderOptions::with_default_model(api_key))
}
}
@ -103,6 +106,9 @@ impl Embedder {
Ok(match options {
EmbedderOptions::HuggingFace(options) => Self::HuggingFace(hf::Embedder::new(options)?),
EmbedderOptions::OpenAi(options) => Self::OpenAi(openai::Embedder::new(options)?),
EmbedderOptions::UserProvided(options) => {
Self::UserProvided(manual::Embedder::new(options))
}
})
}
@ -111,8 +117,9 @@ impl Embedder {
texts: Vec<String>,
) -> std::result::Result<Vec<Embeddings<f32>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed(texts).await,
Embedder::HuggingFace(embedder) => embedder.embed(texts),
Embedder::OpenAi(embedder) => embedder.embed(texts).await,
Embedder::UserProvided(embedder) => embedder.embed(texts),
}
}
@ -121,8 +128,9 @@ impl Embedder {
text_chunks: Vec<Vec<String>>,
) -> std::result::Result<Vec<Vec<Embeddings<f32>>>, EmbedError> {
match self {
Embedder::HuggingFace(embedder) => embedder.embed_chunks(text_chunks).await,
Embedder::HuggingFace(embedder) => embedder.embed_chunks(text_chunks),
Embedder::OpenAi(embedder) => embedder.embed_chunks(text_chunks).await,
Embedder::UserProvided(embedder) => embedder.embed_chunks(text_chunks),
}
}
@ -130,6 +138,7 @@ impl Embedder {
match self {
Embedder::HuggingFace(embedder) => embedder.chunk_count_hint(),
Embedder::OpenAi(embedder) => embedder.chunk_count_hint(),
Embedder::UserProvided(_) => 1,
}
}
@ -137,6 +146,15 @@ impl Embedder {
match self {
Embedder::HuggingFace(embedder) => embedder.prompt_count_in_chunk_hint(),
Embedder::OpenAi(embedder) => embedder.prompt_count_in_chunk_hint(),
Embedder::UserProvided(_) => 1,
}
}
pub fn dimensions(&self) -> usize {
match self {
Embedder::HuggingFace(embedder) => embedder.dimensions(),
Embedder::OpenAi(embedder) => embedder.dimensions(),
Embedder::UserProvided(embedder) => embedder.dimensions(),
}
}
}

View File

@ -15,7 +15,7 @@ pub struct Embedder {
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
pub struct EmbedderOptions {
pub api_key: String,
pub api_key: Option<String>,
pub embedding_model: EmbeddingModel,
}
@ -68,11 +68,11 @@ impl EmbeddingModel {
pub const OPENAI_EMBEDDINGS_URL: &str = "https://api.openai.com/v1/embeddings";
impl EmbedderOptions {
pub fn with_default_model(api_key: String) -> Self {
pub fn with_default_model(api_key: Option<String>) -> Self {
Self { api_key, embedding_model: Default::default() }
}
pub fn with_embedding_model(api_key: String, embedding_model: EmbeddingModel) -> Self {
pub fn with_embedding_model(api_key: Option<String>, embedding_model: EmbeddingModel) -> Self {
Self { api_key, embedding_model }
}
}
@ -80,9 +80,14 @@ impl EmbedderOptions {
impl Embedder {
pub fn new(options: EmbedderOptions) -> Result<Self, NewEmbedderError> {
let mut headers = reqwest::header::HeaderMap::new();
let mut inferred_api_key = Default::default();
let api_key = options.api_key.as_ref().unwrap_or_else(|| {
inferred_api_key = infer_api_key();
&inferred_api_key
});
headers.insert(
reqwest::header::AUTHORIZATION,
reqwest::header::HeaderValue::from_str(&format!("Bearer {}", &options.api_key))
reqwest::header::HeaderValue::from_str(&format!("Bearer {}", api_key))
.map_err(NewEmbedderError::openai_invalid_api_key_format)?,
);
headers.insert(
@ -315,6 +320,10 @@ impl Embedder {
pub fn prompt_count_in_chunk_hint(&self) -> usize {
10
}
pub fn dimensions(&self) -> usize {
self.options.embedding_model.dimensions()
}
}
// retrying in case of failure
@ -414,3 +423,9 @@ struct OpenAiEmbedding {
// object: String,
// index: usize,
}
fn infer_api_key() -> String {
std::env::var("MEILI_OPENAI_API_KEY")
.or_else(|_| std::env::var("OPENAI_API_KEY"))
.unwrap_or_default()
}

View File

@ -15,14 +15,14 @@ pub struct EmbeddingSettings {
pub embedder_options: Setting<EmbedderSettings>,
#[serde(default, skip_serializing_if = "Setting::is_not_set")]
#[deserr(default)]
pub prompt: Setting<PromptSettings>,
pub document_template: Setting<PromptSettings>,
}
impl EmbeddingSettings {
pub fn apply(&mut self, new: Self) {
let EmbeddingSettings { embedder_options, prompt } = new;
let EmbeddingSettings { embedder_options, document_template: prompt } = new;
self.embedder_options.apply(embedder_options);
self.prompt.apply(prompt);
self.document_template.apply(prompt);
}
}
@ -30,7 +30,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
fn from(value: EmbeddingConfig) -> Self {
Self {
embedder_options: Setting::Set(value.embedder_options.into()),
prompt: Setting::Set(value.prompt.into()),
document_template: Setting::Set(value.prompt.into()),
}
}
}
@ -38,7 +38,7 @@ impl From<EmbeddingConfig> for EmbeddingSettings {
impl From<EmbeddingSettings> for EmbeddingConfig {
fn from(value: EmbeddingSettings) -> Self {
let mut this = Self::default();
let EmbeddingSettings { embedder_options, prompt } = value;
let EmbeddingSettings { embedder_options, document_template: prompt } = value;
if let Some(embedder_options) = embedder_options.set() {
this.embedder_options = embedder_options.into();
}
@ -105,6 +105,7 @@ impl From<PromptSettings> for PromptData {
pub enum EmbedderSettings {
HuggingFace(Setting<HfEmbedderSettings>),
OpenAi(Setting<OpenAiEmbedderSettings>),
UserProvided(UserProvidedSettings),
}
impl<E> Deserr<E> for EmbedderSettings
@ -145,11 +146,17 @@ where
location.push_key(&k),
)?,
))),
"userProvided" => Ok(EmbedderSettings::UserProvided(
UserProvidedSettings::deserialize_from_value(
v.into_value(),
location.push_key(&k),
)?,
)),
other => Err(deserr::take_cf_content(E::error::<V>(
None,
deserr::ErrorKind::UnknownKey {
key: other,
accepted: &["huggingFace", "openAi"],
accepted: &["huggingFace", "openAi", "userProvided"],
},
location,
))),
@ -182,6 +189,9 @@ impl From<crate::vector::EmbedderOptions> for EmbedderSettings {
crate::vector::EmbedderOptions::OpenAi(openai) => {
Self::OpenAi(Setting::Set(openai.into()))
}
crate::vector::EmbedderOptions::UserProvided(user_provided) => {
Self::UserProvided(user_provided.into())
}
}
}
}
@ -192,9 +202,12 @@ impl From<EmbedderSettings> for crate::vector::EmbedderOptions {
EmbedderSettings::HuggingFace(Setting::Set(hf)) => Self::HuggingFace(hf.into()),
EmbedderSettings::HuggingFace(_setting) => Self::HuggingFace(Default::default()),
EmbedderSettings::OpenAi(Setting::Set(ai)) => Self::OpenAi(ai.into()),
EmbedderSettings::OpenAi(_setting) => Self::OpenAi(
crate::vector::openai::EmbedderOptions::with_default_model(infer_api_key()),
),
EmbedderSettings::OpenAi(_setting) => {
Self::OpenAi(crate::vector::openai::EmbedderOptions::with_default_model(None))
}
EmbedderSettings::UserProvided(user_provided) => {
Self::UserProvided(user_provided.into())
}
}
}
}
@ -286,7 +299,7 @@ impl OpenAiEmbedderSettings {
impl From<crate::vector::openai::EmbedderOptions> for OpenAiEmbedderSettings {
fn from(value: crate::vector::openai::EmbedderOptions) -> Self {
Self {
api_key: Setting::Set(value.api_key),
api_key: value.api_key.map(Setting::Set).unwrap_or(Setting::Reset),
embedding_model: Setting::Set(value.embedding_model),
}
}
@ -295,14 +308,25 @@ impl From<crate::vector::openai::EmbedderOptions> for OpenAiEmbedderSettings {
impl From<OpenAiEmbedderSettings> for crate::vector::openai::EmbedderOptions {
fn from(value: OpenAiEmbedderSettings) -> Self {
let OpenAiEmbedderSettings { api_key, embedding_model } = value;
Self {
api_key: api_key.set().unwrap_or_else(infer_api_key),
embedding_model: embedding_model.set().unwrap_or_default(),
}
Self { api_key: api_key.set(), embedding_model: embedding_model.set().unwrap_or_default() }
}
}
fn infer_api_key() -> String {
/// FIXME: get key from instance options?
std::env::var("MEILI_OPENAI_API_KEY").unwrap_or_default()
#[derive(Debug, Clone, Default, Serialize, Deserialize, PartialEq, Eq, Deserr)]
#[serde(deny_unknown_fields, rename_all = "camelCase")]
#[deserr(rename_all = camelCase, deny_unknown_fields)]
pub struct UserProvidedSettings {
pub dimensions: usize,
}
impl From<UserProvidedSettings> for crate::vector::manual::EmbedderOptions {
fn from(value: UserProvidedSettings) -> Self {
Self { dimensions: value.dimensions }
}
}
impl From<crate::vector::manual::EmbedderOptions> for UserProvidedSettings {
fn from(value: crate::vector::manual::EmbedderOptions) -> Self {
Self { dimensions: value.dimensions }
}
}