mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-12-24 13:40:31 +01:00
Introduce bucket_sort_with_distinct function
This commit is contained in:
parent
248ccfc0d8
commit
86ee0cbd6e
@ -1,17 +1,7 @@
|
||||
mod dfa;
|
||||
mod query_enhancer;
|
||||
|
||||
use std::cmp::Reverse;
|
||||
use std::{cmp, fmt, vec};
|
||||
|
||||
use fst::{IntoStreamer, Streamer};
|
||||
use levenshtein_automata::DFA;
|
||||
use meilisearch_tokenizer::{is_cjk, split_query_string};
|
||||
use log::debug;
|
||||
|
||||
use crate::database::MainT;
|
||||
use crate::error::MResult;
|
||||
use crate::store;
|
||||
use meilisearch_tokenizer::is_cjk;
|
||||
|
||||
pub use self::dfa::{build_dfa, build_prefix_dfa, build_exact_dfa};
|
||||
pub use self::query_enhancer::QueryEnhancer;
|
||||
@ -19,122 +9,6 @@ pub use self::query_enhancer::QueryEnhancerBuilder;
|
||||
|
||||
pub const NGRAMS: usize = 3;
|
||||
|
||||
pub struct AutomatonProducer {
|
||||
automatons: Vec<AutomatonGroup>,
|
||||
}
|
||||
|
||||
impl AutomatonProducer {
|
||||
pub fn new(
|
||||
reader: &heed::RoTxn<MainT>,
|
||||
query: &str,
|
||||
main_store: store::Main,
|
||||
postings_list_store: store::PostingsLists,
|
||||
synonyms_store: store::Synonyms,
|
||||
) -> MResult<(AutomatonProducer, QueryEnhancer)> {
|
||||
let (automatons, query_enhancer) = generate_automatons(
|
||||
reader,
|
||||
query,
|
||||
main_store,
|
||||
postings_list_store,
|
||||
synonyms_store,
|
||||
)?;
|
||||
|
||||
for (i, group) in automatons.iter().enumerate() {
|
||||
debug!("all automatons: group {} automatons {:?}", i, group.automatons);
|
||||
}
|
||||
|
||||
Ok((AutomatonProducer { automatons }, query_enhancer))
|
||||
}
|
||||
|
||||
pub fn into_iter(self) -> vec::IntoIter<AutomatonGroup> {
|
||||
self.automatons.into_iter()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct AutomatonGroup {
|
||||
pub is_phrase_query: bool,
|
||||
pub automatons: Vec<Automaton>,
|
||||
}
|
||||
|
||||
impl AutomatonGroup {
|
||||
fn normal(automatons: Vec<Automaton>) -> AutomatonGroup {
|
||||
AutomatonGroup {
|
||||
is_phrase_query: false,
|
||||
automatons,
|
||||
}
|
||||
}
|
||||
|
||||
fn phrase_query(automatons: Vec<Automaton>) -> AutomatonGroup {
|
||||
AutomatonGroup {
|
||||
is_phrase_query: true,
|
||||
automatons,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Automaton {
|
||||
pub index: usize,
|
||||
pub ngram: usize,
|
||||
pub query_len: usize,
|
||||
pub is_exact: bool,
|
||||
pub is_prefix: bool,
|
||||
pub query: String,
|
||||
}
|
||||
|
||||
impl fmt::Debug for Automaton {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("Automaton")
|
||||
.field("index", &self.index)
|
||||
.field("query", &self.query)
|
||||
.field("is_prefix", &self.is_prefix)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl Automaton {
|
||||
pub fn dfa(&self) -> DFA {
|
||||
if self.is_prefix {
|
||||
build_prefix_dfa(&self.query)
|
||||
} else {
|
||||
build_dfa(&self.query)
|
||||
}
|
||||
}
|
||||
|
||||
fn exact(index: usize, ngram: usize, query: &str) -> Automaton {
|
||||
Automaton {
|
||||
index,
|
||||
ngram,
|
||||
query_len: query.len(),
|
||||
is_exact: true,
|
||||
is_prefix: false,
|
||||
query: query.to_string(),
|
||||
}
|
||||
}
|
||||
|
||||
fn prefix_exact(index: usize, ngram: usize, query: &str) -> Automaton {
|
||||
Automaton {
|
||||
index,
|
||||
ngram,
|
||||
query_len: query.len(),
|
||||
is_exact: true,
|
||||
is_prefix: true,
|
||||
query: query.to_string(),
|
||||
}
|
||||
}
|
||||
|
||||
fn non_exact(index: usize, ngram: usize, query: &str) -> Automaton {
|
||||
Automaton {
|
||||
index,
|
||||
ngram,
|
||||
query_len: query.len(),
|
||||
is_exact: false,
|
||||
is_prefix: false,
|
||||
query: query.to_string(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn normalize_str(string: &str) -> String {
|
||||
let mut string = string.to_lowercase();
|
||||
|
||||
@ -144,167 +18,3 @@ pub fn normalize_str(string: &str) -> String {
|
||||
|
||||
string
|
||||
}
|
||||
|
||||
pub fn split_best_frequency<'a>(
|
||||
reader: &heed::RoTxn<MainT>,
|
||||
word: &'a str,
|
||||
postings_lists_store: store::PostingsLists,
|
||||
) -> MResult<Option<(&'a str, &'a str)>> {
|
||||
let chars = word.char_indices().skip(1);
|
||||
let mut best = None;
|
||||
|
||||
for (i, _) in chars {
|
||||
let (left, right) = word.split_at(i);
|
||||
|
||||
let left_freq = postings_lists_store
|
||||
.postings_list(reader, left.as_ref())?
|
||||
.map_or(0, |i| i.len());
|
||||
|
||||
let right_freq = postings_lists_store
|
||||
.postings_list(reader, right.as_ref())?
|
||||
.map_or(0, |i| i.len());
|
||||
|
||||
let min_freq = cmp::min(left_freq, right_freq);
|
||||
if min_freq != 0 && best.map_or(true, |(old, _, _)| min_freq > old) {
|
||||
best = Some((min_freq, left, right));
|
||||
}
|
||||
}
|
||||
|
||||
Ok(best.map(|(_, l, r)| (l, r)))
|
||||
}
|
||||
|
||||
fn generate_automatons(
|
||||
reader: &heed::RoTxn<MainT>,
|
||||
query: &str,
|
||||
main_store: store::Main,
|
||||
postings_lists_store: store::PostingsLists,
|
||||
synonym_store: store::Synonyms,
|
||||
) -> MResult<(Vec<AutomatonGroup>, QueryEnhancer)> {
|
||||
let has_end_whitespace = query.chars().last().map_or(false, char::is_whitespace);
|
||||
let query_words: Vec<_> = split_query_string(query).map(str::to_lowercase).collect();
|
||||
let synonyms = match main_store.synonyms_fst(reader)? {
|
||||
Some(synonym) => synonym,
|
||||
None => fst::Set::default(),
|
||||
};
|
||||
|
||||
let mut automaton_index = 0;
|
||||
let mut automatons = Vec::new();
|
||||
let mut enhancer_builder = QueryEnhancerBuilder::new(&query_words);
|
||||
|
||||
// We must not declare the original words to the query enhancer
|
||||
// *but* we need to push them in the automatons list first
|
||||
let mut original_automatons = Vec::new();
|
||||
let mut original_words = query_words.iter().peekable();
|
||||
while let Some(word) = original_words.next() {
|
||||
let has_following_word = original_words.peek().is_some();
|
||||
let not_prefix_dfa = has_following_word || has_end_whitespace || word.chars().all(is_cjk);
|
||||
|
||||
let automaton = if not_prefix_dfa {
|
||||
Automaton::exact(automaton_index, 1, word)
|
||||
} else {
|
||||
Automaton::prefix_exact(automaton_index, 1, word)
|
||||
};
|
||||
automaton_index += 1;
|
||||
original_automatons.push(automaton);
|
||||
}
|
||||
|
||||
automatons.push(AutomatonGroup::normal(original_automatons));
|
||||
|
||||
for n in 1..=NGRAMS {
|
||||
let mut ngrams = query_words.windows(n).enumerate().peekable();
|
||||
while let Some((query_index, ngram_slice)) = ngrams.next() {
|
||||
let query_range = query_index..query_index + n;
|
||||
let ngram_nb_words = ngram_slice.len();
|
||||
let ngram = ngram_slice.join(" ");
|
||||
|
||||
let has_following_word = ngrams.peek().is_some();
|
||||
let not_prefix_dfa =
|
||||
has_following_word || has_end_whitespace || ngram.chars().all(is_cjk);
|
||||
|
||||
// automaton of synonyms of the ngrams
|
||||
let normalized = normalize_str(&ngram);
|
||||
let lev = if not_prefix_dfa {
|
||||
build_dfa(&normalized)
|
||||
} else {
|
||||
build_prefix_dfa(&normalized)
|
||||
};
|
||||
|
||||
let mut stream = synonyms.search(&lev).into_stream();
|
||||
while let Some(base) = stream.next() {
|
||||
// only trigger alternatives when the last word has been typed
|
||||
// i.e. "new " do not but "new yo" triggers alternatives to "new york"
|
||||
let base = std::str::from_utf8(base).unwrap();
|
||||
let base_nb_words = split_query_string(base).count();
|
||||
if ngram_nb_words != base_nb_words {
|
||||
continue;
|
||||
}
|
||||
|
||||
if let Some(synonyms) = synonym_store.synonyms(reader, base.as_bytes())? {
|
||||
let mut stream = synonyms.into_stream();
|
||||
while let Some(synonyms) = stream.next() {
|
||||
let synonyms = std::str::from_utf8(synonyms).unwrap();
|
||||
let synonyms_words: Vec<_> = split_query_string(synonyms).collect();
|
||||
let nb_synonym_words = synonyms_words.len();
|
||||
|
||||
let real_query_index = automaton_index;
|
||||
enhancer_builder.declare(
|
||||
query_range.clone(),
|
||||
real_query_index,
|
||||
&synonyms_words,
|
||||
);
|
||||
|
||||
for synonym in synonyms_words {
|
||||
let automaton = if nb_synonym_words == 1 {
|
||||
Automaton::exact(automaton_index, n, synonym)
|
||||
} else {
|
||||
Automaton::non_exact(automaton_index, n, synonym)
|
||||
};
|
||||
automaton_index += 1;
|
||||
automatons.push(AutomatonGroup::normal(vec![automaton]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if n == 1 {
|
||||
if let Some((left, right)) =
|
||||
split_best_frequency(reader, &normalized, postings_lists_store)?
|
||||
{
|
||||
let a = Automaton::exact(automaton_index, 1, left);
|
||||
enhancer_builder.declare(query_range.clone(), automaton_index, &[left]);
|
||||
automaton_index += 1;
|
||||
|
||||
let b = Automaton::exact(automaton_index, 1, right);
|
||||
enhancer_builder.declare(query_range.clone(), automaton_index, &[left]);
|
||||
automaton_index += 1;
|
||||
|
||||
automatons.push(AutomatonGroup::phrase_query(vec![a, b]));
|
||||
}
|
||||
} else {
|
||||
// automaton of concatenation of query words
|
||||
let concat = ngram_slice.concat();
|
||||
let normalized = normalize_str(&concat);
|
||||
|
||||
let real_query_index = automaton_index;
|
||||
enhancer_builder.declare(query_range.clone(), real_query_index, &[&normalized]);
|
||||
|
||||
let automaton = Automaton::exact(automaton_index, n, &normalized);
|
||||
automaton_index += 1;
|
||||
automatons.push(AutomatonGroup::normal(vec![automaton]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// order automatons, the most important first,
|
||||
// we keep the original automatons at the front.
|
||||
automatons[1..].sort_by_key(|group| {
|
||||
let a = group.automatons.first().unwrap();
|
||||
(
|
||||
Reverse(a.is_exact),
|
||||
a.ngram,
|
||||
Reverse(group.automatons.len()),
|
||||
)
|
||||
});
|
||||
|
||||
Ok((automatons, enhancer_builder.build()))
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
use std::ops::Deref;
|
||||
use std::fmt;
|
||||
use std::{cmp, fmt};
|
||||
use std::borrow::Cow;
|
||||
use std::mem;
|
||||
use std::ops::Range;
|
||||
@ -8,43 +8,68 @@ use std::time::{Duration, Instant};
|
||||
|
||||
use compact_arena::{SmallArena, Idx32, mk_arena};
|
||||
use fst::{IntoStreamer, Streamer};
|
||||
use hashbrown::HashMap;
|
||||
use levenshtein_automata::DFA;
|
||||
use log::debug;
|
||||
use meilisearch_tokenizer::{is_cjk, split_query_string};
|
||||
use meilisearch_types::{DocIndex, Highlight};
|
||||
use meilisearch_types::DocIndex;
|
||||
use sdset::{Set, SetBuf};
|
||||
use slice_group_by::{GroupBy, GroupByMut};
|
||||
|
||||
use crate::automaton::NGRAMS;
|
||||
use crate::automaton::{QueryEnhancer, QueryEnhancerBuilder};
|
||||
use crate::automaton::{build_dfa, build_prefix_dfa, build_exact_dfa};
|
||||
use crate::automaton::{normalize_str, split_best_frequency};
|
||||
use crate::automaton::normalize_str;
|
||||
use crate::automaton::{QueryEnhancer, QueryEnhancerBuilder};
|
||||
|
||||
use crate::criterion::Criteria;
|
||||
use crate::levenshtein::prefix_damerau_levenshtein;
|
||||
use crate::distinct_map::{BufferedDistinctMap, DistinctMap};
|
||||
use crate::raw_document::RawDocument;
|
||||
use crate::{database::MainT, reordered_attrs::ReorderedAttrs};
|
||||
use crate::{store, Document, DocumentId, MResult};
|
||||
|
||||
pub fn bucket_sort<'c>(
|
||||
pub fn bucket_sort<'c, FI>(
|
||||
reader: &heed::RoTxn<MainT>,
|
||||
query: &str,
|
||||
range: Range<usize>,
|
||||
filter: Option<FI>,
|
||||
criteria: Criteria<'c>,
|
||||
main_store: store::Main,
|
||||
postings_lists_store: store::PostingsLists,
|
||||
documents_fields_counts_store: store::DocumentsFieldsCounts,
|
||||
synonyms_store: store::Synonyms,
|
||||
) -> MResult<Vec<Document>>
|
||||
where
|
||||
FI: Fn(DocumentId) -> bool,
|
||||
{
|
||||
// We delegate the filter work to the distinct query builder,
|
||||
// specifying a distinct rule that has no effect.
|
||||
if filter.is_some() {
|
||||
let distinct = |_| None;
|
||||
let distinct_size = 1;
|
||||
return bucket_sort_with_distinct(
|
||||
reader,
|
||||
query,
|
||||
range,
|
||||
filter,
|
||||
distinct,
|
||||
distinct_size,
|
||||
criteria,
|
||||
main_store,
|
||||
postings_lists_store,
|
||||
documents_fields_counts_store,
|
||||
synonyms_store,
|
||||
);
|
||||
}
|
||||
|
||||
let (automatons, query_enhancer) =
|
||||
construct_automatons2(reader, query, main_store, postings_lists_store, synonyms_store)?;
|
||||
construct_automatons(reader, query, main_store, postings_lists_store, synonyms_store)?;
|
||||
|
||||
debug!("{:?}", query_enhancer);
|
||||
|
||||
let before_postings_lists_fetching = Instant::now();
|
||||
mk_arena!(arena);
|
||||
let mut bare_matches = fetch_matches(reader, &automatons, &mut arena, main_store, postings_lists_store)?;
|
||||
let mut bare_matches =
|
||||
fetch_matches(reader, &automatons, &mut arena, main_store, postings_lists_store)?;
|
||||
debug!("bare matches ({}) retrieved in {:.02?}",
|
||||
bare_matches.len(),
|
||||
before_postings_lists_fetching.elapsed(),
|
||||
@ -69,9 +94,6 @@ pub fn bucket_sort<'c>(
|
||||
before_raw_documents_building.elapsed(),
|
||||
);
|
||||
|
||||
dbg!(mem::size_of::<BareMatch>());
|
||||
dbg!(mem::size_of::<SimpleMatch>());
|
||||
|
||||
let mut groups = vec![raw_documents.as_mut_slice()];
|
||||
|
||||
'criteria: for criterion in criteria.as_ref() {
|
||||
@ -103,31 +125,166 @@ pub fn bucket_sort<'c>(
|
||||
}
|
||||
|
||||
let iter = raw_documents.into_iter().skip(range.start).take(range.len());
|
||||
let iter = iter.map(|d| {
|
||||
let highlights = d.raw_matches.iter().flat_map(|sm| {
|
||||
let postings_list = &arena[sm.postings_list];
|
||||
let input = postings_list.input();
|
||||
let query = &automatons[sm.query_index as usize].query;
|
||||
postings_list.iter().map(move |m| {
|
||||
let covered_area = if query.len() > input.len() {
|
||||
input.len()
|
||||
} else {
|
||||
prefix_damerau_levenshtein(query.as_bytes(), input).1
|
||||
};
|
||||
Highlight { attribute: m.attribute, char_index: m.char_index, char_length: covered_area as u16 }
|
||||
})
|
||||
}).collect();
|
||||
|
||||
Document {
|
||||
id: d.id,
|
||||
highlights,
|
||||
#[cfg(test)] matches: Vec::new(),
|
||||
}
|
||||
});
|
||||
let iter = iter.map(|rd| Document::from_raw(rd, &automatons, &arena));
|
||||
|
||||
Ok(iter.collect())
|
||||
}
|
||||
|
||||
pub fn bucket_sort_with_distinct<'c, FI, FD>(
|
||||
reader: &heed::RoTxn<MainT>,
|
||||
query: &str,
|
||||
range: Range<usize>,
|
||||
filter: Option<FI>,
|
||||
distinct: FD,
|
||||
distinct_size: usize,
|
||||
criteria: Criteria<'c>,
|
||||
main_store: store::Main,
|
||||
postings_lists_store: store::PostingsLists,
|
||||
documents_fields_counts_store: store::DocumentsFieldsCounts,
|
||||
synonyms_store: store::Synonyms,
|
||||
) -> MResult<Vec<Document>>
|
||||
where
|
||||
FI: Fn(DocumentId) -> bool,
|
||||
FD: Fn(DocumentId) -> Option<u64>,
|
||||
{
|
||||
let (automatons, query_enhancer) =
|
||||
construct_automatons(reader, query, main_store, postings_lists_store, synonyms_store)?;
|
||||
|
||||
let before_postings_lists_fetching = Instant::now();
|
||||
mk_arena!(arena);
|
||||
let mut bare_matches = fetch_matches(reader, &automatons, &mut arena, main_store, postings_lists_store)?;
|
||||
debug!("bare matches ({}) retrieved in {:.02?}",
|
||||
bare_matches.len(),
|
||||
before_postings_lists_fetching.elapsed(),
|
||||
);
|
||||
|
||||
let before_raw_documents_presort = Instant::now();
|
||||
bare_matches.sort_unstable_by_key(|sm| sm.document_id);
|
||||
debug!("sort by documents ids took {:.02?}", before_raw_documents_presort.elapsed());
|
||||
|
||||
let before_raw_documents_building = Instant::now();
|
||||
let mut prefiltered_documents = 0;
|
||||
let mut raw_documents = Vec::new();
|
||||
for raw_matches in bare_matches.linear_group_by_key_mut(|sm| sm.document_id) {
|
||||
prefiltered_documents += 1;
|
||||
if let Some(raw_document) = RawDocument::new(raw_matches, &automatons, &mut arena) {
|
||||
raw_documents.push(raw_document);
|
||||
}
|
||||
}
|
||||
debug!("creating {} (original {}) candidates documents took {:.02?}",
|
||||
raw_documents.len(),
|
||||
prefiltered_documents,
|
||||
before_raw_documents_building.elapsed(),
|
||||
);
|
||||
|
||||
let mut groups = vec![raw_documents.as_mut_slice()];
|
||||
let mut key_cache = HashMap::new();
|
||||
|
||||
let mut filter_map = HashMap::new();
|
||||
// these two variables informs on the current distinct map and
|
||||
// on the raw offset of the start of the group where the
|
||||
// range.start bound is located according to the distinct function
|
||||
let mut distinct_map = DistinctMap::new(distinct_size);
|
||||
let mut distinct_raw_offset = 0;
|
||||
|
||||
'criteria: for criterion in criteria.as_ref() {
|
||||
let tmp_groups = mem::replace(&mut groups, Vec::new());
|
||||
let mut buf_distinct = BufferedDistinctMap::new(&mut distinct_map);
|
||||
let mut documents_seen = 0;
|
||||
|
||||
for mut group in tmp_groups {
|
||||
// if this group does not overlap with the requested range,
|
||||
// push it without sorting and splitting it
|
||||
if documents_seen + group.len() < distinct_raw_offset {
|
||||
documents_seen += group.len();
|
||||
groups.push(group);
|
||||
continue;
|
||||
}
|
||||
|
||||
let before_criterion_preparation = Instant::now();
|
||||
criterion.prepare(&mut group, &mut arena, &query_enhancer, &automatons);
|
||||
debug!("{:?} preparation took {:.02?}", criterion.name(), before_criterion_preparation.elapsed());
|
||||
|
||||
let before_criterion_sort = Instant::now();
|
||||
group.sort_unstable_by(|a, b| criterion.evaluate(a, b, &arena));
|
||||
debug!("{:?} evaluation took {:.02?}", criterion.name(), before_criterion_sort.elapsed());
|
||||
|
||||
for group in group.binary_group_by_mut(|a, b| criterion.eq(a, b, &arena)) {
|
||||
// we must compute the real distinguished len of this sub-group
|
||||
for document in group.iter() {
|
||||
let filter_accepted = match &filter {
|
||||
Some(filter) => {
|
||||
let entry = filter_map.entry(document.id);
|
||||
*entry.or_insert_with(|| (filter)(document.id))
|
||||
}
|
||||
None => true,
|
||||
};
|
||||
|
||||
if filter_accepted {
|
||||
let entry = key_cache.entry(document.id);
|
||||
let key = entry.or_insert_with(|| (distinct)(document.id).map(Rc::new));
|
||||
|
||||
match key.clone() {
|
||||
Some(key) => buf_distinct.register(key),
|
||||
None => buf_distinct.register_without_key(),
|
||||
};
|
||||
}
|
||||
|
||||
// the requested range end is reached: stop computing distinct
|
||||
if buf_distinct.len() >= range.end {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
documents_seen += group.len();
|
||||
groups.push(group);
|
||||
|
||||
// if this sub-group does not overlap with the requested range
|
||||
// we must update the distinct map and its start index
|
||||
if buf_distinct.len() < range.start {
|
||||
buf_distinct.transfert_to_internal();
|
||||
distinct_raw_offset = documents_seen;
|
||||
}
|
||||
|
||||
// we have sort enough documents if the last document sorted is after
|
||||
// the end of the requested range, we can continue to the next criterion
|
||||
if buf_distinct.len() >= range.end {
|
||||
continue 'criteria;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// once we classified the documents related to the current
|
||||
// automatons we save that as the next valid result
|
||||
let mut seen = BufferedDistinctMap::new(&mut distinct_map);
|
||||
|
||||
let mut documents = Vec::with_capacity(range.len());
|
||||
for raw_document in raw_documents.into_iter().skip(distinct_raw_offset) {
|
||||
let filter_accepted = match &filter {
|
||||
Some(_) => filter_map.remove(&raw_document.id).unwrap(),
|
||||
None => true,
|
||||
};
|
||||
|
||||
if filter_accepted {
|
||||
let key = key_cache.remove(&raw_document.id).unwrap();
|
||||
let distinct_accepted = match key {
|
||||
Some(key) => seen.register(key),
|
||||
None => seen.register_without_key(),
|
||||
};
|
||||
|
||||
if distinct_accepted && seen.len() > range.start {
|
||||
documents.push(Document::from_raw(raw_document, &automatons, &arena));
|
||||
if documents.len() == range.len() {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(documents)
|
||||
}
|
||||
|
||||
pub struct BareMatch<'tag> {
|
||||
pub document_id: DocumentId,
|
||||
pub query_index: u16,
|
||||
@ -257,7 +414,7 @@ fn fetch_matches<'txn, 'tag>(
|
||||
postings_lists_store: store::PostingsLists,
|
||||
) -> MResult<Vec<BareMatch<'tag>>>
|
||||
{
|
||||
let mut before_words_fst = Instant::now();
|
||||
let before_words_fst = Instant::now();
|
||||
let words = match main_store.words_fst(reader)? {
|
||||
Some(words) => words,
|
||||
None => return Ok(Vec::new()),
|
||||
@ -273,7 +430,7 @@ fn fetch_matches<'txn, 'tag>(
|
||||
for (query_index, automaton) in automatons.iter().enumerate() {
|
||||
let before_dfa = Instant::now();
|
||||
let dfa = automaton.dfa();
|
||||
let QueryWordAutomaton { query, is_exact, is_prefix, phrase_query } = automaton;
|
||||
let QueryWordAutomaton { query, is_exact, .. } = automaton;
|
||||
dfa_time += before_dfa.elapsed();
|
||||
|
||||
let mut number_of_words = 0;
|
||||
@ -381,7 +538,35 @@ impl QueryWordAutomaton {
|
||||
}
|
||||
}
|
||||
|
||||
fn construct_automatons2(
|
||||
fn split_best_frequency<'a>(
|
||||
reader: &heed::RoTxn<MainT>,
|
||||
word: &'a str,
|
||||
postings_lists_store: store::PostingsLists,
|
||||
) -> MResult<Option<(&'a str, &'a str)>> {
|
||||
let chars = word.char_indices().skip(1);
|
||||
let mut best = None;
|
||||
|
||||
for (i, _) in chars {
|
||||
let (left, right) = word.split_at(i);
|
||||
|
||||
let left_freq = postings_lists_store
|
||||
.postings_list(reader, left.as_ref())?
|
||||
.map_or(0, |i| i.len());
|
||||
|
||||
let right_freq = postings_lists_store
|
||||
.postings_list(reader, right.as_ref())?
|
||||
.map_or(0, |i| i.len());
|
||||
|
||||
let min_freq = cmp::min(left_freq, right_freq);
|
||||
if min_freq != 0 && best.map_or(true, |(old, _, _)| min_freq > old) {
|
||||
best = Some((min_freq, left, right));
|
||||
}
|
||||
}
|
||||
|
||||
Ok(best.map(|(_, l, r)| (l, r)))
|
||||
}
|
||||
|
||||
fn construct_automatons(
|
||||
reader: &heed::RoTxn<MainT>,
|
||||
query: &str,
|
||||
main_store: store::Main,
|
||||
|
@ -30,6 +30,10 @@ pub use self::store::Index;
|
||||
pub use self::update::{EnqueuedUpdateResult, ProcessedUpdateResult, UpdateStatus, UpdateType};
|
||||
pub use meilisearch_types::{DocIndex, DocumentId, Highlight, AttrCount};
|
||||
|
||||
use compact_arena::SmallArena;
|
||||
use crate::bucket_sort::{QueryWordAutomaton, PostingsListView};
|
||||
use crate::levenshtein::prefix_damerau_levenshtein;
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
||||
pub struct Document {
|
||||
pub id: DocumentId,
|
||||
@ -39,6 +43,36 @@ pub struct Document {
|
||||
// pub matches: Vec<TmpMatch>,
|
||||
}
|
||||
|
||||
impl Document {
|
||||
pub fn from_raw<'a, 'tag, 'txn>(
|
||||
raw_document: RawDocument<'a, 'tag>,
|
||||
automatons: &[QueryWordAutomaton],
|
||||
arena: &SmallArena<'tag, PostingsListView<'txn>>,
|
||||
) -> Document
|
||||
{
|
||||
let highlights = raw_document.raw_matches.iter().flat_map(|sm| {
|
||||
let postings_list = &arena[sm.postings_list];
|
||||
let input = postings_list.input();
|
||||
let query = &automatons[sm.query_index as usize].query;
|
||||
postings_list.iter().map(move |m| {
|
||||
let covered_area = if query.len() > input.len() {
|
||||
input.len()
|
||||
} else {
|
||||
prefix_damerau_levenshtein(query.as_bytes(), input).1
|
||||
};
|
||||
|
||||
Highlight {
|
||||
attribute: m.attribute,
|
||||
char_index: m.char_index,
|
||||
char_length: covered_area as u16,
|
||||
}
|
||||
})
|
||||
}).collect();
|
||||
|
||||
Document { id: raw_document.id, highlights }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
@ -1,7 +1,8 @@
|
||||
use std::ops::Range;
|
||||
use std::time::Duration;
|
||||
|
||||
use crate::{bucket_sort::bucket_sort, database::MainT};
|
||||
use crate::database::MainT;
|
||||
use crate::bucket_sort::{bucket_sort, bucket_sort_with_distinct};
|
||||
use crate::{criterion::Criteria, Document, DocumentId};
|
||||
use crate::{reordered_attrs::ReorderedAttrs, store, MResult};
|
||||
|
||||
@ -85,11 +86,24 @@ impl<'c, 'f, 'd> QueryBuilder<'c, 'f, 'd> {
|
||||
range: Range<usize>,
|
||||
) -> MResult<Vec<Document>> {
|
||||
match self.distinct {
|
||||
Some((distinct, distinct_size)) => unimplemented!("distinct"),
|
||||
Some((distinct, distinct_size)) => bucket_sort_with_distinct(
|
||||
reader,
|
||||
query,
|
||||
range,
|
||||
self.filter,
|
||||
distinct,
|
||||
distinct_size,
|
||||
self.criteria,
|
||||
self.main_store,
|
||||
self.postings_lists_store,
|
||||
self.documents_fields_counts_store,
|
||||
self.synonyms_store,
|
||||
),
|
||||
None => bucket_sort(
|
||||
reader,
|
||||
query,
|
||||
range,
|
||||
self.filter,
|
||||
self.criteria,
|
||||
self.main_store,
|
||||
self.postings_lists_store,
|
||||
|
@ -44,7 +44,7 @@ impl<'a, 'tag> RawDocument<'a, 'tag> {
|
||||
let pla = &postings_lists[a.postings_list];
|
||||
let plb = &postings_lists[b.postings_list];
|
||||
|
||||
let mut iter = itertools::merge_join_by(pla.iter(), plb.iter(), |a, b| {
|
||||
let iter = itertools::merge_join_by(pla.iter(), plb.iter(), |a, b| {
|
||||
a.attribute.cmp(&b.attribute).then((a.word_index + 1).cmp(&b.word_index))
|
||||
});
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user