Reorder README parts

This commit is contained in:
Clément Renault 2019-12-02 17:17:16 +01:00
parent 8bc8214279
commit 8d3161a2cf
No known key found for this signature in database
GPG Key ID: 92ADA4E935E71FA4

107
README.md
View File

@ -7,8 +7,12 @@
⚡ Ultra relevant and instant full-text search API 🔍
MeiliSearch is a powerful, fast, open-source, easy to use, and deploy search engine. The search and indexation are fully customizable and handles features like typo-tolerance, filters, and synonyms.
For more [details about those features, go to our documentation](https://docs.meilisearch.com/).
## What MeiliSearch has to offer
[![crates.io demo gif](misc/crates-io-demo.gif)](https://crates.meilisearch.com)
> Meili helps the Rust community find crates on [crates.meilisearch.com](https://crates.meilisearch.com)
## Features
* Search as-you-type experience (answers < 50ms)
* Full-text search
* Typo tolerant (understands typos and spelling mistakes)
@ -19,48 +23,32 @@ MeiliSearch is a powerful, fast, open-source, easy to use, and deploy search eng
* Highly customizable
* RESTfull API
For more [details about those features, go to our documentation](https://docs.meilisearch.com/introduction/features.html).
[![crates.io demo gif](misc/crates-io-demo.gif)](https://crates.meilisearch.com)
> Meili helps the Rust community find crates on [crates.meilisearch.com](https://crates.meilisearch.com)
### In-depth features
- Provides [6 default ranking criteria](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/criterion/mod.rs#L106-L111) used to [bucket sort](https://en.wikipedia.org/wiki/Bucket_sort) documents
- Accepts [custom criteria](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/criterion/mod.rs#L20-L29) and can apply them in any custom order
- Support [ranged queries](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L342), useful for paginating results
- Can [distinct](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L324-L329) and [filter](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L313-L318) returned documents based on context defined rules
- Searches for [concatenated](https://github.com/meilisearch/MeiliSearch/pull/164) and [splitted query words](https://github.com/meilisearch/MeiliSearch/pull/232) to improve the search quality.
- Can store complete documents or only [user schema specified fields](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/datasets/movies/schema.toml)
- The [default tokenizer](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-tokenizer/src/lib.rs) can index latin and kanji based languages
- Returns [the matching text areas](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-types/src/lib.rs#L49-L65), useful to highlight matched words in results
- Accepts query time search config like the [searchable attributes](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L331-L336)
- Supports [runtime incremental indexing](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/store/mod.rs#L143-L212)
## Quick Start
You can deploy your instant, relevant, and typo-tolerant MeiliSearch search engine by yourself too.
Something similar to the demo above can be achieved by following these little three steps first.
You still need to create your front-end to make it pretty, though.
### Deploy the Server
If you have not yet installed Rust and its package manager `cargo`, go to [the installation page](https://www.rust-lang.org/tools/install).<br/>
You can deploy the server on your machine; it listens to HTTP requests on the 7700 port by default.
```bash
# If you have the Rust toolchain already installed, you can compile from the source
git clone https://github.com/meilisearch/MeiliSearch.git
cd MeiliSearch
cargo run --release
```
For more logs during the execution, run:
```bash
RUST_LOG=info cargo run --release
# You can also use Docker
docker run -it -p 7700:7700 --rm getmeili/MeiliSearch
# You can also download the binary
curl -L https://install.meilisearch.com | sh
./meilisearch
```
### Create an Index and Upload Some Documents
We provide a movie dataset that you can use for testing purposes.
```bash
curl -L 'https://bit.ly/33MKvk4' -o movies.json
```
MeiliSearch can serve multiple indexes, with different kinds of documents,
therefore, it is required to create the index before sending documents to it.
@ -74,7 +62,7 @@ We provided you a small dataset that is available in the `datasets/` directory.
```bash
curl -i -X POST 'http://127.0.0.1:7700/indexes/movies/documents' \
--header 'content-type: application/json' \
--data @datasets/movies/movies.json
--data-binary @movies.json
```
### Search for Documents
@ -83,34 +71,57 @@ The search engine is now aware of our documents and can serve those via our HTTP
The [`jq` command-line tool](https://stedolan.github.io/jq/) can significantly help you read the server responses.
```bash
curl 'http://127.0.0.1:7700/indexes/movies/search?q=botman'
curl 'http://127.0.0.1:7700/indexes/movies/search?q=botman+robin&limit=2' | jq
```
```json
{
"hits": [
{
"id": "29751",
"title": "Batman Unmasked: The Psychology of the Dark Knight",
"poster": "https://image.tmdb.org/t/p/w1280/jjHu128XLARc2k4cJrblAvZe0HE.jpg",
"overview": "Delve into the world of Batman and the vigilante justice tha",
"release_date": "2008-07-15"
"id": "415",
"title": "Batman & Robin",
"poster": "https://image.tmdb.org/t/p/w1280/79AYCcxw3kSKbhGpx1LiqaCAbwo.jpg",
"overview": "Along with crime-fighting partner Robin and new recruit Batgirl...",
"release_date": "1997-06-20",
},
{
"id": "471474",
"title": "Batman: Gotham by Gaslight",
"poster": "https://image.tmdb.org/t/p/w1280/7souLi5zqQCnpZVghaXv0Wowi0y.jpg",
"overview": "ve Victorian Age Gotham City, Batman begins his war on crime",
"release_date": "2018-01-12"
"id": "411736",
"title": "Batman: Return of the Caped Crusaders",
"poster": "https://image.tmdb.org/t/p/w1280/GW3IyMW5Xgl0cgCN8wu96IlNpD.jpg",
"overview": "Adam West and Burt Ward returns to their iconic roles of Batman and Robin...",
"release_date": "2016-10-08",
}
],
"offset": 0,
"limit": 2,
"processingTimeMs": 1,
"query": "botman"
"query": "botman robin"
}
```
### Documentation
Now, that you have a running MeiliSearch, you can learn more and tune your search engine using [the documentation](https://docs.meilisearch.com).
## How it works
MeiliSearch uses [LMDB](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database) as the internal key-value store. The key-value store allows us to handle updates and queries with small memory and CPU overheads. The whole ranking system is [data oriented](https://github.com/meilisearch/MeiliSearch/issues/82) and provides great performances.
You can [read the deep dive](deep-dive.md) if you want more information on the engine; it describes the whole process of generating updates and handling queries. Also, you can take a look at the [typos and ranking rules](typos-ranking-rules.md) if you want to know the default rules used to sort the documents.
### Technical features
- Provides [6 default ranking criteria](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/criterion/mod.rs#L106-L111) used to [bucket sort](https://en.wikipedia.org/wiki/Bucket_sort) documents
- Accepts [custom criteria](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/criterion/mod.rs#L20-L29) and can apply them in any custom order
- Support [ranged queries](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L342), useful for paginating results
- Can [distinct](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L324-L329) and [filter](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L313-L318) returned documents based on context defined rules
- Searches for [concatenated](https://github.com/meilisearch/MeiliSearch/pull/164) and [splitted query words](https://github.com/meilisearch/MeiliSearch/pull/232) to improve the search quality.
- Can store complete documents or only [user schema specified fields](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/datasets/movies/schema.toml)
- The [default tokenizer](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-tokenizer/src/lib.rs) can index latin and kanji based languages
- Returns [the matching text areas](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-types/src/lib.rs#L49-L65), useful to highlight matched words in results
- Accepts query time search config like the [searchable attributes](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/query_builder.rs#L331-L336)
- Supports [runtime incremental indexing](https://github.com/meilisearch/MeiliSearch/blob/3ea5aa18a209b6973b921542d46a79e1c753c163/meilisearch-core/src/store/mod.rs#L143-L212)
## Performances
With a dataset composed of _100 353_ documents with _352_ attributes each and _3_ of them indexed.
@ -137,12 +148,6 @@ The resulting database was _16 GB_ and search results were between _30 ms_ and _
With Rust 1.32 the allocator has been [changed to use the system allocator](https://blog.rust-lang.org/2019/01/17/Rust-1.32.0.html#jemalloc-is-removed-by-default).
We have seen much better performances when [using jemalloc as the global allocator](https://github.com/alexcrichton/jemallocator#documentation).
## How it works
MeiliSearch uses [LMDB](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database) as the internal key-value store. The key-value store allows us to handle updates and queries with small memory and CPU overheads. The whole ranking system is [data oriented](https://github.com/meilisearch/MeiliSearch/issues/82) and provides great performances.
You can [read the deep dive](deep-dive.md) if you want more information on the engine; it describes the whole process of generating updates and handling queries. Also, you can take a look at the [typos and ranking rules](typos-ranking-rules.md) if you want to know the default rules used to sort the documents.
## Contributing
We will be glad if you submit issues and pull requests. You can help to grow this project and start contributing by checking [issues tagged "good-first-issue"](https://github.com/meilisearch/MeiliSearch/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22). It is a good start!